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APPROXIMATE SOLUTION OF FRACTIONAL ALLEN-CAHN

EQUATION BY THE MITTAG-LEFFLER TYPE KERNELS

A.K. ALOMARI (1) AND RULA SHRAIDEH(2)

Abstract. This study presents the approximate analytic solution of the fractional

Allen-–Cahn equation involving fractional-order derivatives with the Mittag-Leffler

type kernels. The fractional derivative contains three parameters that can adjust the

model. We utilize the homotopy analysis method (HAM) to generate the solution

of the fractional differential equations. The effect of the fractional parameters on

the solution behaviors is studied, and the approximate analytical solution of the

fractional Allen-–Cahn equation has been acquired successfully. Numerical results

are given through graphs and tables. Since the exact solution of the obtained

differential equation is unknown, we calculate the residual error to demonstrate the

algorithm’s efficiency.

1. Introduction

Fractional calculus is an extension of ordinary calculus and was established more

than three hundred years. Recently, fractional calculus has become an interesting

mathematical tool for researchers in different areas such as finance, physics, chem-

istry, biology, and engineering [1]. Extensive efforts have been made to find a solu-

tion to fractional differential equations by suggesting several numerical and analytical

methods that are strong and stable. These methods are based on Laplace and Fourier

transforms, finite difference and finite element methods, the convergent series gen-

erated by differential transform method (DTM)[2], Adomian decomposition method
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(ADM)[3], variational iteration method (VIM)[4], iterative natural transform method

[5], collocation method [6], homotopy methods [7, 8], and its modifications.

In 1992, Shijun Liao proposed an approximate analytic solution for linear and

nonlinear differential equations called the homotopy analysis method (HAM). The

method is widely used for solving strongly nonlinear ODEs and PDEs problems in

several sciences and engineering, especially those without small/large physical pa-

rameters. One of the most important features of using HAM is that the solution

via HAM contains a convergent control parameter that can adjust the convergence

region of the series solution.

One of the most effective approaches for solving fractional differential equations is

the HAM and its modifications. HAM generates a series solution whose convergence

is determined by a convergent control parameter, and the series can be expressed

using a variety of basis functions [8].

Fractional calculus with nonsingular kernels become one of the most used deriva-

tives because the singularities are believed to be troublesome especially when these

operators are applied to model some physical phenomena. Several applications of

the nonsingular fractional derivative have been investigated such as Caputo–Fabrizio

[9, 10], Yang-Abdel-Aty-Cattani [11], and Atangana and Baleanu [12, 13, 14].

Fractional derivative with Mittage-Leffler function kernel was introduced by Atan-

gana and Baleanu [15]. One of the limitations of this kind of derivative is that easy

fractional differential equations Dαy(t) + y(t) = 0, y(0) = 0 have only a trivial solu-

tion. In 2018 Abdeljawad and Baleanu [16] extended the definition by replacing the

kernel with the Mittage-Leffler function with three parameters that idea can over-

come some of the limitations of the previous definition. Several applications have

been adapted via this generalization such as Srivastava et. al. [17] applying the

definition for some dynamical models, and Alomari et. al. solving the fractional

Parabolic equation [18] using the generalized definition.

The Allen-Cahn equation is a nonlinear parabolic partial differential equation rep-

resenting some natural physical phenomenon. This equation has been extensively

used to study various physical problems, such as crystal growth, image segmentation,

and motion by mean curvature flows. Moreover, it is a mathematical model to study
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the phase separation process in binary alloys and emerged as a convection-diffusion

equation in fluid dynamics or reaction-diffusion equation in material sciences. In

particular, it has become a basic model equation for the diffuse interface approach

developed to study phase transitions and interfacial dynamics in material science [19].

This paper aims to provide an accurate approximate analytic solution of the time-

fractional Allen-Cahn equation in which the fractional derivative contains three pa-

rameters, and the kernel is the Mittage-Leffler function which is formulated as

(1.1) ABC
0 Dα,µ,γu(x, t) = εuxx(x, t) + u(x, t)− u3(x, t), x ∈ [−1, 1], t > 0,

where ABC
0 Dα,µ,γ is the generalized ABC fractional derivative with three parame-

ters.

2. Generalized AB fractional derivative

The standard AB fractional integral and derivative are based on Mittag-Leffler

Kernel with one parameter, while its generalization depends on three parameters.

Some definitions and properties of this generalization will be presented in this sec-

tion.

Abdeljawad and Baleanu [16] define the fractional integrals operator of two parame-

ters

(2.1) (aABIα,µu)(t) =
1− α

M(α)
(aI

1−µu)(t) +
α

M(α)
(aI

1−µ+αu)(t)

for the left of the interval [a, b], and for the right as

(2.2) (ABI
α,µ
b u)(t) =

1− α

M(α)
(I1−µ

b u)(t) +
α

M(α)
(I1−µ+α

b u)(t),

where α > 0, µ ≤ 1, (aI
αu)(t) is the left Riemann fractional integrals and (Iαb u)(t) is

the right one.

If γ = 1, 2, 3, · · · , the AB fractional integrals of order α > 0, µ ≤ 1 can be written as

(2.3) (aABIα,µ,γu)(t) =

γ
∑

i=0

(

γ

i

)

αi

M(α)(1− α)i−1
(aI

αi+1−µu)(t)
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and

(2.4) (ABI
α,µ,γ
b u)(t) =

γ
∑

i=0

(

γ

i

)

αi

M(α)(1− α)i−1
(Iαi+1−µ

b u)(t).

We noted that

(aABIα,1u)(t) = (aABIαu)(t)

and

(ABI
α,1
b u)(t) = (ABIαb u)(t).

Definition 2.1. The fractional derivative with three parameters of the kernel Eγ
α,µ(λ, t)

from the left of the interval [a, b] is defined by

(aABCDα,µ,γf)(x) =
M(α)

1− α

∫ x

a

Eγ
α,µ(λ, x− t)f ′(t)dt,

=
M(α)

1− α
Eγ

α,µ(λ, x− a) ∗ f ′(x).(2.5)

The right one by

(2.6) (ABCD
α,µ,γ
b f)(x) =

−M(α)

1− α

∫ b

x

Eγ
α,µ(λ, x− t)f ′(t)dt,

where α ∈ (0, 1), µ > 0, γ is real number, λ = −α
1−α

, and E
γ
α,β(z) is the generalized

Mittag–Leffler function of three parameters

(2.7) E
γ
α,β(z) =

∞
∑

k=0

(γ)k
zk

k!Γ(αk + β)
,

where (γ)k is the Pochhammer symbol, defined by

(γ)k =
Γ(γ + k)

Γ(γ)

=











1 , (k = 0, 0 6= γ ∈ C)

γ(γ + 1) · · · (γ + k − 1) , (k ∈ N, γ ∈ C).
(2.8)

Theorem 2.1. If α ∈ (0, 1), µ > 0, γ ∈ N , then

(aABIα,µ,γaABCDα,µ,γf)(x) = f(x)− f(a)

γ
∑

k=0

(−1)kλkE
γ
α,αk+1(λ, x− a)

= f(x)− f(a).(2.9)
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and

(ABI
α,µ,γ
b )(ABCD

α,µ,γ
b f)(x) = f(x)− f(b)

γ
∑

k=0

(−1)kλkE
γ
α,αk+1(λ, b− x)

= f(x)− f(b).(2.10)

Definition 2.2. If u(x, t) is approximate analytic solution for the fractional differen-

tial equation 0ABCD
α,µ,γ
t u(x, t)−N [u(x, t)] = 0, then its residual error can be defined

as

(2.11) Res(x, t) = 0ABCD
α,µ,γ
t u(x, t)−N [u(x, t)],

and the average residual error function

(2.12) ζ(~) =
1

(N1 + 1)(N2 + 1)

N1
∑

i=0

N2
∑

j=0

Res2(xi, tj),

where xi =
iL1

N1

, tj =
jK

N2

, L1 is the endpoint of space along x and K is the endpoint

of time.

3. Solution by HAM

In this section, we give a general frame-work for solving time-fractional partial

differential equations using HAM. For that, Let 0 < α < 1, µ > 0 γ = 1, 2, 3 . . . , for

the following differential equation

(3.1) 0ABCD
α,µ,γ
t u(x, t) = N [u(x, t)],

with initial condition:

u(x, 0) = f(x),

where u(x, t) is an unknown function with independent parameters x and t. N is

a linear or non-linear operator.

Firstly, a homotopy map can be defined as:

(3.2) (1−q)L[φ(u(x, t); q)−u0(x, t)] = ~q(0ABCD
α,µ,γ
t φ(u(x, t); q)−N [φ(u(x, t); q)]),
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where q ∈ [0, 1] is an embedding parameter, ~ is a nonzero convergent control pa-

rameter, L is an auxiliary linear operator, u0(x, t) is an initial solution approximation,

and φ(u(x, t); q) is an unknown function. When q = 0 and q = 1, we have

(3.3) φ(u(x, t); 0) = u0(x, t), φ(u(x, t); 1) = u(x, t).

So that, when q increases from 0 to 1, φ(u(x, t); q) varies from the initial guess

φ(u(x, t); 0) to the exact solution φ(u(x, t); 1). For succinctness, equation (3.2) is

called the zero-order deformation equation.

When we use HAM, we have the freedom to choose the auxiliary linear operator L,

the initial approximation u0(x, t), and the convergent control parameter ~. If all of

them are properly chosen, then the solution φ(u(x, t); q) of the zero-order deformation

equation (3.2) exists for 0 ≤ q ≤ 1. Define the i-th-order derivative of φ(u(x, t); q)

with respect to the embedding parameter q at q = 0 as

(3.4) u[i](x, t) =
∂iφ(u(x, t); q)

∂qi
|q=0,

where i ∈ N and, u[i](x, t) is called the ith-order deformation derivative. Define

(3.5) ui(x, t) =
u[i](x, t)

i!
=

1

i!

∂iφ(u(x, t); q)

∂qi
|q=0 .

Expanding, φ(u(x, t); q) in Taylor’s series with respect to q, we have

(3.6) φ(u(x, t); q) = φ(u(x, t); 0) +

∞
∑

i=1

1

i!

∂iφ(u(x, t); q))

∂qi
|q=0 q

i.

Form equation (3.3) and (3.5), the above power series can be written as:

(3.7) φ(u(x, t); q) = u0(x, t) +
∞
∑

i=1

ui(x, t)q
i.

Substitute the value of φ(u(x, t); q) into equation (3.2), we get

(3.8) (1− q)L[
∞
∑

i=1

uiq
i] = ~(0ABCD

α,µ,γ
t

∞
∑

i=0

uiq
i+1 − qN [

∞
∑

i=0

uiq
i]).

By equating like powers of q from both sides in Eq.(3.8), we get
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q1 : L[u1(x, t)− 0] = ~(0ABCD
α,µ,γ
t u0(x, t)− R1),

q2 : L[u2(x, t)− u1(x, t)] = ~(0ABCD
α,µ,γ
t u1(x, t)− R2),

...

qn : L[un(x, t)− un−1(x, t)] = ~(0ABCD
α,µ,γ
t un−1(x, t)− Rn),(3.9)

where

(3.10) Rn =
1

(n− 1)!

∂n−1N [Φ(u(x, t), q)]

∂qn−1
|q=0.

Suppose that the linear operator is L = 0ABCD
α,µ,1
t . Applying the integral operator

0ABIα,µ,γ with γ = 1 on the above equations, with the helps of equations (2.9) and

choosing u0(x, t) = u(x, 0), we get

q1 : u1(x, t) = u1(x, 0) + ~[u0(x, t)− u0(x, 0)− 0ABIα,µ,γ [R1]],

q2 : u2(x, t) = (1 + ~)u1(x, t)− ~0ABIα,µ,γ [R2],

...

qn : un(x, t) = (1 + ~)un−1(x, t)− ~0ABIα,µ,γ[Rn].(3.11)

The initial conditions define as φ(u(x, 0); q) = u0(x, 0) +
∑

∞

i=1 ui(x, 0)q
i = f(x).

Thus u0(x, 0) = f(x) and ui(x, 0) = 0, where i = 1, 2, 3, · · · . Assume that the

auxiliary linear operator L, the initial guess u0(x, t), and the auxiliary parameter ~

are selected such that the series (3.7) is convergent at q = 1, then due to (3.3) we

have

u(x, t) = u0(x, t) +
∞
∑

i=1

ui(x, t).

In addition, the convergence of the series of u(x, t) and the rate of approximation for

the solution strongly depends on the values of the convergent control parameter ~.

A proper value of ~ can be chosen to ensure that the solution series is convergent.

To discover the valid region of ~, we need to determine at what region the solution

does not depend on ~. For that, we can plot the ~-curve. The line segments nearly

parallel to the horizontal axis will be the valid region. If the ~ is properly, thus it can
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be greatly enlarged the convergence region of the series. To do that, we proceed with

the following steps, 1) fixed α = µ, 2) calculate the average residual error function

ζ(~), Therefore, we can use Eq. (2.12) to find the optimal value ~. Note that ζ(~)

contains unknown convergence-control parameter ~. As ζ(~) decreases to zero, the

corresponding homotopy-series solution will rapidly converge. Now, By finding the

minimum of ζ(~), corresponding to a set of the nonlinear algebraic equation, we get

the optimal value of ~. 3) we solve the nonlinear algebraic equation

∂ζ(~)

∂~
= 0.

For the Allen-Cahn equation 1.1, we define the nonlinear term

N [u(x, t)] = εuxx(x, t) + u(x, t)− u3(x, t)

= ε
∂2

∂x2

∞
∑

i=0

uiq
i +

∞
∑

i=0

uiq
i −

(

∞
∑

i=0

uiq
i

)3

= ε
∂2

∂x2

∞
∑

i=0

uiq
i +

∞
∑

i=0

uiq
i −

∞
∑

i=0

qi
i
∑

s=0

ui−s

s
∑

j=0

ujus−j.(3.12)

Now, the coefficients of

q0 : ε
∂2

∂x2
u0 + u0 − u3

0

q1 : ε
∂2

∂x2
u1 + u1 − (3u2

0u1)

...

qn : ε
∂2

∂x2
un + un −

n
∑

s=0

un−s

s
∑

j=0

ujus−j.(3.13)

Using equations (3.13) and (3.11), the n−th order formula can be written as

un(x, t) = (χn + h)un−1(x, t)− (χn + h)un−1(x, 0) + h
[

0ABIα,µ,1 [−εun−1(x, t)

−un−1(x, t) +
n−1
∑

s=0

un−1−s(x, t)
s
∑

j=0

us−j(x, t)uj(x, t)

]]

.(3.14)

In summary, the solution can be generated via the following steps

(1) Choose u0(x, t) = f(x).

(2) For n = 1, 2, 3, . . .M apply equation (3.14).

(3) Define u(x, t) =
∑M

i=0 ui(x, t).
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(4) Get res(x, t) in (2.11).

(5) Get ξ(~) in (2.12).

(6) Solve ∂ξ(~)
~

with respect to ~.

4. Examples.

Example 4.1. Consider the time-fractional Allen-Cahn equation of the form

(4.1) ABC
0 Dα,µ,1u(x, t) = εuxx(x, t) + u(x, t)− u3(x, t), x ∈ [−1, 1], t > 0,

where 0 < α < 1, subject to the initial condition,

(4.2) u(x, 0) = 0.53x+ 0.47 sin(−1.5πx),

For α = µ = γ = 1, the solution presented in [19]. The homotopy expression for

(4.1) will be,

ABC
0 Dα,µ,1[un(x, t)− χnun−1(x, t)] = h[ABC

0 Dα,µ,1un−1(x, t)− ε(un−1)xx(x, t)

−un−1(x, t) +

n−1
∑

s=0

un−1−s(x, t)

s
∑

j=0

us−j(x, t)uj(x, t)],(4.3)

for n = 1, 2, 3, · · · , we choose the initial guess u0(x, t) = 0.53x+ 0.47 sin(−1.5πx).

By applying 0ABIα,µ,1 on equation (4.3), we get equation (3.14).

For n = 1 we have:

u1(x, t) = −
0.148877αhx3t1−µ

Γ(2− µ)
+

0.148877αhx3tα−µ+1

Γ(α− µ+ 2)
+

0.148877hx3t1−µ

Γ(2− µ)

+
0.396069αhx2t1−µ sin(4.71239x)

Γ(2− µ)
−

0.396069αhx2 sin(4.71239x)tα−µ+1

Γ(α− µ+ 2)

−
0.396069hx2t1−µ sin(4.71239x)

Γ(2− µ)
+

0.53αhxt1−µ

Γ(2− µ)
−

0.53αhxtα−µ+1

Γ(α− µ+ 2)

+
0.103823αht1−µ sin3(4.71239x)

Γ(2− µ)
−

0.103823αh sin3(4.71239x)tα−µ+1

Γ(α− µ+ 2)

−
0.351231αhxt1−µ sin2(4.71239x)

Γ(2− µ)
+

0.351231αhx sin2(4.71239x)tα−µ+1

Γ(α− µ+ 2)

−
0.47αht1−µ sin(4.71239x)

Γ(2− µ)
+

0.47αh sin(4.71239x)tα−µ+1

Γ(α− µ+ 2)

+
10.4371αhǫt1−µ sin(4.71239x)

Γ(2− µ)
−

10.4371αhǫ sin(4.71239x)tα−µ+1

Γ(α− µ+ 2)
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−
0.53hxt1−µ

Γ(2− µ)
−

0.103823ht1−µ sin3(4.71239x)

Γ(2− µ)

+
0.351231hxt1−µ sin2(4.71239x)

Γ(2− µ)
+

0.47ht1−µ sin(4.71239x)

Γ(2− µ)

−
10.4371hǫt1−µ sin(4.71239x)

Γ(2− µ)
.(4.4)

Using this manner, we find ui(x, t) for i = 2, 3, . . .M . The HAM solution using

M-terms of the series become as u(x, t) =
∑M

i=0 ui(x, t) which is depends on the

convergent control parameter ~. To find it, we fixed ε = 0.001, α = µ, and use the

least square method. For that, we define the residual error

(4.5) Res(x, t) =ABC
0 Dα,µ,1u(x, t)− εuxx(x, t)− u(x, t) + u3(x, t),

and the average residual error (ARE) function

(4.6) ζ(~) =
1

(N1 + 1)(N2 + 1)

N1
∑

i=0

N2
∑

j=0

Res2(xi, tj).

Now, The ~-curve is plotted in figure 1. The average residual error for α = 0.9 is

plotted in figure 2. Table 1 gives the convergent control parameter ~ and its ARE

for several values of α using 6-order of approximation. The solution u(x, t) and its

residual error with the value of α=0.9 is given in figure 3 a) and b) respectively. We

observed that, if µ = 1 and vary 0 < α < 1, then the initial condition does not

satisfied; which means the problem may have no solution when µ = 1.

Figure 1. The ~ -curve for example 4.1 with α = µ = 0.9 using 6-

order of approximation.
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Figure 2. The ARE along ~ for α = µ = 0.9.

a) b)
Figure 3. a) The approximate solution, b) the residual error of ex-

ample 4.1 for α = µ = 0.9 and the optimal value of ~ = −0.923497.

Table 1. ARE and it’s optimal ~ for example 4.1 at µ = 0.5 and vary α.

α ARE ~

0.1 0.00110832 -0.53341

0.3 0.000934675 -0.556101

0.5 0.000602546 -0.614374

0.7 0.000202705 -0.923076

0.9 0.0000229112 -1.00508

Example 4.2. Consider the time-fractional Allen-Cahn equation.

(4.7) ABC
0 Dα,µ,1u(x, t) = εuxx(x, t) + u(x, t)− u3(x, t), x ∈ [0, 1], t > 0,

with the initial condition,

(4.8) u(x, 0) = 0.25 sin(x),
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The homotopy expression for (4.7) will be

0ABCDα,µ,1[un(x, t)− χnun−1(x, t)] = ~([0ABCDα,µ,1un−1(x, t)

−ε(un−1(x, t))xx − un−1(x, t)

−

n−1
∑

s=0

un−1−s(x, t)

s
∑

j=0

uj(x, t)us−j(x, t)]),(4.9)

for n = 1, 2, 3, · · · , we choose the initial guess u0(x, t) = 0.53x+ 0.47 sin(−1.5πx).

By applying 0ABCIα,µ,1 on equation (4.9), we get equation (3.14).

Now, for n = 1 we have:

u1(x, t) = −
0.015625α~t1−µ sin3(x)

Γ(2− µ)
+

0.015625α~ sin3(x)tα−µ+1

Γ(α− µ+ 2)
+

0.25α~t1−µ sin(x)

Γ(2− µ)

−
0.25α~ sin(x)tα−µ+1

Γ(α− µ+ 2)
−

0.25α~ǫt1−µ sin(x)

Γ(2− µ)
+

0.25α~ǫ sin(x)tα−µ+1

Γ(α− µ+ 2)

+
0.015625~t1−µ sin3(x)

Γ(2− µ)
−

0.25~t1−µ sin(x)

Γ(2− µ)
+

0.25~ǫt1−µ sin(x)

Γ(2− µ)
.(4.10)

Similarly, we find ui(x, t) for i = 2, 3, . . . ,M . Now, fixed ε = 0.001, µ=α and we

take several values of α between 0 to 1. Figure 4 presents the ~-curve using 6-order of

approximation while figure 5 gives the average residual error for α = 0.9. The HAM

solution u(x, t) and its residual error with the value of α = 0.9 are given in figure 6

a) and b). In Table 2 we give the optimal values of the convergent control parameter

~ and its ARE for several values of α using 6-order of approximation. The solution

when µ = 1 = γ, x = 1, t = 0 is given as a function of ~; u(1, 0; ~) = 9.5036∗10−8~6+

2.313∗10−7
~
5+5.6265∗10−6

~
4−0.000125~3+0.00173977~2−0.020~+0.210368. The

solution of the equations u(1, 0, ~) = 0.25Sin(1) = 0 is ~ = 0, this is a contradiction

of HAM assumption; ~ 6= 0. When µ= 1 = γ we have ABC fractional problem for

example 2 which means this problem may have no solution in this case. .

Figure 4. The ~ -curve for (4.2) using 6-order of approximation.
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Table 2. ARE for example 4.2 with µ = 0.5 and vary α.

α ARE ~

0.1 0.000405026 -1.57095

0.3 0.000175436 -1.51145

0.5 0.0000338132 -1.41423

0.7 2.75591178× 10−6 -1.29294

0.9 7.882607651× 10−8 -1.16123

Figure 5. The ARE with optimal ~ for α= 0.9.

a) b)

Figure 6. a) The HAM solution, b) the residual error for example

(4.2) with α = µ = 0.9 and the optimal value of ~ = −1.43369.

5. Conclusion

This paper has successfully implemented the HAM to obtain an approximate an-

alytical solution to the time-fractional Allen-Cahn equation. We investigated the

approximate solutions of the time-fractional order Allen-Cahn equation, and the com-

puted results are illustrated graphically. We satisfied the accuracy of the approximate

solutions by computing the average residual error. We also numerically discuss the
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existence of the solution. This is the first work that obtained the solutions of Allen-

Cahn using GABC definition. The method can apply to more models in physics and

engineering problems with easy algorithm.
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