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THE DUAL OF THE NOTIONS n-SUBMODULES AND

J-SUBMODULES

FARANAK FARSHADIFAR

Abstract. Let R be a commutative ring with identity and M be an R-module. A

proper submodule N of M is called an n-submodule if for a ∈ R, m ∈ M , am ∈ N

with a 6∈
√

AnnR(M), implies m ∈ N . A proper submodule N of M is called a J-

submodule of M if for a ∈ R and m ∈ M , whenever am ∈ N and a 6∈ (J(R)M : M),

then m ∈ N . The aim of this paper is to introduce and investigate the dual notions

of n-submodules and J-submodules of M .

1. Introduction

Throughout this paper, R is a commutative ring with identity and Z is the ring

of integers. Moreover, the set of zero divisors and the Jacobson radical of R are

denoted by Z(R) and J(R), respectively. The radical of an ideal I of R is defined

by
√
I = {a ∈ R : an ∈ I for some n ∈ N}. For a submodule N of an R-module

M , the annihilator of the R-module M/N is defined as AnnR(M/N) = (N :R M) =

{r ∈ R : rM ⊆ N}.
In [11], the n-ideals of R and the n-submodules of an R-module M are defined. A

proper ideal P of R is said to be an n-ideal if ab ∈ P and a 6∈ n(R) for some a, b ∈ R,

then b ∈ P , where n(R) is the set of nilpotent elements of R. A proper submodule N

of M is called an n-submodule if for a ∈ R, m ∈ M , am ∈ N with a 6∈
√

AnnR(M),

then m ∈ N .

Khashan and Bani-Ata introduced and studied the concepts of J-ideal and J-

submodule of an R-module M in [9]. When a, b ∈ R with ab ∈ I and a 6∈ J(R), then
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b ∈ I, a proper ideal I of R is said to be a J-ideal of R. A proper submodule N of M

is called J-submodule if am ∈ N and a 6∈ (J(R)M : M) for some a ∈ R and m ∈ M ,

then m ∈ N .

The main purpose of this paper is to introduce the dual notions of n-submodules

and J-submodules of an R-module M . We also look into the initial characteristics of

these classes of modules. We say that a non-zero submodule N of an R-module M

is a co-n-submodule of M if for a ∈ R and submodule K of M , whenever aN ⊆ K

and a 6∈
√

AnnR(M), then N ⊆ K (Definition 2.1). Also, we say that a non-

zero submodule N of an R-module M is a co-J-submodule of M if for a ∈ R and

submodule K of M , whenever aN ⊆ K and a 6∈ AnnR((0 :M J(R))), then N ⊆ K

(Definition 3.1). For an R-module M , among other results, in Example 2.4 we see

that the the concepts of second submodules and co-n-submodules are different in

general. Moreover, we investigate the behavior of co-n-submodules under module

homomorphisms (Theorem 2.6). In Theorem 2.11, it is proved that every proper

submodule of M is an n-submodule if and only if every non-zero submodule of M is

a co-n-submodule. Also, it is shown that if (0 :M J(R)) ⊆ SocR(M) (in particular,

M is a strong comultiplication R-module), then every co-n-submodule of M is a

co-J-submodule of M (Proposition 3.12). In Corollary 3.6, we characterize co-J-

submodules when M is a strong comultiplication R-module. Moreover, we investigate

the behavior of co-J-submodules under localizations and module homomorphisms

(Proposition 3.11 and Proposition 3.12).

2. The dual of n-submodules of modules

In this section we introduce and investigate the dual notion of n-submodules (that

is co-n-submodules) of an R-module M .

Definition 2.1. We say that a non-zero submodule N of an R-module M is a co-

n-submodule of M if for a ∈ R and submodule K of M , whenever aN ⊆ K and

a 6∈
√

AnnR(M), then N ⊆ K.
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Let M be an R-module. A non-zero submodule S of M is said to be second if for

each a ∈ R, the homomorphism S
a→ S is either surjective or zero [13]. Also, a non-

zero submodule S of M is said to be secondary if for each a ∈ R the endomorphism

of S given by multiplication by a is either surjective or nilpotent [10].

Lemma 2.2. For a submodule S of an R-module M we have the following.

(a) S is a second submodule of M if and only if S 6= 0 and rS ⊆ K, where r ∈ R

and K is a submodule of M implies either rS = 0 or S ⊆ K [5, Theorem

2.10].

(b) S is a secondary submodule of M if and only if S 6= 0 and rS ⊆ K, where

r ∈ R and K is a submodule of M implies either rnS = 0 for some positive

integer n or S ⊆ K [6, Theorem 2.8].

Now
√

AnnR(M) ⊆
√

AnnR(N) implies that if N is a co-n-submodule of M , then

N is a secondary submodule of M by Lemma 2.2(b). The following example shows

that the converse is not true, in general.

Example 2.3. Consider the Z-module Zp2q, where p, q are positive prime numbers.

Then since p 6∈ pqZ =
√

AnnZ(Zp2q), p(qZp2q) ⊆ (pZp2q), and (qZp2q) 6⊆ (pZp2q), we

have N = qZp2q is not a co-n-submodule of Zp2q. But N is a secondary submodule

of Zp2q. Because if r ∈ pZ, then r2N = 0. If r 6∈ pZ, then rZ+ pZ = Z. This implies

that rN + p2N = N and so rN = N .

The following example shows that the the concepts of second submodules and

co-n-submodules are are different in general.

Example 2.4. (a) Consider the Z-module Z27. Note that
√

AnnZ(Z27) = 3Z.

One can see that 3̄Z27 is a co-n-submodule of Z27. But the submodule 3̄Z27

is not second submodule because (3)(3̄)Z27 ⊆ 9̄Z27, while, 3̄Z27 6⊆ 9̄Z27 and

(3)(3̄)Z27 6= 0.

(b) Consider the Z-module Zp2q, where p, q are positive prime numbers. Then

since q 6∈ pqZ =
√

AnnZ(Zp2q), q(p
2
Zp2q) = 0, and (p2Zp2q) 6= 0, we have

N = p2Zp2q is not a co-n-submodule of Zp2q. But N is a second submodule

of Zp2q. Because if r ∈ qZ, then rN = 0. If r 6∈ qZ, then rZ+ qZ = Z. This

implies that rN + qN = N and so rN = N .
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Let M be an R-module. M is said to be a multiplication module if for every

submodule N of M there exists an ideal I of R such that N = IM [8]. M is said

to be a comultiplication module if for every submodule N of M there exists an ideal

I of R such that N = (0 :M I) [7]. Let N and K be two submodules of M . The

product (resp. coproduct) of N and K is defined by (N :R M)(K :R M)M (resp.

(0 :M AnnR(N)AnnR(K))) and denoted by NK (resp C(NK)) [2]. A submodule

N of M is said to be idempotent (resp. coidempotent) if N = (N :R M)2M (resp.

N = (0 :M Ann2
R(N))) [4].

Proposition 2.5. Let N be a submodule of an R-module M . Then we have the

following.

(a) If N is a co-n-submodule of M such that
√
0 =

√

AnnR(M), then AnnR(N)

is an n-ideal of R.

(b) If M is a comultiplication R-module and AnnR(N) is an n-ideal of R, then

N is a co-n-submodule of M .

(c) If N is a co-n-submodule of a multiplication R-module M such that (N :R

M) 6⊆
√

AnnR(M), then N is an idempotent submodule of M .

(d) IfN is an n-submodule of a comultiplication R-moduleM such thatAnnR(N) 6⊆
√

AnnR(M), then N is a coidempotent submodule of M .

Proof. (a) Let a, b ∈ R, a 6∈
√
0 and ab ∈ AnnR(N). Then a 6∈

√
0 =

√

AnnR(M)

and aN ⊆ aN imply that N ⊆ aN . Thus bN = 0, as needed.

(b) Let a ∈ R, K be a submodule of M , a 6∈
√

AnnR(M), and aN ⊆ K. Then

we have AnnR(K)aN = 0. So by assumption, AnnR(K)N = 0. Hence, AnnR(K) ⊆
AnnR(N). Thus as M is a comultiplication R-module, N ⊆ K.

(c) As M is a multiplication R-module, we have

(N :R M)N = (N :R M)(N :R M)M = N2.

Let a ∈ (N :R M)\
√

AnnR(M). Then aN ⊆ (N :R M)N = N2 implies that N ⊆ N2

since N is a co-n-submodule of M . The reverse inclusion is clear.

(d) Since M is a comultiplication R-module, we have

(N :M AnnR(N)) = (0 :M Ann2
R(N)) = C(N2).
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Let a ∈ AnnR(N) \
√

AnnR(M). Then

C(N2) = (0 :M Ann2
R(N)) ⊆ (0 :M aAnnR(N)) = (N :M a).

Thus aC(N2) ⊆ N . Hence, C(N2) ⊆ N since N is an n-submodule of M . This

complete the proof because the reverse inclusion is clear. �

Theorem 2.6. Let f : M → Ḿ be a monomorphism of R-modules. Then we have

the following.

(a) If N is a co-n-submodule of M , then f(N) is a co-n-submodule of Ḿ .

(b) If Ń is a co-n-submodule of Ḿ and Ń ⊆ f(M), then f−1(Ń) is a co-n-

submodule of M .

Proof. (a) Since N 6= 0 and f is a monomorphism, we have f(N) 6= 0. Let a ∈ R,

Ḱ be a submodule of Ḿ , and af(N) ⊆ Ḱ. Then aN ⊆ f−1(Ḱ). As N is a co-n-

submodule, N ⊆ f−1(Ḱ) or a ∈
√

AnnR(M). Therefore,

f(N) ⊆ f(f−1(Ḱ)) = f(M) ∩ Ḱ ⊆ Ḱ

or a ∈
√

AnnR(f(M)), as needed.

(b) If f−1(Ń) = 0, then f(M) ∩ Ń = f(f−1(Ń)) = f(0) = 0. Thus Ń = 0, which

is a contradiction. So, f−1(Ń) 6= 0. Now let a ∈ R, K be a submodule of M , and

af−1(Ń) ⊆ K. Then

aŃ = a(f(M) ∩ Ń) = af(f−1(Ń)) ⊆ f(K).

As Ń is a co-n-submodule, Ń ⊆ f(K) or a ∈
√

AnnR(Ḿ). Therefore, f−1(Ń) ⊆
f−1(f(K)) = K or a ∈

√

AnnR(f−1(Ḿ)) as desired. �

Corollary 2.7. Let M be an R-module and N ⊆ K be two submodules of M . Then

N is a co-n-submodule of K if and only if N is a co-n-submodule of M .

Proof. This follows from Theorem 2.6 by using the natural monomorphism K →
M . �

Proposition 2.8. Let M be an R-module. Then we have the following.

(a) M is a co-n-submodule of M if M is a secondary R-module.
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(b) The sum of an arbitrary non-empty set of co-n-submodules of M is a co-n-

submodule of M .

Proof. (a) This is clear.

(b) Let Ni be a co-n-submodule of M for every i ∈ I. Assume that a
∑

i∈I Ni ⊆ K

with a 6∈
√

AnnR(M) for a ∈ R and submodule K of M . This implies that aNi ⊆ K

for every i ∈ I. As Ni is a co-n-submodule of M , we conclude that Ni ⊆ K for every

i ∈ I. Hence
∑

i∈I Ni ⊆ K, as needed. �

Lemma 2.9. Let N be non-zero submodule of an R-module. Then N is a co-n-

submodule of M if and only if whenever I is an ideal of R such that I 6⊆
√

AnnR(M))

and K is a submodule of M with IN ⊆ K, then N ⊆ K.

Proof. Suppose that N is a co-n-submodule and IN ⊆ K for some ideal I of R with

I ∩ (R \
√

AnnR(M)) 6= ∅ and submodule K of M . Then there exists a ∈ I such

that a 6∈
√

AnnR(M). Since N is a co-n-submodule, N ⊆ K. For the converse, let

aN ⊆ K and a 6∈
√

AnnR(M) for a ∈ R, and submodule K of M . We take I = aR.

Note that I ∩ (R \
√

AnnR(M)) 6= ∅. Then by assumption we have N ⊆ K, and so

N is a co-n-submodule of M . �

Theorem 2.10. Let K1, K2, K be submodules of an R-module M and I be an ideal

of R with I 6⊆
√

AnnR(M)). Then the following hold.

(a) If K1, K2 are co-n-submodules of M with (K1 :M I) = (K2 :M I), then

K1 = K2.

(b) If (K :M I) is a co-n-submodule, then (K :M I) = K. In particular, K is a

co-n-submodule.

Proof. (a) Since IK1 ⊆ K2 and K1 is a co-n-submodule, we have K1 ⊆ K2 by Lemma

2.9. Similarly, we have K2 ⊆ K1, and so K1 = K2.

(b) As (K :M I) is a co-n-submodule and I(K :M I) ⊆ K, we have (K :M I) ⊆ K

by Lemma 2.9. Hence, (K :M I) = K. �

Theorem 2.11. Let M be an R-module. Every proper submodule of M is an n-

submodule if and only if every non-zero submodule of M is a co-n-submodule.
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Proof. First suppose that every proper submodule of M is an n-submodule. Let N

be a non-zero submodule of M and aN ⊆ K for some a ∈ R and a submodule K

of M with a 6∈
√

AnnR(M). If K = M , then we are done. If K is proper, then

by assumption, K is an n-submodule. Hence for each x ∈ N , ax ∈ K implies that

x ∈ K. Thus N ⊆ K, as needed. Now suppose that every non-zero submodule of M

is a co-n-submodule. Let N be a proper submodule ofM and am ⊆ N for some a ∈ R

and m ∈ M with a 6∈
√

AnnR(M). If m = 0, then we are done. If Rm is non-zero,

then by assumption, Rm is a co-n-submodule and so m ∈ N , as requested. �

3. The dual of J-submodules of modules

In this section we introduce the dual notion of J-submodules (that is co-J-submodules)

of an R-module M . Also, we investigate first properties of this class of modules and

obtain some related results.

Definition 3.1. We say that a non-zero submodule N of an R-module M is a co-

J-submodule of M if for a ∈ R and submodule K of M , whenever aN ⊆ K and

a 6∈ AnnR((0 :M J(R))), then N ⊆ K.

Recall that an R-moduleM is said to be finitely cogenerated if for every set {Mi}i∈I
of submodules of M , ∩i∈IMi = 0 implies ∩n

i=1Mi = 0 for some positive integer n [1].

Remark 3.2. If AnnR((0 :M J(R))) = R, then our definition implies that any

non-zero submodule of M is a co-J-submodule of M . The only finitely cogenerated

R-module M such that AnnR((0 :M J(R))) = R is 0 by the dual of Nakayama’s

Lemma [3, Theorem 3.14].

Proposition 3.3. Let M be an R-module and N be a submodule of M . Then the

following are equivalent:

(a) N is a co-J-submodule of M ;

(b) N 6= 0 and for each a 6∈ AnnR((0 :M J(R))), we have aN = N .

Proof. (a) ⇒ (b) This follows from the fact that aN ⊆ aN .

(b) ⇒ (a) This is clear. �

Theorem 3.4. Let M be an R-module. Then we have the following results.
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(a) Any sum of co-J-submodules of M is a co-J-submodule of M .

(b) If N is a co-J-submodule of M and AnnR((0 :M J(R))) = J(R), then

AnnR(N) is a J-ideal of R.

(c) If N is a co-J-submodule of M , then IN is also a co-J-submodule of M , where

I is an ideal of R.

(d) If M is a comultiplication R-module and N is a submodule of M such that

AnnR(N) is a J-ideal of R, then N is a co-J-submodule of M .

Proof. (a) This is straightforward.

(b) Let ab ∈ AnnR(N) such that a 6∈ J(R). Then we have abN = 0 and so aN ⊆
(0 :M b). Since N is a co-J-submodule of M and a 6∈ J(R) = AnnR((0 :M J(R))), we

have bN = 0, as needed.

(c) Let aIN ⊆ K, where a ∈ R and K is a submodule of M with a 6∈ AnnR((0 :M

J(R))). Then we have abN ⊆ K for all b ∈ I. Since N is a co-J-submodule of M ,

we have bN ⊆ K for all b ∈ I. Thus, IN ⊆ K, as requested.

(d) Let a ∈ R and K be a submodule of M such that aN ⊆ K and a 6∈ AnnR((0 :M

J(R))). Then

AnnR(K) ⊆ AnnR(aN) ⊆ (AnnR(N) :R a).

Hence, aAnnR(K) ⊆ AnnR(N). As a 6∈ AnnR((0 :M J(R))), we have a 6∈ J(R).

Therefore, AnnR(K) ⊆ AnnR(N) since AnnR(N) is a J-ideal of R. Now, M is a

comultiplication R-module implies that N ⊆ K by [7, Theorem 5]. Hence, N is a

co-J-submodule of M . �

The following example shows that if AnnR((0 :M J(R))) 6⊆ J(R), then part (b) of

Theorem 3.4 need not be true in general.

Example 3.5. Consider the Z-module M = Z2. Then 2Z = AnnZ((0 :Z2
J(Z))) 6⊆

J(Z) = 0. We have N = M is clearly, a co-J-submodule of M but 2Z = AnnZ(Z2) is

not a J-ideal of Z.

An R-module M satisfies the double annihilator conditions (DAC for short) if for

each ideal I of R we have I = AnnR((0 :M I)). An R-module M is said to be a strong

comultiplication module if M is a comultiplication R-module and satisfies the DAC

conditions [7].
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Corollary 3.6. Let M be a strong comultiplication R-module and N a non-zero

submodule of M . Then the following are equivalent:

(a) N is a co-J-submodule of M ;

(b) AnnR(N) is a J-ideal of R;

(c) N = (0 :M I), where I is a J-ideal of R.

Proof. (a) ⇔ (b) Follows by Theorem 3.4 and the fact that AnnR((0 :M I)) = I for

any ideal I of R.

(b) ⇔ (c) We just choose I = AnnR(N). �

Recall that the socle of an R-module M is defined as the sum of all minimal

submodules of M and it is denoted by SocR(M).

A non-zero submodule N of an R-moduleM is said to be large, if for any submodule

K of M , N ∩K = 0 implies K = 0.

A proper ideal I of R is said to be small if whenever J is an ideal of R with

I + J = R, then J = R.

Theorem 3.7. Let M be a strong comultiplication R-module. If N is a co-J-

submodule of M , then we have the following.

(a) SocR(M) ⊆ N .

(b) N is a large submodule of M .

Proof. (a) We have SocR(M) = (0 :M J(R)) by [12, Corollary 2.7]. Suppose SocR(M) 6⊆
N . Then clearly, AnnR(N) 6⊆ AnnR(SocR(M)) = J(R). But AnnR(N) is a J-ideal

by Corollary 3.6, which contradicts [9, Proposition 2.2]. Hence, SocR(M) ⊆ N .

(b) AnnR(N) is a J-ideal of R by Corollary 3.6. Hence, by [9, Proposition 2.9],

AnnR(N) is a small ideal of R. Now the result follows from [12, Theorem 2.5]. �

Proposition 3.8. Let M be an R-module such that (0 :M J(R)) ⊆ SocR(M) (in

particular, M be a strong comultiplication R-module). Then every co-n-submodule

of M is a co-J-submodule of M .

Proof. As (0 :M J(R)) ⊆ SocR(M), we have AnnR(SocR(M)) ⊆ AnnR((0 :M J(R))).

So it is enough to prove that
√

AnnR(M) ⊆ AnnR(SocR(M)). Let a ∈
√

AnnR(M)

and S be a minimal submodule of M . Then AnnR(S) is a maximal ideal of R and
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so
√

AnnR(S) = AnnR(S). Clearly AnnR(M) ⊆ AnnR(S). Thus, a ∈ AnnR(S) and

so aS = 0 for all minimal submodules S of M . It follows that a ∈ AnnR(SocR(M)),

as needed. �

Proposition 3.9. If N is a secondary submodule of an R-module M such that

AnnR(N) ⊆ J(R), then N is a co-J-submodule of M .

Proof. Suppose that N is a secondary submodule of M and AnnR(N) ⊆ J(R). Then
√

AnnR(N) ⊆
√

J(R) = J(R). Let a ∈ R and K be a submodule of M such that

aN ⊆ K and a 6∈ AnnR((0 :M J(R))). Then a 6∈ J(R) and so a 6∈
√

AnnR(N). It

follows that N ⊆ K, as needed �

Corollary 3.10. If N is a secondary submodule of an R-module M such that

AnnR(N) is a J-ideal of R, then N is a co-J-submodule of M .

Proof. This follows from [9, Proposition 2.2] and Proposition 3.9. �

Proposition 3.11. Let M be an R-module, S a multiplicatively closed subset of R,

and N be a finitely generated co-J-submodule of M . If J(R) is a finitely generated

ideal of R and S−1(J(R)) = J(S−1R), then S−1N is a co-J-submodule of S−1M if

S−1N 6= 0 (in particular, S ∩ AnnR(N) = ∅).

Proof. As J(R) is a finitely generated ideal of R and S−1(J(R)) = J(S−1R), we have

S−1(AnnR((0 :M J(R)))) ⊆ AnnS−1R((0 :S−1M J(S−1R))).

Now let (a/s)(S−1N) ⊆ S−1K for some a/s ∈ S−1R and submodule S−1K of S−1M

with a/s 6∈ AnnS−1R((0 :S−1M J(S−1R))). Then a/s 6∈ S−1(AnnR((0 :M J(R)))) and

so a 6∈ AnnR((0 :M J(R))). As N is finitely generated and (a/s)(S−1N) ⊆ S−1K,

there exists t ∈ S such that taN ⊆ K. This implies that aN ⊆ (K :M t). Now since

N is a co-J-submodule of M , tN ⊆ K. It follows that S−1N ⊆ S−1K, as needed. �

Proposition 3.12. Let M and Ḿ be R-modules, and let f : M → Ḿ be an R-

monomorphism. If Ń is a co-J-submodule of Ḿ such that Ń ⊆ Im(f), then f−1(Ń)

is a co-J-submodule of M .
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Proof. As Ń 6= 0 and Ń ⊆ Im(f), we have f−1(Ń) 6= 0. We have AnnR((0 :Ḿ

J)) ⊆ AnnR((0 :M J)) because if r ∈ AnnR((0 :Ḿ J)), then r(0 :f(M) J) = 0

and so rf((0 :M J)) = 0. Now as ker(f) = 0, we have r(0 :M J) = 0 and thus

r ∈ AnnR((0 :M J)). Let r 6∈ AnnR((0 :M J)) and K be a submodule of M

with rf−1(Ń) ⊆ K. Then r 6∈ AnnR((0 :Ḿ J)) and rŃ ⊆ f(K). Thus as Ń is

a co-J-submodule of Ḿ , we have Ń ⊆ f(K). This implies that f−1(Ń) ⊆ K, as

requested. �
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