DIFFERENCE CESÁRO SEQUENCE SPACE DEFINED BY MUSIELAK-ORLICZ FUNCTIONS

VIVEK KUMAR⁽¹⁾, SUNIL K. SHARMA⁽²⁾ AND AJAY K. SHARMA⁽³⁾

ABSTRACT. The main goal of this paper is to study the topological and algebraic properties of the new constructed Cesàro sequence space of difference operator by means of Musielak-Orlicz functions. We also make an effort to study the properties of composite of Museilak-Orlicz function.

1. INTRODUCTION

Let ω denotes the space of all complex valued sequences. For $1 < t < \infty$, the Cesàro sequence space Ces_t of real sequences (χ_j) is defined by,

$$Ces_{t} = \left\{ \chi = (\chi_{j}) : \sum_{i=1}^{\infty} (\frac{1}{i} \sum_{j=1}^{i} |\chi_{j}|)^{t} < \infty \right\}.$$

It is a Banach space under the norm

$$\|\chi_j\| = \left(\sum_{i=1}^{\infty} (\frac{1}{i} \sum_{j=1}^{i} |\chi_j|)^t\right)^{\frac{1}{t}}.$$

This space is useful in theory of matrix operators and was first introduced by Shiue [17]. Many authors studied some geometric properties of this space (see, e.g., [7, 8, 16]) and references therin.

An Orlicz function $\mathcal{M}: [0, \infty) \to [0, \infty)$ is continuous, non-decreasing and convex such that $\mathcal{M}(0) = 0, \mathcal{M}(\chi) > 0$ for $\chi > 0$ and $\mathcal{M}(\chi) \to \infty$ as $\chi \to \infty$. Based on Orlicz function, Lindenstrauss and Tzafriri [9] defined the space of all scalar sequences,

Received: June 7, 2022

Accepted: Dec. $13,\,2022$.

²⁰²⁰ Mathematics Subject Classification. 46A45, 40A05, 40C05.

Key words and phrases. Cesàro sequence space, difference operator, Modulus function.

denoted by $l_{\mathcal{M}}$, such that $\sum_{j=1}^{\infty} \mathcal{M}(\frac{\chi_j}{\rho}) < \infty$.

This space is called Orlicz sequence space and it is a Banach space equipped with the norm

$$\|\chi_j\| = \inf\{\rho > 0 : \sum_{j=1}^{\infty} \mathcal{M}(\frac{\chi_j}{\rho}) \le 1\}$$

A sequence, $\mathcal{M} = (\mathfrak{F}_j)$ of Orlicz function is called Musielak-Orlicz function (see [10, 15]). For more details about the sequence spaces defined by Musielak-Orlicz function, we may refer to ([11, 12, 13, 14, 18, 19, 20]) and references therein. Kızmaz [6] introduced the notion of difference space. Further, it was generalised by Et. and Çolak [4], the difference squence space as below:

$$Z(\Delta) = \{\chi = (\chi_j) \in \omega : (\Delta^{\nu} \chi_j) \in F\}$$

for $F = l_{\infty}$, c and c_0 , where ν is non-negative integer and

$$\Delta^{\nu}\chi_{j}\Delta^{\nu-1}\chi_{j} - \Delta^{\nu-1}\chi_{j-1}, \Delta^{0}\chi_{j} = \chi_{j} \text{ for all } j \in \mathbb{N},$$

or equivalently,

$$\Delta^{\nu}\chi_j = \sum_{w=0}^j (-1)^w \binom{u}{w} \chi_{j+w}.$$

Et. and Başasir [5] generalised these spaces by taking $F = l_{\infty}(p)$, c(p) and $c_0(p)$. Dutta [3] introduced the following difference sequence spaces (a new difference operator):

$$Z(\Delta_{\eta}) = \{ \chi = (\chi_j) \in \omega : \Delta_n(\chi) \in F \}$$

for $F = l_{\infty}$, c and c_0 , where $\Delta_{\eta}\chi = (\Delta_{\eta}\chi_j) = \{\chi_j - \chi_{j-n}\}$ for all $k, n \in \mathbb{N}$. Başar and Atlay A1 introduced the generalized difference matrix $B = (b_{\eta j})$ for all

422

 $j, \eta \in \mathbb{N}$, which is a generalization of $\Delta_{(1)}$ -difference operator, by

$$b_{\eta j} = \begin{cases} \alpha & \text{when } j = \eta \\ \beta & \text{when } j = \eta - 1 \\ 0 & \text{when } j > \eta \text{ or } (0 \le j < \eta - 1) \end{cases}$$

Başarir and Kayikçi [2] defined the matrix $B^{\nu}(b^{\nu}_{\eta k})$ which reduced the difference matrix Δ^{ν}_{1} in case $\alpha = 1, \beta = 1$. The generalized B^{μ} -difference operator is equivalent to the following binomial representation:

$$B^{\nu}\chi = B^{\nu}(\chi_j) = \sum_{w}^{\nu} {\binom{\nu}{0}} r^{\nu-w} s^w \chi_{j-w}.$$

Let $\mathcal{M} = (\mathfrak{F}_i)$ be Musielak-Orlicz function. For a bounded sequence $t = (t_i)$ of positive real numbers, we define the difference Cesàro space defined by Museilak-Orlicz function as follows:

$$Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t) = \{\chi \in \omega : \sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B^{\nu}_{\Lambda} \chi_j|}{\phi_1}\right)\right]^{t_i} < \infty\}.$$

Let $\mathcal{M} = (\mathfrak{S}_i)$ be Musielak-Orlicz function. Then, the multipliers of the sequence space $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ denoted by $S(Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t))$, is given by

$$S(Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)) = \{a \in \omega : a\chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t) \text{ for all } \chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)\}.$$

Let $\mathcal{M} = (\mathfrak{F}_i)$ be Musielak-Orlicz function and \vee be a fixed natural number. Then we define

$$Ces(\mathcal{M}^{\vee}, B^{\nu}_{\Lambda}, t) = \{\chi \in \omega : \sum_{i=1}^{\infty} \left[\Im_{i}^{\vee} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B^{\nu}_{\Lambda} \chi_{j})|}{\phi}\right)\right]^{t_{i}} < \infty \text{ for some } \phi > 0\}.$$

The following inequality will be used throughout the paper. If $0 \le t_i \le \sup t_i = C$, $D = \max(1, 2^{C-1})$, then

(1.1)
$$|a_i + b_i|^{t_i} \le C(|a_i|^{t_i} + |b_i|^{t_i}),$$

for all i and a_i , $b_i \in \mathbb{C}$. Also $|a|^{t_i} \leq max(1, a|^C)$ for all $a \in \mathbb{C}$.

2. Main Results

Theorem 2.1. For any Musielak-Orlicz function $\mathcal{M} = (\mathfrak{S}_i)$, the space $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ is linear over \mathbb{C} .

Proof. Let χ , $\xi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist $\phi_1 > 0$ and $\phi_2 > 0$ such that

$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j|}{\phi_1} \right) \right]^{t_i} < \infty$$

and

$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \xi_j|}{\phi_2} \right) \right]^{t_i} < \infty.$$

Define
$$\phi_3 = \max(2|\alpha|\phi_1, 2|\beta|\phi_2)$$
. Since \mathfrak{F}_i is non-decreasing and convex,

$$\sum_{i=1}^{\infty} \left[\mathfrak{F}_i \left(\frac{\frac{1}{n} \sum_{j=1}^i |\alpha B_\Lambda^{\nu} \chi_j + \beta B_\Lambda^{\nu} \xi_j|}{\phi_3} \right) \right]^{t_i}$$

$$\leq \sum_{i=1}^{\infty} \frac{1}{2^{t_i}} \left[\mathfrak{F}_i \left(\frac{\frac{1}{i} \sum_{j=1}^i |B_\Lambda^{\nu} \chi_j|}{\phi_1} \right) + \mathfrak{F}_i \left(\frac{\frac{1}{i} \sum_{j=1}^i |B_\Lambda^{\nu} \xi_j|}{\phi_2} \right) \right]^{t_i}$$

$$\leq \max(1, 2^{C-1}) \left(\sum_{i=1}^{\infty} \left[\mathfrak{F}_i \left(\frac{\frac{1}{i} \sum_{j=1}^i |B_\Lambda^{\nu} \chi_j|}{\phi_1} \right) \right]^{t_i} + \sum_{i=1}^{\infty} \left[\mathfrak{F}_i \left(\frac{\frac{1}{i} \sum_{j=1}^i |B_\Lambda^{\nu} \xi_j|}{\phi_2} \right) \right]^{t_i} \right)$$

$$< \infty.$$

Hence, the required result.

Theorem 2.2. For any Musielak-Orlicz function $\mathcal{M} = (\mathfrak{S}_i)$, the space $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ is paranormed, with a paranorm defined as

(2.1)
$$\gamma(\chi) = \left(\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i}\sum_{j=1}^{i} |B_{\Lambda}^{\nu}\chi_j|}{\phi_1}\right)\right]^{t_i}\right)^{\frac{1}{K}},$$

where $C = \sup t_i$ and $K = \max(1, C)$.

Proof. For this, we only need to show that γ is subadditive and multiplication is continous. For this, let χ , $\xi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ and by using the Minkowski's inequality,

we have

$$\begin{split} \left(\sum_{i=1}^{\infty} \left[\Im_{i}\left(\frac{\frac{1}{i}\sum_{j=1}^{i}|B_{\Lambda}^{\nu}(\chi_{j}+\xi_{j})|}{\phi}\right)\right]^{t_{i}}\right)^{\frac{1}{K}} \\ &\leq \left(\sum_{i=1}^{\infty} \left[\Im_{i}\left(\frac{1}{i}\sum_{j=i}^{i}\left(\frac{|B_{\Lambda}^{\nu}\chi_{j}|}{\phi}+\frac{|B_{\Lambda}^{\nu}\xi_{j}|}{\phi}\right)\right)\right]^{t_{i}}\right)^{\frac{1}{K}} \\ &\leq \left(\sum_{i=1}^{\infty} \left[\Im_{i}\left(\frac{\frac{1}{i}\sum_{j=1}^{i}|B_{\Lambda}^{\nu}\chi_{j}|}{\phi}\right)\right]^{t_{i}}\right)^{\frac{1}{K}} + \left(\sum_{i=1}^{\infty} \left[\Im_{i}\left(\frac{\frac{1}{i}\sum_{j=1}^{i}|B_{\Lambda}^{\nu}\xi_{j}|}{\phi}\right)\right]^{t_{i}}\right)^{\frac{1}{K}}. \end{split}$$

Thus, $\gamma(x)$ is subadditive. To complete the proof, let $\delta \in \mathbb{C}$. By definition, we have

$$\gamma(\delta\chi) = \left(\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i}\sum_{j=1}^{i} |B_{\Lambda}^{\nu}\delta\chi_j|}{\phi}\right)\right]^{t_i}\right)^{\frac{1}{K}} \le T_{\delta}^{\frac{C}{K}}\gamma(x),$$

where $T_{\delta} \in \mathbb{N}_0$ such that $|\delta| \leq T_{\delta}$. Let $\delta \to 0$ and for fixed $\chi, \gamma(\chi) = 0$. By definition for $|\delta| < 1$, we have

(2.2)
$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |\delta B^{\nu}_{\Lambda} \chi_j|}{\phi} \right) \right]^{t_i} < \epsilon, \ i > i_0(\epsilon)$$

Also, for $1 \leq i \leq i_0$, for sufficiently small δ . Since $\mathcal{M} = (\mathfrak{S}_i)$ is continous, we have

(2.3)
$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |\delta B_{\Lambda}^{\nu} \chi_j|}{\phi}\right)\right]^{t_i} < \epsilon.$$

By the above equations, it imply that $\gamma(\delta x) \to 0$ as $\delta \to 0$. This completes the proof that the space $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ is a paranormed space.

Theorem 2.3. For any Musielak-Orlicz function $\mathcal{M} = (\mathfrak{S}_i)$, the space $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ is a complete paranormed space with paranorm defined in equation (2.1)

Proof. For this, it is sufficient to prove the completeness property $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$. Let $(\chi^{(m)})$ be a Cauchy sequence in $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$. Let $r\chi_0$ be fixed. Then for each $\frac{\epsilon}{r\chi_0} > 0, \ \exists N \in \mathbb{N}_0$ such that

$$\gamma(B^{\mu}_{\Lambda}\chi^{(m)}) - B^{\nu}_{\Lambda}\chi^{(n)}) < \frac{\epsilon}{r\chi_0},$$

for all $m, n \ge N$, Using (2.1), we have

$$\left(\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i}\sum_{j=1}^{i} |B_{\Lambda}^{\nu}\chi_j^{(m)} - B_{\Lambda}^{\nu}\chi_j^{(n)}|}{\gamma(B_{\Lambda}^{\nu}\chi^{(m)} - B_{\Lambda}^{\nu}\chi^{(n)})}\right)\right]^{t_i}\right)^{\frac{1}{K}} \le 1.$$

Thus

$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j^{(m)} - B_{\Lambda}^{\nu} \chi_j^{(n)}|}{\gamma(B_{\Lambda}^{\nu} \chi^{(m)} - B_{\Lambda}^{\nu} \chi^{(n)})} \right) \right]^{t_i} \le 1.$$

Since $1 \leq t_i < \infty$, it follows that $\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^i |B_\Lambda^{\nu} \chi_j^{(m)} - B_\Lambda^{\nu} \chi_j^{(n)}|}{\gamma(B_\Lambda^{\nu} x^{(m)} - B_\Lambda^{\nu} x^{(n)})} \right) \leq 1$, for each $i \geq 1$. We choose r > 0 such that $\left(\frac{\chi_0}{2}\right) rt\left(\frac{\chi_0}{2}\right) \geq 1$, where t is the kernel associated with \Im_i . Hence,

$$\Im_i\left(\frac{\frac{1}{i}\sum_{j=1}^i |B^{\nu}_{\Lambda}\chi^{(m)}_j - B^{\nu}_{\Lambda}\chi^{(n)}_j|}{\gamma(B^{\nu}_{\Lambda}\chi^{(m)} - B^{\nu}_{\Lambda}x^{(n)})}\right) \le (\frac{\chi_0}{2})rt(\frac{\chi_0}{2})$$

for each $i \in \mathbb{N}$. Using the integral representation of Orlicz function, we get $\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}^{(m)} - B_{\Lambda}^{\nu} \chi_{j}^{(n)}| \leq \frac{r\chi_{0}}{2} \gamma (B_{\Lambda}^{\nu} \chi^{(m)} - B_{\Lambda}^{\nu} \chi^{(n)}) < \frac{\epsilon}{2}$, for all $m, n \geq N$. Hence for each fixed j, $(B_{\Lambda}^{\nu} \chi_{j}^{(m)})$ is Cauchy sequence in \mathbb{C} . Since \mathbb{C} is complete, $(B_{\Lambda}^{\nu} \chi_{j}^{(m)}) \rightarrow (B_{\Lambda}^{\nu} \chi_{j})$ as $m \rightarrow \infty$. For given $\epsilon > 0$, choose an integer $i_{0} > 1$ such that $\gamma (B_{\Lambda}^{\nu} \chi^{(m)} - B_{\Lambda}^{\nu} \chi^{(n)}) < \epsilon$ for all $m, n \geq i_{0}$, such that $\gamma (B_{\Lambda}^{\nu} \chi^{(m)} - B_{\Lambda}^{\nu} \chi^{(n)}) < \rho < \epsilon$. Since

$$\left(\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i}\sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j^{(m)} - B_{\Lambda}^{\nu} \chi_j^{(n)}|}{\phi}\right)\right]^{t_i}\right)^{\frac{1}{K}} \le 1$$

for all $m, n \geq i_0$.

Now, using continuity of \mathfrak{I}_i and taking $n \to \infty$ in above equality, we have

$$\left(\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i}\sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j^{(m)})) - B_{\Lambda}^{\nu} \chi_j|}{\phi}\right)\right]^{t_i}\right)^{\frac{1}{K}} \le 1$$

for all $m \geq i_0$.

Letting $m \to \infty$, we get $\gamma(B^{\nu}_{\Lambda}\chi^{(m)} - B^{\nu}_{\Lambda}\chi) < \epsilon$ for all $m, n \ge i_0$, such that $\gamma(B^{\nu}_{\Lambda}\chi^{(m)} - B^{\nu}_{\Lambda}\chi^{(n)}) < \rho < \epsilon$ for all $m \ge i_0$. Thus $(B^{\nu}_{\Lambda}\chi^{(m)})$ converges to $(B^{\nu}_{\Lambda}\chi)$ with respect to

426

the pranorm of $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$. Since $(B^{\nu}_{\Lambda}\chi^{(m)}) \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ and \mathfrak{F}_i is continous, it follows that $(B^{\nu}_{\Lambda}\chi) \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$.

Theorem 2.4. Let $\mathcal{M} = (\mathfrak{F}_i)$ be Musielak-Orlicz function and $t = (t_i), s = (s_i)$ are bounded sequence of positive real numbers with $0 < t_i \leq s_i < \infty$ for each *i*. Then $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t) \subset Ces(\mathcal{M}, B^{\nu}_{\Lambda}, s).$

Proof. Let $\chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, p)$. Then, $\exists \phi > 0$ such that

$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j|}{\phi} \right) \right]^{p_i} < \infty.$$

This implies that $\mathfrak{F}_i\left(\frac{\frac{1}{i}\sum_{j=1}^i|B^{\nu}_{\Lambda}\chi_j|}{\phi}\right) \leq 1$ for sufficiently large value of i, say $i \geq i_0$ for some fixed $i_0 \in \mathbb{N}$. Since \mathfrak{F}_i is non-decreasing and $t_i \leq s_i$, we have

$$\sum_{i\geq i_0}^{\infty} \left[\Im_i\left(\frac{\frac{1}{i}\sum_{j=1}^i |B_{\Lambda}^{\nu}\chi_j|}{\phi}\right)\right]^{s_i} \leq \sum_{i\geq i_0}^{\infty} \left[\Im_i\left(\frac{\frac{1}{i}\sum_{j=1}^i |B_{\Lambda}^{\nu}\chi_j|}{\phi}\right)\right]^{t_i} < \infty.$$

Therefore, $\chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, q)$ and hence, the result.

Theorem 2.5. Let $\mathcal{M} = (\mathfrak{F}_i)$ be Museilak-Orlicz function and $r = r_i, t = (t_i)$ be bounded sequences of positive real numbers with $0 < r_i, t_i < \infty$ and if $p_i = \min(r_i, t_i), q_i = \max(r_i, t_i)$, then $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, p) = Ces(\mathcal{M}, B^{\nu}_{\Lambda}, r) \cap Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ and $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, q) = D$, where D is subspace of ω generated by $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, r) \cup Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$.

Proof. By above result, $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, p) \subset Ces(\mathcal{M}, B^{\nu}_{\Lambda}, r) \cap Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$ and $D \subset Ces(\mathcal{M}, B^{\nu}_{\Lambda}, q)$. For any $\delta \in \mathbb{C}$, $|\delta|^{p_i} \leq \max(|\delta|^{r_i}, |\delta|^{t_i})$ and thus $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, r) \cap Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t) \subset Ces(\mathcal{M}, B^{\nu}_{\Lambda}, p)$. Let $E = \{i : r_i \geq t_i\}$ and $F = \{i : r_i < t_i\}$. If $\chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, q)$, we write

$$\xi_i = \chi_i (i \in E)$$
 and $\xi_i = 0 (i \in F);$
 $\varsigma_i = 0 (i \in E)$ and $\varsigma_i = \chi_i (i \in F).$

Since $\chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, q), \exists \phi > 0$ such that

$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j|}{\phi} \right) \right]^{q_i} < \infty.$$

Now

$$\begin{split} \sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \xi_j|}{\phi} \right) \right]^{r_i} &= \sum_{n \in E} + \sum_{n \in F} \\ &= \sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \xi_j|}{\phi} \right) \right]^{q_i} < \infty. \end{split}$$

Therefore, $\xi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, r) \subset D$. Likewise, $B^{\mu}_{\Lambda}\varsigma \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t) \subset D$. Thus, $\chi = \xi + \varsigma \in D$ and hence, $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, q) \subset D$, which is the desired result. \Box

Theorem 2.6. Let $\mathcal{M} = (\mathfrak{F}_i)$ be Musielak-Orlicz function which satisfies Δ_2 condition. Then $l_{\infty} \subset S(Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)).$

Proof. Let $\varsigma = \varsigma_i \in l_{\infty}$, $K = \sup_i |\varsigma_i|$ and $\chi \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$. Then

$$\sum_{i=1}^{\infty} \left[\Im_i \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_j|}{\phi} \right) \right]^{t_i} < \infty \text{ for some } \phi > 0.$$

Since \Im_i satisfies Δ_2 -condition, $\exists N > 0$ such that

$$\begin{split} \sum_{i=1}^{\infty} \left[\Im_{i} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |\varsigma_{i} B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}} &\leq \sum_{i=1}^{\infty} \left[\Im_{i} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} \varsigma_{i} || B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}} \\ &\leq \sum_{i=1}^{\infty} \left[\Im_{i} \left(1 + [K] \frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}} \\ &\leq (N(1 + [T]))^{C} \sum_{i=1}^{\infty} \left[\Im_{i} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}} \\ &< \infty, \end{split}$$

where [T] is the integer part of N. Hence, the result.

Theorem 2.7. Let \mathcal{M} be Museilak-Orlicz function and $v \in \mathbb{N}$. (i) If there exists a constant $\beta \geq 1$ such that $\Im_i(y) \geq \beta y$ for all $\xi \geq 0$, then $Ces(\mathcal{M}^{\vee}, B^{\nu}_{\Lambda}, t) \subset Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$

(ii) Suppose there exists a constant α , $0 < \alpha \leq 1$ such that $\Im_i(y) \leq \alpha y$ for all $y \geq 0$ and let $r, \forall \in \mathbb{N}$ be such that $r < \forall$. Then $Ces(B^{\nu}_{\Lambda}, t) \subset Ces(\mathcal{M}^r, B^{\nu}_{\Lambda}, t) \subset Ces(\mathcal{M}^{\vee}, B^{\nu}_{\Lambda}, t)$.

Proof. (i) Since $\mathfrak{S}_i(y) \geq \beta y$ for all $y \geq 0$ and \mathfrak{S}_i is non-decreasing and convex, we have $\mathfrak{S}_i^v(y) \geq \beta^v y$ for each $v \in \mathbb{N}$. Let $\chi \in Ces(\mathcal{M}^{\vee}, B^{\nu}_{\Lambda}, t)$. Using above inequality, we have

$$\sum_{i=1}^{\infty} \left(\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}| \right)^{t_{i}} \leq \max(1, \phi^{C}) \max(1, \beta^{-vC}) \sum_{i=1}^{\infty} \left[\Im_{i}^{v} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}}.$$

Hence, $\chi \in Ces(\mathcal{M}, B_{\Lambda}^{\nu}, t).$

(ii) Since $\Im_i(y) \leq \alpha y$ for all $y \geq 0$ and \Im_i is non-decreasing and convex, we have $\Im_i^r \leq \alpha^r y$ for each $m \in \mathbb{N}$. We can easily prove the first inclusion. To prove the next one, suppose that $\vee -r = s$ and let $\chi \in Ces(\mathcal{M}^r, B^{\nu}_{\Lambda}, t)$. Again, using above inequality, we have

$$\sum_{i=1}^{\infty} \left[\mathfrak{S}_{i}^{\vee} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}} \le \max(1, \alpha^{sH}) \sum_{i=1}^{\infty} \left[\mathfrak{S}_{i}^{r} \left(\frac{\frac{1}{i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \chi_{j}|}{\phi} \right) \right]^{t_{i}}$$

and hence $\chi \in Ces(\mathcal{M}^{\vee}, B^{\nu}_{\Lambda}, t)$.

Acknowledgement

The first author is thankful to CSIR(India) for JRF (Grant No. 09/1231(0002)/2019-EMR-I).

References

- F. Başar, B. Altay, On the space of sequences of bounded variation and related matrix mapping, Ukr. Math. J., 55 (2003), 136–147.
- M. Başasir, M. Kayikçi, On the generalized B^m-Riesz difference sequence spaces and β-property, J. Inequal. Appl., (2009), ID 385029.
- [3] H. Dutta, On some difference sequence spaces, Proc. J. Sci. Technology, 10 (2009), 243–247.
- [4] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21 (1995), 377–356.

- [5] M. Et, M. Başarir, On some new genelalized difference sequence spaces, *Period. Math. Hung.*, 35 (1997), 169–175.
- [6] H. Kızmaz, On certain sequence spaces, Cand. Math. Bull., 24 (1981), 169–176.
- [7] P. Y. Lee, Cesàro sequence spaces, Math. chronicle, 13 (1984), 29–45.
- [8] G. M. Leibowitz, A note on the Cesàro sequence spaces, Tamkang J. Math., 2 (1971), 151–157.
- [9] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379–390.
- [10] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics, Polish Academy of Science, 5 (1989).
- [11] M. Mursaleen, S. K. Sharma, S. A. Mohiuddine, A. Kiliçman, New difference sequence spaces defined by Musielak-Orlicz function, *Abstract Applied Analysis*, Volume 2014, 9 pages.
- [12] M. Mursaleen, A. Alotaibi, S. K. Sharma, Some new lacunary strong convergent vector-valued sequence spaces, *Abstract Applied Analysis*, Volume 2014, 8 pages.
- [13] M. Mursaleen, S. K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, *Iranian Journal of Science and Technology*, **38** (2014), 105–109.
- [14] M. Mursaleen, S. K. Sharma, Qamaruddin, Some sequence spaces over n-normed spaces defined by fractional difference operator and Musielak-Orlicz function, Korean Journal Math., 29 (2021),211-225.
- [15] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- [16] W. Sanhan, S. Suantai, On k-nearly uniform convex property in generalized Cesàro sequence spaces, Int. J. Math. Math. Sci., 57 (2003), 3599–3607.
- [17] J. S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math., 1 (1970), 19–25.
- [18] S. K. Sharma, S. A. Mohinddine, D. A. Abuzaid, Some seminormed difference sequence spaces over n-normed space defined by Musielak-Orlicz function of order (α, β), Journal of function spaces, 2018, 11 pages. 505–509.
- [19] S. K. Sharma, S. A. Mohinddine, A. K. Sharma, T. K. Sharma, Sequence spaces over n-normed spaces defined by Musielak-Orlicz function of order (α, β), Facta Universities NIS series, 33 (2019), 721–738.
- [20] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. (1984).

(1,3) Department of Mathematics, Central University of Jammu, Rahya Suchani (Bagla), Samba-181143, J&K, India

Email address: (1) vivakkumar072@gmail.com Email address: (3) aksju_76@yahoo.com

(2) School of Mathematics, Shri Mata Vaishno Devi University, Kakriyal, Katra-182320

Email address: (2) sunilksharma420gmail.com