THE DUAL OF THE NOTIONS *n*-SUBMODULES AND *J*-SUBMODULES

FARANAK FARSHADIFAR

ABSTRACT. Let R be a commutative ring with identity and M be an R-module. A proper submodule N of M is called an n-submodule if for $a \in R$, $m \in M$, $am \in N$ with $a \notin \sqrt{Ann_R(M)}$, implies $m \in N$. A proper submodule N of M is called a Jsubmodule of M if for $a \in R$ and $m \in M$, whenever $am \in N$ and $a \notin (J(R)M : M)$, then $m \in N$. The aim of this paper is to introduce and investigate the dual notions of n-submodules and J-submodules of M.

1. INTRODUCTION

Throughout this paper, R is a commutative ring with identity and \mathbb{Z} is the ring of integers. Moreover, the set of zero divisors and the Jacobson radical of R are denoted by Z(R) and J(R), respectively. The radical of an ideal I of R is defined by $\sqrt{I} = \{a \in R : a^n \in I \text{ for some } n \in N\}$. For a submodule N of an R-module M, the annihilator of the R-module M/N is defined as $Ann_R(M/N) = (N :_R M) =$ $\{r \in R : rM \subseteq N\}$.

In [11], the *n*-ideals of R and the *n*-submodules of an R-module M are defined. A proper ideal P of R is said to be an *n*-ideal if $ab \in P$ and $a \notin n(R)$ for some $a, b \in R$, then $b \in P$, where n(R) is the set of nilpotent elements of R. A proper submodule Nof M is called an *n*-submodule if for $a \in R$, $m \in M$, $am \in N$ with $a \notin \sqrt{Ann_R(M)}$, then $m \in N$.

Khashan and Bani-Ata introduced and studied the concepts of J-ideal and Jsubmodule of an R-module M in [9]. When $a, b \in R$ with $ab \in I$ and $a \notin J(R)$, then

²⁰¹⁰ Mathematics Subject Classification. 13C13, 13C99.

Key words and phrases.n-submodule, J-submodule, co-n-submodule, and co-J-submodule.Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.Received: July 24, 2022Accepted: Feb. 5, 2023 .

 $b \in I$, a proper ideal I of R is said to be a J-ideal of R. A proper submodule N of M is called J-submodule if $am \in N$ and $a \notin (J(R)M : M)$ for some $a \in R$ and $m \in M$, then $m \in N$.

The main purpose of this paper is to introduce the dual notions of *n*-submodules and J-submodules of an R-module M. We also look into the initial characteristics of these classes of modules. We say that a non-zero submodule N of an R-module M is a co-n-submodule of M if for $a \in R$ and submodule K of M, whenever $aN \subseteq K$ and $a \notin \sqrt{Ann_R(M)}$, then $N \subseteq K$ (Definition 2.1). Also, we say that a nonzero submodule N of an R-module M is a co-J-submodule of M if for $a \in R$ and submodule K of M, whenever $aN \subseteq K$ and $a \notin Ann_R((0:_M J(R)))$, then $N \subseteq K$ (Definition 3.1). For an R-module M, among other results, in Example 2.4 we see that the concepts of second submodules and *co-n*-submodules are different in general. Moreover, we investigate the behavior of *co-n*-submodules under module homomorphisms (Theorem 2.6). In Theorem 2.11, it is proved that every proper submodule of M is an *n*-submodule if and only if every non-zero submodule of M is a co-n-submodule. Also, it is shown that if $(0:_M J(R)) \subseteq Soc_R(M)$ (in particular, M is a strong comultiplication R-module), then every co-n-submodule of M is a co-J-submodule of M (Proposition 3.12). In Corollary 3.6, we characterize co-Jsubmodules when M is a strong comultiplication R-module. Moreover, we investigate the behavior of *co-J*-submodules under localizations and module homomorphisms (Proposition 3.11 and Proposition 3.12).

2. The dual of n-submodules of modules

In this section we introduce and investigate the dual notion of n-submodules (that is *co-n*-submodules) of an R-module M.

Definition 2.1. We say that a non-zero submodule N of an R-module M is a con-submodule of M if for $a \in R$ and submodule K of M, whenever $aN \subseteq K$ and $a \notin \sqrt{Ann_R(M)}$, then $N \subseteq K$. Let M be an R-module. A non-zero submodule S of M is said to be *second* if for each $a \in R$, the homomorphism $S \xrightarrow{a} S$ is either surjective or zero [13]. Also, a nonzero submodule S of M is said to be *secondary* if for each $a \in R$ the endomorphism of S given by multiplication by a is either surjective or nilpotent [10].

Lemma 2.2. For a submodule S of an R-module M we have the following.

- (a) S is a second submodule of M if and only if $S \neq 0$ and $rS \subseteq K$, where $r \in R$ and K is a submodule of M implies either rS = 0 or $S \subseteq K$ [5, Theorem 2.10].
- (b) S is a secondary submodule of M if and only if $S \neq 0$ and $rS \subseteq K$, where $r \in R$ and K is a submodule of M implies either $r^n S = 0$ for some positive integer n or $S \subseteq K$ [6, Theorem 2.8].

Now $\sqrt{Ann_R(M)} \subseteq \sqrt{Ann_R(N)}$ implies that if N is a *co-n*-submodule of M, then N is a secondary submodule of M by Lemma 2.2(b). The following example shows that the converse is not true, in general.

Example 2.3. Consider the \mathbb{Z} -module \mathbb{Z}_{p^2q} , where p, q are positive prime numbers. Then since $p \notin pq\mathbb{Z} = \sqrt{Ann_{\mathbb{Z}}(\mathbb{Z}_{p^2q})}$, $p(q\mathbb{Z}_{p^2q}) \subseteq (p\mathbb{Z}_{p^2q})$, and $(q\mathbb{Z}_{p^2q}) \not\subseteq (p\mathbb{Z}_{p^2q})$, we have $N = q\mathbb{Z}_{p^2q}$ is not a *co-n*-submodule of \mathbb{Z}_{p^2q} . But N is a secondary submodule of \mathbb{Z}_{p^2q} . Because if $r \in p\mathbb{Z}$, then $r^2N = 0$. If $r \notin p\mathbb{Z}$, then $r\mathbb{Z} + p\mathbb{Z} = \mathbb{Z}$. This implies that $rN + p^2N = N$ and so rN = N.

The following example shows that the the concepts of second submodules and *co-n*-submodules are are different in general.

- **Example 2.4.** (a) Consider the \mathbb{Z} -module \mathbb{Z}_{27} . Note that $\sqrt{Ann_{\mathbb{Z}}(\mathbb{Z}_{27})} = 3\mathbb{Z}$. One can see that $\overline{3}\mathbb{Z}_{27}$ is a *co-n*-submodule of \mathbb{Z}_{27} . But the submodule $\overline{3}\mathbb{Z}_{27}$ is not second submodule because $(3)(\overline{3})\mathbb{Z}_{27} \subseteq \overline{9}\mathbb{Z}_{27}$, while, $\overline{3}\mathbb{Z}_{27} \not\subseteq \overline{9}\mathbb{Z}_{27}$ and $(3)(\overline{3})\mathbb{Z}_{27} \neq 0$.
 - (b) Consider the Z-module \mathbb{Z}_{p^2q} , where p, q are positive prime numbers. Then since $q \notin pq\mathbb{Z} = \sqrt{Ann_{\mathbb{Z}}(\mathbb{Z}_{p^2q})}$, $q(p^2\mathbb{Z}_{p^2q}) = 0$, and $(p^2\mathbb{Z}_{p^2q}) \neq 0$, we have $N = p^2\mathbb{Z}_{p^2q}$ is not a *co-n*-submodule of \mathbb{Z}_{p^2q} . But N is a second submodule of \mathbb{Z}_{p^2q} . Because if $r \in q\mathbb{Z}$, then rN = 0. If $r \notin q\mathbb{Z}$, then $r\mathbb{Z} + q\mathbb{Z} = \mathbb{Z}$. This implies that rN + qN = N and so rN = N.

Let M be an R-module. M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that N = IM [8]. M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$ [7]. Let N and K be two submodules of M. The product (resp. coproduct) of N and K is defined by $(N :_R M)(K :_R M)M$ (resp. $(0 :_M Ann_R(N)Ann_R(K)))$ and denoted by NK (resp C(NK)) [2]. A submodule N of M is said to be *idempotent* (resp. coidempotent) if $N = (N :_R M)^2 M$ (resp. $N = (0 :_M Ann_R^2(N)))$ [4].

Proposition 2.5. Let N be a submodule of an R-module M. Then we have the following.

- (a) If N is a co-n-submodule of M such that $\sqrt{0} = \sqrt{Ann_R(M)}$, then $Ann_R(N)$ is an n-ideal of R.
- (b) If M is a comultiplication R-module and $Ann_R(N)$ is an n-ideal of R, then N is a *co-n*-submodule of M.
- (c) If N is a co-n-submodule of a multiplication R-module M such that $(N :_R M) \not\subseteq \sqrt{Ann_R(M)}$, then N is an idempotent submodule of M.
- (d) If N is an n-submodule of a comultiplication R-module M such that $Ann_R(N) \not\subseteq \sqrt{Ann_R(M)}$, then N is a coidempotent submodule of M.

Proof. (a) Let $a, b \in R$, $a \notin \sqrt{0}$ and $ab \in Ann_R(N)$. Then $a \notin \sqrt{0} = \sqrt{Ann_R(M)}$ and $aN \subseteq aN$ imply that $N \subseteq aN$. Thus bN = 0, as needed.

(b) Let $a \in R$, K be a submodule of M, $a \notin \sqrt{Ann_R(M)}$, and $aN \subseteq K$. Then we have $Ann_R(K)aN = 0$. So by assumption, $Ann_R(K)N = 0$. Hence, $Ann_R(K) \subseteq Ann_R(N)$. Thus as M is a comultiplication R-module, $N \subseteq K$.

(c) As M is a multiplication R-module, we have

$$(N:_R M)N = (N:_R M)(N:_R M)M = N^2.$$

Let $a \in (N :_R M) \setminus \sqrt{Ann_R(M)}$. Then $aN \subseteq (N :_R M)N = N^2$ implies that $N \subseteq N^2$ since N is a *co-n*-submodule of M. The reverse inclusion is clear.

(d) Since M is a comultiplication R-module, we have

$$(N:_M Ann_R(N)) = (0:_M Ann_R^2(N)) = C(N^2).$$

Let $a \in Ann_R(N) \setminus \sqrt{Ann_R(M)}$. Then

$$C(N^2) = (0:_M Ann_R^2(N)) \subseteq (0:_M aAnn_R(N)) = (N:_M a).$$

Thus $aC(N^2) \subseteq N$. Hence, $C(N^2) \subseteq N$ since N is an n-submodule of M. This complete the proof because the reverse inclusion is clear.

Theorem 2.6. Let $f: M \to M$ be a monomorphism of *R*-modules. Then we have the following.

- (a) If N is a co-n-submodule of M, then f(N) is a co-n-submodule of M.
- (b) If \hat{N} is a co-n-submodule of \hat{M} and $\hat{N} \subseteq f(M)$, then $f^{-1}(\hat{N})$ is a co-n-submodule of M.

Proof. (a) Since $N \neq 0$ and f is a monomorphism, we have $f(N) \neq 0$. Let $a \in R$, \acute{K} be a submodule of \acute{M} , and $af(N) \subseteq \acute{K}$. Then $aN \subseteq f^{-1}(\acute{K})$. As N is a co-nsubmodule, $N \subseteq f^{-1}(\acute{K})$ or $a \in \sqrt{Ann_R(M)}$. Therefore,

$$f(N) \subseteq f(f^{-1}(\acute{K})) = f(M) \cap \acute{K} \subseteq \acute{K}$$

or $a \in \sqrt{Ann_R(f(M))}$, as needed.

(b) If $f^{-1}(\dot{N}) = 0$, then $f(M) \cap \dot{N} = f(f^{-1}(\dot{N})) = f(0) = 0$. Thus $\dot{N} = 0$, which is a contradiction. So, $f^{-1}(\dot{N}) \neq 0$. Now let $a \in R$, K be a submodule of M, and $af^{-1}(\dot{N}) \subseteq K$. Then

$$a\acute{N} = a(f(M) \cap \acute{N}) = af(f^{-1}(\acute{N})) \subseteq f(K)$$

As \hat{N} is a *co-n*-submodule, $\hat{N} \subseteq f(K)$ or $a \in \sqrt{Ann_R(\hat{M})}$. Therefore, $f^{-1}(\hat{N}) \subseteq f^{-1}(f(K)) = K$ or $a \in \sqrt{Ann_R(f^{-1}(\hat{M}))}$ as desired. \Box

Corollary 2.7. Let M be an R-module and $N \subseteq K$ be two submodules of M. Then N is a *co-n*-submodule of K if and only if N is a *co-n*-submodule of M.

Proof. This follows from Theorem 2.6 by using the natural monomorphism $K \rightarrow M$.

Proposition 2.8. Let M be an R-module. Then we have the following.

(a) M is a *co-n*-submodule of M if M is a secondary R-module.

(b) The sum of an arbitrary non-empty set of co-n-submodules of M is a co-n-submodule of M.

Proof. (a) This is clear.

(b) Let N_i be a *co-n*-submodule of M for every $i \in I$. Assume that $a \sum_{i \in I} N_i \subseteq K$ with $a \notin \sqrt{Ann_R(M)}$ for $a \in R$ and submodule K of M. This implies that $aN_i \subseteq K$ for every $i \in I$. As N_i is a *co-n*-submodule of M, we conclude that $N_i \subseteq K$ for every $i \in I$. Hence $\sum_{i \in I} N_i \subseteq K$, as needed.

Lemma 2.9. Let N be non-zero submodule of an R-module. Then N is a co-nsubmodule of M if and only if whenever I is an ideal of R such that $I \not\subseteq \sqrt{Ann_R(M)}$) and K is a submodule of M with $IN \subseteq K$, then $N \subseteq K$.

Proof. Suppose that N is a co-n-submodule and $IN \subseteq K$ for some ideal I of R with $I \cap (R \setminus \sqrt{Ann_R(M)}) \neq \emptyset$ and submodule K of M. Then there exists $a \in I$ such that $a \notin \sqrt{Ann_R(M)}$. Since N is a co-n-submodule, $N \subseteq K$. For the converse, let $aN \subseteq K$ and $a \notin \sqrt{Ann_R(M)}$ for $a \in R$, and submodule K of M. We take I = aR. Note that $I \cap (R \setminus \sqrt{Ann_R(M)}) \neq \emptyset$. Then by assumption we have $N \subseteq K$, and so N is a co-n-submodule of M.

Theorem 2.10. Let K_1 , K_2 , K be submodules of an R-module M and I be an ideal of R with $I \not\subseteq \sqrt{Ann_R(M)}$. Then the following hold.

- (a) If K_1 , K_2 are co-n-submodules of M with $(K_1 :_M I) = (K_2 :_M I)$, then $K_1 = K_2$.
- (b) If $(K:_M I)$ is a co-n-submodule, then $(K:_M I) = K$. In particular, K is a co-n-submodule.

Proof. (a) Since $IK_1 \subseteq K_2$ and K_1 is a *co-n*-submodule, we have $K_1 \subseteq K_2$ by Lemma 2.9. Similarly, we have $K_2 \subseteq K_1$, and so $K_1 = K_2$.

(b) As $(K:_M I)$ is a *co-n*-submodule and $I(K:_M I) \subseteq K$, we have $(K:_M I) \subseteq K$ by Lemma 2.9. Hence, $(K:_M I) = K$.

Theorem 2.11. Let M be an R-module. Every proper submodule of M is an n-submodule if and only if every non-zero submodule of M is a co-n-submodule.

Proof. First suppose that every proper submodule of M is an n-submodule. Let N be a non-zero submodule of M and $aN \subseteq K$ for some $a \in R$ and a submodule K of M with $a \notin \sqrt{Ann_R(M)}$. If K = M, then we are done. If K is proper, then by assumption, K is an n-submodule. Hence for each $x \in N$, $ax \in K$ implies that $x \in K$. Thus $N \subseteq K$, as needed. Now suppose that every non-zero submodule of M is a *co-n*-submodule. Let N be a proper submodule of M and $am \subseteq N$ for some $a \in R$ and $m \in M$ with $a \notin \sqrt{Ann_R(M)}$. If m = 0, then we are done. If Rm is non-zero, then by assumption, Rm is a *co-n*-submodule and so $m \in N$, as requested. \Box

3. The dual of J-submodules of modules

In this section we introduce the dual notion of J-submodules (that is co-J-submodules) of an R-module M. Also, we investigate first properties of this class of modules and obtain some related results.

Definition 3.1. We say that a non-zero submodule N of an R-module M is a co-J-submodule of M if for $a \in R$ and submodule K of M, whenever $aN \subseteq K$ and $a \notin Ann_R((0:_M J(R)))$, then $N \subseteq K$.

Recall that an *R*-module *M* is said to be *finitely cogenerated* if for every set $\{M_i\}_{i \in I}$ of submodules of M, $\bigcap_{i \in I} M_i = 0$ implies $\bigcap_{i=1}^n M_i = 0$ for some positive integer *n* [1].

Remark 3.2. If $Ann_R((0 :_M J(R))) = R$, then our definition implies that any non-zero submodule of M is a *co-J*-submodule of M. The only finitely cogenerated R-module M such that $Ann_R((0 :_M J(R))) = R$ is 0 by the dual of Nakayama's Lemma [3, Theorem 3.14].

Proposition 3.3. Let M be an R-module and N be a submodule of M. Then the following are equivalent:

- (a) N is a *co-J*-submodule of M;
- (b) $N \neq 0$ and for each $a \notin Ann_R((0:_M J(R)))$, we have aN = N.

Proof. $(a) \Rightarrow (b)$ This follows from the fact that $aN \subseteq aN$.

 $(b) \Rightarrow (a)$ This is clear.

- (a) Any sum of co-J-submodules of M is a co-J-submodule of M.
- (b) If N is a co-J-submodule of M and $Ann_R((0 :_M J(R))) = J(R)$, then $Ann_R(N)$ is a J-ideal of R.
- (c) If N is a co-J-submodule of M, then IN is also a co-J-submodule of M, where
 I is an ideal of R.
- (d) If M is a comultiplication R-module and N is a submodule of M such that Ann_R(N) is a J-ideal of R, then N is a co-J-submodule of M.

Proof. (a) This is straightforward.

(b) Let $ab \in Ann_R(N)$ such that $a \notin J(R)$. Then we have abN = 0 and so $aN \subseteq (0:_M b)$. Since N is a co-J-submodule of M and $a \notin J(R) = Ann_R((0:_M J(R)))$, we have bN = 0, as needed.

(c) Let $aIN \subseteq K$, where $a \in R$ and K is a submodule of M with $a \notin Ann_R((0:_M J(R)))$. Then we have $abN \subseteq K$ for all $b \in I$. Since N is a co-J-submodule of M, we have $bN \subseteq K$ for all $b \in I$. Thus, $IN \subseteq K$, as requested.

(d) Let $a \in R$ and K be a submodule of M such that $aN \subseteq K$ and $a \notin Ann_R((0:_M J(R)))$. Then

$$Ann_R(K) \subseteq Ann_R(aN) \subseteq (Ann_R(N) :_R a).$$

Hence, $aAnn_R(K) \subseteq Ann_R(N)$. As $a \notin Ann_R((0:_M J(R)))$, we have $a \notin J(R)$. Therefore, $Ann_R(K) \subseteq Ann_R(N)$ since $Ann_R(N)$ is a *J*-ideal of *R*. Now, *M* is a comultiplication *R*-module implies that $N \subseteq K$ by [7, Theorem 5]. Hence, *N* is a *co-J*-submodule of *M*.

The following example shows that if $Ann_R((0:_M J(R))) \not\subseteq J(R)$, then part (b) of Theorem 3.4 need not be true in general.

Example 3.5. Consider the \mathbb{Z} -module $M = \mathbb{Z}_2$. Then $2\mathbb{Z} = Ann_{\mathbb{Z}}((0 :_{\mathbb{Z}_2} J(\mathbb{Z}))) \not\subseteq J(\mathbb{Z}) = 0$. We have N = M is clearly, a *co-J*-submodule of M but $2\mathbb{Z} = Ann_{\mathbb{Z}}(\mathbb{Z}_2)$ is not a *J*-ideal of \mathbb{Z} .

An *R*-module *M* satisfies the *double annihilator conditions* (DAC for short) if for each ideal *I* of *R* we have $I = Ann_R((0:_M I))$. An *R*-module *M* is said to be a *strong comultiplication module* if *M* is a comultiplication *R*-module and satisfies the DAC conditions [7]. **Corollary 3.6.** Let M be a strong comultiplication R-module and N a non-zero submodule of M. Then the following are equivalent:

- (a) N is a *co-J*-submodule of M;
- (b) $Ann_R(N)$ is a *J*-ideal of *R*;
- (c) $N = (0:_M I)$, where I is a J-ideal of R.

Proof. (a) \Leftrightarrow (b) Follows by Theorem 3.4 and the fact that $Ann_R((0:_M I)) = I$ for any ideal I of R.

(b) \Leftrightarrow (c) We just choose $I = Ann_R(N)$.

Recall that the socle of an *R*-module M is defined as the sum of all minimal submodules of M and it is denoted by $Soc_R(M)$.

A non-zero submodule N of an R-module M is said to be *large*, if for any submodule K of $M, N \cap K = 0$ implies K = 0.

A proper ideal I of R is said to be *small* if whenever J is an ideal of R with I + J = R, then J = R.

Theorem 3.7. Let M be a strong comultiplication R-module. If N is a co-J-submodule of M, then we have the following.

- (a) $Soc_R(M) \subseteq N$.
- (b) N is a large submodule of M.

Proof. (a) We have $Soc_R(M) = (0:_M J(R))$ by [12, Corollary 2.7]. Suppose $Soc_R(M) \not\subseteq N$. N. Then clearly, $Ann_R(N) \not\subseteq Ann_R(Soc_R(M)) = J(R)$. But $Ann_R(N)$ is a J-ideal by Corollary 3.6, which contradicts [9, Proposition 2.2]. Hence, $Soc_R(M) \subseteq N$.

(b) $Ann_R(N)$ is a *J*-ideal of *R* by Corollary 3.6. Hence, by [9, Proposition 2.9], $Ann_R(N)$ is a small ideal of *R*. Now the result follows from [12, Theorem 2.5].

Proposition 3.8. Let M be an R-module such that $(0 :_M J(R)) \subseteq Soc_R(M)$ (in particular, M be a strong comultiplication R-module). Then every *co-n*-submodule of M is a *co-J*-submodule of M.

Proof. As $(0:_M J(R)) \subseteq Soc_R(M)$, we have $Ann_R(Soc_R(M)) \subseteq Ann_R((0:_M J(R)))$. So it is enough to prove that $\sqrt{Ann_R(M)} \subseteq Ann_R(Soc_R(M))$. Let $a \in \sqrt{Ann_R(M)}$ and S be a minimal submodule of M. Then $Ann_R(S)$ is a maximal ideal of R and

so $\sqrt{Ann_R(S)} = Ann_R(S)$. Clearly $Ann_R(M) \subseteq Ann_R(S)$. Thus, $a \in Ann_R(S)$ and so aS = 0 for all minimal submodules S of M. It follows that $a \in Ann_R(Soc_R(M))$, as needed.

Proposition 3.9. If N is a secondary submodule of an R-module M such that $Ann_R(N) \subseteq J(R)$, then N is a *co-J*-submodule of M.

Proof. Suppose that N is a secondary submodule of M and $Ann_R(N) \subseteq J(R)$. Then $\sqrt{Ann_R(N)} \subseteq \sqrt{J(R)} = J(R)$. Let $a \in R$ and K be a submodule of M such that $aN \subseteq K$ and $a \notin Ann_R((0:_M J(R)))$. Then $a \notin J(R)$ and so $a \notin \sqrt{Ann_R(N)}$. It follows that $N \subseteq K$, as needed \Box

Corollary 3.10. If N is a secondary submodule of an R-module M such that $Ann_R(N)$ is a J-ideal of R, then N is a co-J-submodule of M.

Proof. This follows from [9, Proposition 2.2] and Proposition 3.9. \Box

Proposition 3.11. Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated *co-J*-submodule of M. If J(R) is a finitely generated ideal of R and $S^{-1}(J(R)) = J(S^{-1}R)$, then $S^{-1}N$ is a *co-J*-submodule of $S^{-1}M$ if $S^{-1}N \neq 0$ (in particular, $S \cap Ann_R(N) = \emptyset$).

Proof. As J(R) is a finitely generated ideal of R and $S^{-1}(J(R)) = J(S^{-1}R)$, we have

$$S^{-1}(Ann_R((0:_M J(R)))) \subseteq Ann_{S^{-1}R}((0:_{S^{-1}M} J(S^{-1}R))).$$

Now let $(a/s)(S^{-1}N) \subseteq S^{-1}K$ for some $a/s \in S^{-1}R$ and submodule $S^{-1}K$ of $S^{-1}M$ with $a/s \notin Ann_{S^{-1}R}((0:_{S^{-1}M}J(S^{-1}R)))$. Then $a/s \notin S^{-1}(Ann_R((0:_MJ(R))))$ and so $a \notin Ann_R((0:_MJ(R)))$. As N is finitely generated and $(a/s)(S^{-1}N) \subseteq S^{-1}K$, there exists $t \in S$ such that $taN \subseteq K$. This implies that $aN \subseteq (K:_M t)$. Now since N is a co-J-submodule of $M, tN \subseteq K$. It follows that $S^{-1}N \subseteq S^{-1}K$, as needed. \Box

Proposition 3.12. Let M and \hat{M} be R-modules, and let $f : M \to \hat{M}$ be an Rmonomorphism. If \hat{N} is a *co-J*-submodule of \hat{M} such that $\hat{N} \subseteq Im(f)$, then $f^{-1}(\hat{N})$ is a *co-J*-submodule of M.

Proof. As $\dot{N} \neq 0$ and $\dot{N} \subseteq Im(f)$, we have $f^{-1}(\dot{N}) \neq 0$. We have $Ann_R((0:_{\dot{M}} J)) \subseteq Ann_R((0:_M J))$ because if $r \in Ann_R((0:_{\dot{M}} J))$, then $r(0:_{f(M)} J) = 0$ and so $rf((0:_M J)) = 0$. Now as ker(f) = 0, we have $r(0:_M J) = 0$ and thus $r \in Ann_R((0:_M J))$. Let $r \notin Ann_R((0:_M J))$ and K be a submodule of Mwith $rf^{-1}(\dot{N}) \subseteq K$. Then $r \notin Ann_R((0:_{\dot{M}} J))$ and $r\dot{N} \subseteq f(K)$. Thus as \dot{N} is a *co-J*-submodule of \dot{M} , we have $\dot{N} \subseteq f(K)$. This implies that $f^{-1}(\dot{N}) \subseteq K$, as requested. \Box

References

- W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
- H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci. (FJMS), 25 (3) (2007), 447–455.
- [3] H. Ansari-Toroghy and F. Farshadifar, Comultiplication modules and related results, Honam Math. J., 30 (1) (2008), 91–99.
- [4] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc., 38 (4) (2012), 987–1005.
- [5] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules (II), *Mediterr. J. Math.*, 9 (2) (2012), 327–336.
- [6] H. Ansari-Toroghy, F. Farshadifar, S. S. Pourmortazavi, and F. Khaliphe, On secondary modules, Int. J. Algebra, 6 (16) (2012), 769–774.
- [7] H. Ansari-Toroghy and F. Farshadifar, Survey on comultiplication modules, Surveys in Mathematics and its Applications, 14 (2019), 61–108.
- [8] A. Barnard, Multiplication modules, J. Algebra, 71 (1) (1981), 174–178.
- [9] H. A. Khashan and A. B. Bani-Ata, J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148–164.
- [10] I. G. Macdonald, Secondary representation of modules over a commutative ring, In Symposia Mathematica, XI (1973), 23–43.
- [11] U. Tekir, S. Koç, and K. H. Oral, n-ideals of commutative rings, *Filomat*, **31** (10) (2017), 2933–2941.
- [12] Y. Wang, and Y. Liu, A note on comultiplication modules, Algebra Colloq., 21 (1) (2014), 147–150.
- [13] S. Yassemi, The dual notion of prime submodules. Arch. Math., (Brno), 37 (4) (2001), 273–278.

DEPARTMENT OF MATHEMATICS, FARHANGIAN UNIVERSITY, TEHRAN, IRAN. Email address: f.farshadifar@cfu.ac.ir