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ON A CLASS OF DEGENERATE FRACTIONAL p(.)-LAPLACIAN
PROBLEMS WITH VARIABLE ORDER AND VARIABLE

EXPONENT

ABDELALI SABRI

Abstract. The aim of this paper is to study a class of a degenerate elliptic problem

driven by the fractional p(.)-Laplacian operator with variable order and variable

exponent, the main tool used here is the variational method combined with the

theory of variable-order fractional Sobolev spaces with variable exponent.

1. Introduction

This paper is devoted to study the existence and uniqueness question of weak

solutions for the fractional p(x)-Laplacian problem

(1.1)







u+
(

−∆
s(x)
p(x)

)

(u−Θ(u)) + α(u) = f(x, u) in Ω,

u = 0 on ∂Ω,

where (−∆)
s(x)
p(x) is the fractional p(x)-Laplacian operator with variable order which

can be defined as

(

−∆
s(x)
p(x)

)

u(x) = P · V ·

∫

Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+s(x,y)p(x,y)
dy, for all x ∈ Ω,

and P.V. is a commonly used abbreviation in the principal value sense. Ω is a bounded

open domain of RN(N ≥ 3). p(.) and s(.) are two continuous variable exponents with

s(x, y)p(x, y) < N for any (x, y) ∈ Ω×Ω. α is a non decreasing continuous real func-

tion defined on R and Θ is a continuous function defined from R to R, the datum f

is a Carathéodory function satisfying some growth conditions.
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The terminology variable-order fractional Laplace operator indicates that s(.) and

p(.) are functions and not real numbers. This operator is then a generalization of

the fractional Laplacian (−∆)s, which corresponds to p(.) ≡ 2 and s(.) ≡ s ∈ (0, 1)

constant, and of the p -Laplacian −∆p, which corresponds to p(.) ≡ p ∈ (1,+∞)

constant and s(.) ≡ 1.

A very interesting area of nonlinear analysis lies in the study of elliptic equations

involving fractional operators. Recently, great attention has been focused on these

problems, both for pure mathematical research and in view of concrete real-world

applications. Indeed, this type of operator arises in a quite natural way in different

contexts, such as the description of several physical phenomena, optimization, popu-

lation dynamics and mathematical finance. The fractional Laplacian operator (−∆)s,

0 < s < 1, also provides a simple model to describe some jump Lévy processes in

probability theory (see for example [2], [9], [10], [12], [21] and the references therein).

In last years, a large number of papers are written on fractional Sobolev spaces

and nonlocal problems driven by this operator (see for example [3], [8], [9], [10], [11],

[25], [26] and [27] for further details). Specifically, we refer to Di Nezza, Palatucci

and Valdinoci [11], for a full introduction to study the fractional Sobolev spaces and

the fractional p-Laplacian operators. On the other hand, attention has been paid to

the study of partial differential equations involving the p(x)-Laplacian operators (see

[14], [15], [16], [17], [19], [22] and the references therein). So the natural question

that arises is to see which result can be obtained, if we replace the p(x)-Laplacian

operator by its fractional version (the fractional p(x)-Laplacian operator). Currently,

as far as we know, the only results for fractional Sobolev spaces with variable expo-

nents and fractional p(x)-Laplacian operator are obtained by [4], [5], [13], [18] and

[31]. In particular, the authors generalized the last operator to fractional case. Then,

they introduced an appropriate functional space to study problems in which a frac-

tional variable exponent operator is present. These works are generalized by Reshmi

Biswas and Sweta Tiwari in the case of variable order, see[7], they proved interesting

properties concerning the spaces of Sobolev with variable order, another work in this

direction can be found in [32].



ON A CLASS OF DEGENERATE FRACTIONAL p(.)-LAPLACIAN PROBLEMS 447

Recently, an always increasing interest has been shown towards non-local problems

involving the fractional p(.)-Laplacian operator with variable order. In [7], R. Biswas-

et-al obtained the multiplicity of weak solutions for a p(.)fractional problem with vari-

able order by using the variational method. In [32], Zuo-et-al proved the existence of

solutions for the Kirchoff type problems involving the fractional p(.)-Laplacian with

variable order, in which the critical mountain pass level, combined with a Brzis and

Lieb-type lemma for fractional Sobolev spaces with variable order and variable ex-

ponent are applied to study this problem. In the case where p(.) = 2, Xiang-et-al

studied in [28] the existence of multiplicity of solutions for variable-order fractional

Kirchhoff equations with nonstandard growth by applying the Nehari manifold ap-

proach.

When p(.) = p and s(.) = s, Sabri-et-al treated in [23] the problem

(1.2)







(−∆)sp(u−Θ(u)) + α(u) = f in Ω,

u = 0 on ∂Ω,

under the following assumptions,

(H ′
1) : α is a continuous function defined on R such that α(x).x ≥ 0 and there exists

a positive constant λ1 such that |α(x)| ≤ λ1|x|
p−1 for all x ∈ R.

(H ′
2) : Θ is a continuous function from R to R such that for all real numbers x, y,

we have |Θ(x) − Θ(y)| ≤ λ2|x − y|, where λ2 is a real constant such that

0 < λ2 <
1
2
.

(H ′
3) : f ∈ L∞(Ω),

They have proved the existence of a weak solution for problem (1.2) by using a special

type of operators called the operator of type (M). This problem has been generalized

in the case where the exponent p is variable (see[24]) .

Motivated by the above works, we study the problem (1.1), we will show that this

problem has a unique weak solution by proving that the operator

T{u} =
{

u + (−∆)
s(.)
p(.)(u−Θ(u)) + α(u)− f(x, u)

}

satisfies the assertions of Theorem 2.2.

In this paper, we suppose that
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(H1) : α is a non decreasing continuous real function defined on R, and there exists

a positive constant λ1 such that |α(z)| ≤ λ1|z|
p(x)−1 for all z ∈ R and x ∈ Ω.

(H2) : Θ is a continuous function from R to R such that for all real numbers x, y,

we have |Θ(x) − Θ(y)| ≤ λ2|x − y|, where λ2 is a real constant such that

0 < λ2 <
1
2
.

(H3) : f : Ω×R → R is a Carathéodory function that is nonincreasing with respect

to the second variable, i.e.,

f (x, t1) ≤ f (x, t2) for a.e. x ∈ Ω and t1, t2 ∈ R with t1 ≥ t2,

and there exist functions a ∈ L
(p∗

s(.)
)′(Ω) and b ∈ L∞ (Ω) ∩ Lγ(.) (Ω) such that

(1.3) |f(x, t)| ≤ a(x) + b(x)|t|α(x),

where α(x) ∈ C+(Ω̄) such that α− ≤ α+ ≤ p− − 1 and

γ(x) =
p∗s(.)(x)

p∗
s(.)(x)− (α(x) + 1)

for all x ∈ Ω.

We first give the definition of weak solutions for problem (1.1).

Definition 1.1. A function u ∈ X0 is called a weak solution to the problem (1.1) if

and only if

(1.4)

∫

Ω

uvdx +

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)
(v(x)− v(y)) dx dy +

∫

Ω

α(u)v dx

=

∫

Ω

f(x, u)vdx,

for all v ∈ X0, where ψ
u
Θ(x, y) = u(x) − u(y) − Θ(u(x)) + Θ(u(y)) and X0 will be

introduced in Section 2

Now we are in a position to state the main result as follows:

Theorem 1.1. Let p(.) and s(.) be two continuous variable exponents satisfying (2.1),

(2.2), (2.3), and (2.4) with s(x, y)p(x, y) < N for all (x, y) ∈ Ω × Ω. If hypotheses

(H1), (H2) and (H3) hold, then, the problem (1.1) has a unique weak solution.
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2. Preliminaries and notations

In this section, we recall some notations and definitions and we will state some

results which will be used in this work.

Let Ω be a smooth bounded open set in R
N , we consider the set

C+(Ω̄) = {q ∈ C(Ω̄) : 1 < q− < q(x) < q+ <∞ for all x ∈ Ω̄},

where

q− = inf
x∈Ω

q(x) and q+ = sup
x∈Ω

q(x).

For any q ∈ C+(Ω̄), we define the variable exponent Lebesgue space as

Lq(.)(Ω) =

{

u : function u : Ω → R is measurable with

∫

Ω

|u(x)|q(x)dx <∞

}

,

which is endowed with the so-called Luxemburg norm

‖u‖q(·) = inf

{

γ > 0 :

∫

Ω

∣

∣

∣

∣

u(x)

γ

∣

∣

∣

∣

q(x)

dx ≤ 1

}

.

(

Lq(·)(Ω), ‖ · ‖q(·)
)

is a separable reflexive Banach space see, for example [19].

Let p : Ω×Ω −→ (1,+∞) and s : Ω×Ω −→ (0, 1) be two continuous functions such

that

(2.1) 1 < p− = min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω×Ω

p(x, y) < +∞

(2.2) 0 < s− = min
(x,y)∈Ω×Ω

s(x, y) ≤ s(x, y) < s+ = max
(x,y)∈Ω×Ω

s(x, y) < 1

(2.3) 0 < s− < s+ < 1 < p− ≤ p+

We set

p(x) = p(x, x) and s(x) = s(x, x) for all x ∈ Ω.

We assume that

(2.4)

p and s are symmetric, that is, p(x, y) = p(y, x) and s(x, y) = s(y, x) for all (x, y) ∈ Ω×Ω.

The variable-order fractional Sobolev spaces with variable exponent via the Gagliardo

approach is defined by

X = W s(·),p(·) (Ω)
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=

{

u ∈ Lp̄(x) (Ω) :

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

γp(x,y)|x− y|N+p(x,y)s(x,y)
dxdy <∞ for some γ > 0

}

with the norm ‖u‖X = ‖u‖p̄(x) + [u]s(·),p(·), where

[u]s(·),p(·) = inf

{

γ > 0 :

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

γp(x,y)|x− y|N+p(x,y)s(x,y)
dxdy < 1

}

is a Gagliardo seminorm with variable-order and variable exponent. The space X is

a separable reflexive Banach space, see [7]. Next we define the subspace X0 of X as

X0 = X
s(.),p(.)
0 (Ω) := {u ∈ X : u = 0 a.e.in Ωc}

endowed by the norm

‖u‖X0 := [u]s(·),p(·).

The space X0 is a separable reflexive Banach space, see [7]. We define the convex

modular function ̺
s(·)
p(·) : X0 → R by

̺
s(·)
p(·)(u) =

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

|x− y|N+p(x,y)s(x,y)
dxdy

whose associated norm define by

‖u‖ = ‖u‖
ρ
s(.)
p(.)

= inf

{

γ > 0 : ̺
s(·)
p(·)

{

u

γ

}

≤ 1

}

,

which is equivalent to the norm ‖ · ‖X0 .

Proposition 2.1. [7] Let u ∈ X0 and {un} ⊂ X0, then

(1) ‖u‖X0 < 1( resp. = 1, > 1) ⇐⇒ ρ
s(·)
p(·)(u) < 1( resp. = 1, > 1),

(2) ‖u‖X0 < 1 ⇒ ‖u‖p
+

X0
≤ ρ

s(·)
p(·)(u) ≤ ‖u‖p

−

X0
,

(3) ‖u‖X0 > 1 ⇒ ‖u‖p
−

X0
≤ ρ

s(·)
p(·)(u) ≤ ‖u‖p

+

X0

(4) limn→∞ ‖un‖X0
= 0(∞) ⇐⇒ limn→∞ ρ

s(·)
p(·) (un) = 0(∞),

(5) limn→∞ ‖un − u‖X0
= 0 ⇐⇒ limn→∞ ρ

s(·)
p(·) (un − u) = 0.

Theorem 2.1. [7] Let Ω ⊂ R
N be a smooth bounded domain and let p(.) and s(.)

be two continuous variable exponents satisfying (2.1), (2.2), (2.3), and (2.4) with

s(.)p(.) < N . Assume that r : Ω −→ (1,+∞) is a continuous variable exponent such

that

p∗s(.)(x) =
Np(x)

N − s(x)p(x)
> r(x) ≥ r− = min

x∈Ω
r(x) > 1 for all x ∈ Ω.
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Then, there exists a positive constant C = C(N, s, p, r,Ω) such that, for any u ∈ X0

‖u‖Lr(x)(Ω) ≤ C‖u‖X0.

Thus, the space X0 is continuously embedded in Lr(x)(Ω) for any r ∈ (1, p∗s(.)). More-

over, this embedding is compact.

Let q′ ∈ C+(Ω) be the conjugate exponent of q, that is,
1

q(x)
+ 1

q′(x)
= 1 for all x ∈ Ω,

then we have the following Hölder-type inequality :

Lemma 2.1. [17](Hölder-type inequality). If u ∈ Lq(x)(Ω) and v ∈ Lq′(x)(Ω),

then
∣

∣

∫

Ω
uvdx

∣

∣ ≤
(

1
q−

+ 1
q′−

)

‖u‖Lq(x)(Ω)‖v‖Lq′(.)(Ω) ≤ 2‖u‖Lq(x)(Ω)‖v‖Lq′(x)(Ω).

Definition 2.1. [20] Let Y be a reflexive Banach space and let P be an operator

from Y to its dual Y ′. We say that P is monotone if and only if

〈Pu− Pv, u− v〉 ≥ 0, ∀ u, v ∈ Y.

Theorem 2.2. [20] Let Y be a reflexive real Banach space and P : Y −→ Y ′ be a

bounded operator, hemi-continuous, coercive and monotone on space Y . Then, the

equation Pu = h has at least one solution u ∈ Y for each h ∈ Y ′.

We now recall the basic properties of Nemytsky operators in Lebesgue spaces.

Theorem 2.3. [30] Let Ω be a not necessarily bounded domain of R
N , p1, p2 ∈

[1,+∞) and let f : Ω×R → R be a Carathéodory function that satisfies the growth

condition

|f(x, s)| ≤ a(x) + b(x)|s|
p1
p2 , x ∈ Ω, s ∈ R,

where a ∈ Lp2(Ω) and b is a non-negative function in L∞(Ω). Then the operator

Nf from Lp1(Ω) into Lp2(Ω) defined by (Nfu) (x) = f(x, u(x)) is a bounded and

continuous operator.

Lemma 2.2. [1] For ξ, η ∈ R
N and 1 < p <∞, we have

1

p
|ξ|p −

1

p
|η|p ≤ |ξ|p−2ξ(ξ − η).

Lemma 2.3. For a ≥ 0, b ≥ 0 and 1 ≤ p < +∞, we have

(a+ b)p ≤ 2p−1(ap + bp).
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3. Proof of the main result

In this section, we prove the existence and uniqueness of weak solutions to problem

(1.1). Our method is based on the variational method and the properties of Nemytsky

operators.

Existence part. Let the operator T : X0 −→ (X
′

0 (where (X
′

0 is the dual space of

X0 and let

T = A+ L,

where for all u, v ∈ X0

〈Au, v〉 =

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)
(v(x)− v(y))dxdy +

∫

Ω

α(u)v dx

:= 〈A1u, v〉 + 〈A2u, v〉

and

〈Lu, v〉 = −

∫

Ω

f(x, u)v dx+

∫

Ω

uv dx := 〈L1u, v〉 + 〈L2u, v〉.

The proof of existence part of Theorem 1.1 is divided into several Lemmas.

Lemma 3.1. The operator T is bounded.

Proof. On the one hand, we use Hölder-type inequality, hypothesis (H2) and Lemma

2.3, we have for any u, v ∈ X0,

|〈A1u, v〉| ≤

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p(x,y)−1

|x− y|N+s(x,y)p(x,y)
|v(x)− v(y)| dx dy

≤ 2p
+−2

∫

Ω

∫

Ω

(

|u(x)− u(y)|p(x,y)−1

|x− y|N+s(x,y)p(x,y)
+

|Θ(u(x))−Θ(u(y))|p(x,y)−1

|x− y|N+s(x,y)p(x,y)

)

×

|v(x)− v(y)| dx dy

≤ 2p
+−2(λp

+−1
2 + 1)

∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)−1

|x− y|N+s(x,y)p(x,y)
|v(x)− v(y)| dx dy

≤ C0

(
∫

Ω

∫

Ω

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
dx dy

)

p(x,y)−1
p(x,y)

×

(
∫

Ω

∫

Ω

|v(x)− v(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
dx dy

)

1
p(x,y)

≤ C0‖u‖
p(x,y)−1
X0

‖v‖X0

≤ C0max
(

‖u‖p
+−1

X0
, ‖u‖p

−−1
X0

)

‖v‖X0.
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Since 0 < λ2 <
1
2
, we have C0 = 2p

+−1(λp
+−1

2 + 1) . This implies that A1 is bounded.

On the other hand, using again Hölder-type inequality, hypothesis (H1) and Theorem

2.1, we get

|〈A2u, v〉| ≤ λ1

∫

Ω

|u|p(x)−1|v| dx

≤ 2λ1‖u‖
p(x)−1
p(x) ‖v‖p(x)

≤ 2λ1C1C2‖u‖
p(x)−1
X0

‖v‖X0

≤ 2λ1C1C2max
(

‖u‖p
+−1

X0
, ‖u‖p

−−1
X0

)

‖v‖X0,

where C1, C2 are two constants of the compact embedding given by Theorem 2.1.

Then A2 is bounded. This allows us to deduce that A is bounded. It remains to show

that L is bounded, indeed, we have

‖L1(u)‖X′

0
= sup

‖v‖=1

|〈L1(u), v〉| = sup
‖v‖=1

∣

∣

∣

∣

∫

Ω

f(x, u)vdx

∣

∣

∣

∣

≤ sup
‖v‖=1

∫

Ω

|f(x, u)|v|dx ≤ sup
‖v‖=1

∫

Ω

(

a1(x) + b1(x)|u|
α(x)
)

|v|dx

≤ sup
‖v‖=1

[

‖a‖(p∗
s(.)

(x))′‖v‖p∗
s(.)

(x) + ‖|u|α(x)‖ p∗
s(.)

(x)

α(x)

‖b‖ p∗
s(.)

(x)

p∗
s(.)

(x)−α(x)−1

‖v‖p∗
s(.)

(x)

]

≤ C3‖a1‖(p∗
s(.)

(x))′ + C4M
α+

‖b‖γ(x),

where C3, C4 are two constants of the compact embedding given by Theorem 2.1

and M > 0 such that ‖u‖X0 ≤ M . Thus, L1 is bounded. Finally, by Hölder-type

inequality, we get immediately the boundedness of L2. This allows us to say that L

is bounded. Hence, T is bounded. �

Lemma 3.2. The operator T is hemi-continuous.

Proof. Let {un}n∈N ⊂ X0 and u ∈ X0 such that un converges strongly to u in X0.

Firstly, we will prove that A1 is continuous on X0, indeed
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〈A1un − A1u, v〉

=

∫

Ω

∫

Ω

(

|ψun

Θ (x, y)|p(x,y)−2ψun

Θ (x, y)− |ψu
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)

)

×

(v(x)− v(y)) dx dy

=

∫

Ω

∫

Ω

(

|ψun

Θ (x, y)|p(x,y)−2ψun

Θ (x, y)

|x− y|(N+s(x,y)p(x,y))
p(x,y)−1
p(x,y)

−
|ψu

Θ(x, y)|
p(x,y)−2ψu

Θ(x, y)

|x− y|(N+s(x,y)p(x,y))
p(x,y)−1
p(x,y)

)

×

(v(x)− v(y))

|x− y|
N+s(x,y)p(x,y)

p(x,y)

dx dy.

Let us set

Fθ,n(x, y) =
|ψun

Θ (x, y)|p(x,y)−2ψun

Θ (x, y)

|x− y|(N+s(x,y)p(x,y))p(x,y)−1
p(x,y)

∈ Lp′(x,y)(Ω× Ω),

Fθ(x, y) =
|ψu

Θ(x, y)|
p(x,y)−2ψu

Θ(x, y)

|x− y|(N+s(x,y)p(x,y))p(x,y)−1
p(x,y)

∈ Lp′(x,y)(Ω× Ω),

ϕ(x, y) =
(v(x)− v(y))

|x− y|
N+s(x,y)p(x,y)

p(x,y)

∈ Lp(x,y)(Ω× Ω),

where 1
p(x,y)

+ 1
p′(x,y)

= 1, for all x, y ∈ Ω× Ω.

Then, we have by Hölder-type inequality

〈A1un − A1u, v〉 ≤ 2‖Fθ,n − Fθ‖Lp′(x,y)(Ω×Ω)‖v‖Lp(x,y)(Ω×Ω).

This implies that

‖A1un − A1u‖X′

0
= sup

‖v‖
Lp(x,y)(Ω×Ω)

≤1

|〈A1un − A1u, v〉| ≤ 2‖Fθ,n − Fθ‖Lp′(x,y)(Ω×Ω).

Now, we denote

Zθ,n(x, y) =
ψun

Θ (x, y)

|x− y|
N+s(x,y)p(x,y)

p(x,y)

∈ Lp(x,y)(Ω× Ω)

Zθ(x, y) =
ψu
Θ(x, y)

|x− y|
N+s(x,y)p(x,y)

p(x,y)

∈ Lp(x,y)(Ω× Ω).

Since un converges to u strongly in X0, then

Zθ,n(x, y) −→ Zθ(x, y) in Lp(x,y)(Ω× Ω).
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Hence, for a subsequence of Zθ,n(x, y), we get Zθ,n(x, y) −→ Zθ(x, y) in Ω × Ω and

there exists an h ∈ Lp(x,y)(Ω× Ω) such that |Zθ,n(x, y)| ≤ h(x, y).

So, we have

Fθ,n(x, y) −→ Fθ(x, y) a.e in Ω× Ω

and

|Fθ,n(x, y)| = |Zθ,n(x, y)|
p(x,y)−1 ≤ |h(x, y)|p(x,y)−1.

Then, by Dominated Convergence Theorem, we deduce that

Fθ,n(x, y) −→ Fθ(x, y) in Lp′(x,y)(Ω× Ω).

Consequently

A1un −→ A1u in X
′

0.

This implies that the operator A1 is continuous on X0. Secondly, by application

of hypothesis (H1), we get immediately the continuity of operator A2. Now, we will

prove that L is strongly continuous. For that, we show that L1 is strongly continuous.

Let (un)n∈N be a sequence such that un ⇀ u in X0, so (un)n∈N is bounded in X0.

Define, for k > 0, the set

Bk = {x ∈ Ω : |x| < k}

and Ωk = Ω\Bk. From (1.3), Hölder inequality and Theorem 2.1, we have
∣

∣

∣

∣

∫

Ωk

(

(f(x, un)− f(x, u)
)

vdx

∣

∣

∣

∣

≤

∫

Ωk

|(f(x, un)||v|dx +

∫

Ωk

|(f(x, u)||v|dx

≤

∫

Ωk

(

a(x) + b(x) |un|
α(x)
)

|v|dx +

∫

Ωk

(

a(x) + b(x) |u|α(x)
)

|v|dx

≤ 2‖a‖(p∗
s(.)

(x))′‖v‖p∗
s(.)

(x) + ‖|un|
α(x)‖ p∗

s(.)
(x)

α(x)

‖b‖γ(x)‖v‖p∗
s(.)

(x)

+ ‖|u|α(x)‖ p∗
s(.)

(x)

α(x)

‖b)‖γ(x)‖v‖p∗
s(.)

(x)

≤ 2C5‖a‖(p∗
s(.)

(x))′‖v‖X0 + C5

(

‖|un|
α(x)‖ p∗

s(.)
(x)

α(x)

+ ‖|u|α(x)‖ p∗
s(.)

(x)

α(x)

)

‖b1‖γ(x)‖v‖X0,

where C5 is the constant of compact embedding given by Theorem 2.1. Then, for k

sufficiently large, we get

(3.1)

∣

∣

∣

∣

∫

Ωk

(f (x, un)− f(x, u)) vdx

∣

∣

∣

∣

→ 0 as n→ ∞.
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By using Theorem 2.1, we obtain the compact embedding

X0(Bk) →֒ L
α−(p∗

s(.)
(x))′ (Bk)

(

because p∗s(.)(x) − α−
(

p∗s(.)(x)
)′

= p∗s(.)(x)
(

p∗
s(.)

(x)−α−−1

p∗
s(.)

(x)−1

)

and p∗s(.)(x) − (α− + 1) ≥

p∗s(.)(x)− p− > 0
)

, and then un → u in Lα−(p∗
s(.)

(x))′ (Bk). Hölder-type inequality and

Theorem 2.3 allows us to deduce that

f (·, un(·)) → f(·, u(·)) in L
(p∗

s(.)
(x))′ (Bk) .

So
∣

∣

∣

∣

∫

Bk

(

(f(x, un)− f(x, u)
)

vdx

∣

∣

∣

∣

≤ ‖(f(x, un)− f(x, u)‖
L
(p∗

s(.)
(x))′

(Bk)
‖v‖

L
p∗
s(.)

(x)
(Bk)

≤ C6‖(f(x, un)− f(x, u)‖
L
(p∗

s(.)
(x))′

(Bk)
‖v‖X0(Bk).

As a result

(3.2)

∫

Bk

(f (x, un)− f(x, u)) vdx→ 0, as n→ ∞.

Therefore, from (3.1) and (3.2), we obtain
∫

Ω

(f (x, un)− f(x, u)) vdx→ 0, as n→ ∞.

Consequently, L1 is strongly continuous. Hence T is hemi-continuous on X0. �

Lemma 3.3. The operator T is coercive.

Proof. For any u ∈ X0, we have

〈Tu, u〉

=

∫

Ω

u2 dx +

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)
(u(x)− u(y)) dx dy

+

∫

Ω

α(u)u dx −

∫

Ω

f(x, u)u dx

≥

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)
(u(x)− u(y)) dx dy

+

∫

Ω

α(u)u dx −

∫

Ω

f(x, u)u dx.

Firstly we deal with A, on the one hand, by application of hypothesis (H1), we have
∫

Ω

α(u)u dx ≥ 0.



ON A CLASS OF DEGENERATE FRACTIONAL p(.)-LAPLACIAN PROBLEMS 457

On the other hand, using Lemma 2.2, we obtain

〈A1u, u〉

=

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)
(u(x)− u(y)) dx dy

≥

∫

Ω

∫

Ω

|u(x)− u(y)− (Θ(u(x))−Θ(u(y)))|p(x,y) − |Θ(u(x))−Θ(u(y))|p(x,y)

p(x, y)|x− y|N+s(x,y)p(x,y)
dx dy.

And Lemma 2.3 allows us to deduce that

1

2p+−1
|u(x)− u(y)|p(x,y)

=
1

2p+−1
|u(x)− u(y)− (Θ(u(x))−Θ(u(y))) + (Θ(u(x))−Θ(y))|p(x,y)

≤ |u(x)− u(y)− (Θ(u(x))−Θ(u(y)))|p(x,y) + |Θ(u(x))−Θ(u(y))|p(x,y).

Then

1

2p+−1
|u(x)−u(y)|p(x,y)−|Θ(u(x))−Θ(u(y))|p(x,y) ≤ |u(x)−u(y)−(Θ(u(x))−Θ(u(y)))|p(x,y).

Consequently

〈A1u, u〉

≥

∫

Ω

∫

Ω

1

p(x, y)

[

1

2p+−1

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
−

2|Θ(u(x))−Θ(u(y))|p(x,y)

|x− y|N+s(x,y)p(x,y)

]

dx dy

≥

∫

Ω

∫

Ω

1

p(x, y)

1

2p+−1

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
−

2λ
p(x,y)
2

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+s(x,y)p(x,y)
dx dy

≥
1

p+

( 1

2p+−1
− 2λp

+

2

)

‖u‖
p(x,y)
X0

≥
1

p+

( 1

2p+−1
− 2λp

+

2

)

min
(

‖u‖p
+

X0
, ‖u‖p

−

X0

)

.

So, the choice of constant λ2 in (H2) gives the existence of a positive constant C6

such that

(3.3) 〈A1u, u〉 ≥ C6‖u‖
δ
X0
,

where

δ =







p− if ‖u‖X0 > 1

p+ if ‖u‖X0 < 1.

Secondly, we have

〈L1u, u〉 =

∫

Ω

f(x, u)u dx
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From (1.3), Hölder- type inequality and Theorem 2.1, we have

−

∫

Ω

f(x, u)u dx ≥ −

∫

Ω

(

a(x)|u|+ b(x)|u|α(x)|u|
)

dx(3.4)

≥ −‖a‖(p∗
s(.)

(x))′‖u‖p∗
s(.)

(x) − ‖u‖
α(x)+1
p∗
s(.)

(x)‖b‖γ(x)(3.5)

≥ −C7‖a‖(p∗
s(.)

(x))′‖u‖X0 − C8‖u‖
α(x)+1
X0

‖b‖γ(x)(3.6)

≥ −C7‖a‖(p∗
s(.)

(x))′‖u‖X0 − C8‖u‖
µ+1
X0

‖b‖γ(x)(3.7)

where

µ =







α− if ‖u‖X0 > 1

α+ if ‖u‖X0 < 1.

Then, from (3.3) and (3.7) we get

〈Tu, u〉 ≥ C6‖u‖
δ
X0

− C7‖a‖(p∗
s(.)

(x))′‖u‖X0 − C8‖u‖
µ+1
X0

‖b‖γ(x).

Since α− ≤ α+ ≤ p− − 1 then µ+ 1 ≤ δ. Consequently

〈Tu, u〉

‖u‖X0

→ +∞ as ‖u‖X0 → +∞.

Hence, the operator T is coercive. �

Lemma 3.4. The operator T is monotone.

Proof. We prove that

〈Tu− Tv, u− v〉 ≥ 0 for all u, v ∈ X0.

Firstly, we have

〈L1u− L1v, u− v〉 =

∫

Ω

(

f(x, u)− f(x, v)
)

(u− v)dx.

As f is a nonincreasing function with respect to the second variable, then

∫

Ω

(

f(x, u)− f(x, v)
)

(u− v)dx ≤ 0.

Therefore

(3.8) 〈L1u− L1v, u− v〉 ≤ 0 for all u, v ∈ X0.
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Now, we prove that A is monotone. Firstly ,we have by application of hypothesis

(H1) that

〈A2u− A2v, u− v〉 =

∫

Ω

(

α(u)− α(v)
)

(u− v) dx ≥ 0 for all u, v ∈ X0.

It remains to show that 〈A1u−A1v, u− v〉 ≥ 0 . Indeed, we have

〈A1u−A1v, u− v〉 = 〈A1u, u〉+ 〈A1v, v〉 − 〈A1u, v〉 − 〈A1v, u〉

≥ C6J1(u, v)− C0J2(u, v)

≥ min(C0, C6)(J1(u, v)− J2(u, v)),

where C0 and C6 are the two constants getting in the proof of boundedness and

coerciveness of the operator T and

J1(u, v) = ‖u‖
p(x,y)
X0

+ ‖v‖
p(x,y)
X0

,

J2(u, v) = ‖u‖
p(x,y)−1
X0

‖v‖X0 + ‖v‖
p(x,y)−1
X0

‖u‖X0.

This implies that

(3.9)

〈A1u−A1v, u− v〉 ≥ min(C0, C6)
[(

‖u‖
p(x,y)−1
X0

− ‖v‖
p(x,y)−1
X0

)(

‖u‖X0 − ‖v‖X0

)]

≥ 0.

This implies that A1 is monotone. Therefore T is monotone. �

Hence, the existence of weak solution for problem (1.1) follows from Theorem 2.2.

Uniqueness part. Let u and w be two weak solutions of problem (1.1). As a test

function for the solution u, we take v = u−w in the equality (1.4) and for the solution

w we take v = w − u as a test function in (1.4), we have
∫

Ω

u(u−w)dx +

∫

Ω

∫

Ω

|ψu
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)

(

u(x)−u(y)−
(

w(x)−w(y)
)

)

dx dy

+

∫

Ω

α(u)(u− w) dx =

∫

Ω

f(x, u)(u− w)dx

and
∫

Ω

w(w−u)dx +

∫

Ω

∫

Ω

|ψw
Θ(x, y)|

p(x,y)−2ψu
Θ(x, y)

|x− y|N+s(x,y)p(x,y)

(

w(x)−w(y)−
(

u(x)−u(y)
)

)

dx dy

+

∫

Ω

α(w)(w − u) dx =

∫

Ω

f(x, w)(w − u)dx.
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By summing up the two above equalities, we get

(3.10)
∫

Ω

(u−w)2dx +〈A1u−A1w, u−w〉 +

∫

Ω

(

α(u)−α(w)
)

(u−w) dx = 〈L1u−L1w, u−w〉.

On the one hand, we have by application of hypothesis (H1) that
∫

Ω

(

α(u)− α(w)
)

(u− w) dx ≥ 0.

On the other hand, by using (3.9), we deduce that

〈A1u− A1w, u− w〉 ≥ 0.

And by (3.8) we get

〈L1u− L1w, u− w〉 ≤ 0.

Therefore, the equality (3.10) becomes
∫

Ω

(u− w)2dx ≤ 0.

This implies that

u = w a.e in Ω.
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