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THE DUAL OF THE NOTIONS n-SUBMODULES AND
J-SUBMODULES

FARANAK FARSHADIFAR

ABSTRACT. Let R be a commutative ring with identity and M be an R-module. A
proper submodule N of M is called an n-submodule if for a € R, m € M, am € N
with a & \/W, implies m € N. A proper submodule N of M is called a J-
submodule of M if for a € R and m € M, whenever am € N and a & (J(R)M : M),
then m € N. The aim of this paper is to introduce and investigate the dual notions

of n-submodules and J-submodules of M.

1. INTRODUCTION

Throughout this paper, R is a commutative ring with identity and Z is the ring
of integers. Moreover, the set of zero divisors and the Jacobson radical of R are
denoted by Z(R) and J(R), respectively. The radical of an ideal I of R is defined
by VI={a € R:a" €I for somen € N}. For a submodule N of an R-module
M, the annihilator of the R-module M/N is defined as Anng(M/N) = (N g M) =
{reR:rM C N}.

In [11], the n-ideals of R and the n-submodules of an R-module M are defined. A
proper ideal P of R is said to be an n-ideal if ab € P and a ¢ n(R) for some a,b € R,
then b € P, where n(R) is the set of nilpotent elements of R. A proper submodule N
of M is called an n-submodule if for a € R, m € M, am € N with a & \/W,
then m € N.

Khashan and Bani-Ata introduced and studied the concepts of J-ideal and J-
submodule of an R-module M in [9]. When a,b € R with ab € I and a ¢ J(R), then
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b € I, a proper ideal I of R is said to be a J-ideal of R. A proper submodule N of M
is called J-submodule if am € N and a & (J(R)M : M) for some a € R and m € M,
then m € N.

The main purpose of this paper is to introduce the dual notions of n-submodules
and J-submodules of an R-module M. We also look into the initial characteristics of
these classes of modules. We say that a non-zero submodule N of an R-module M
is a co-n-submodule of M if for a € R and submodule K of M, whenever aN C K
and a ¢ \/Anng(M), then N C K (Definition 2.1). Also, we say that a non-
zero submodule N of an R-module M is a co-J-submodule of M if for a € R and
submodule K of M, whenever aN C K and a € Anng((0 :ps J(R))), then N C K
(Definition 3.1). For an R-module M, among other results, in Example 2.4 we see
that the the concepts of second submodules and co-n-submodules are different in
general. Moreover, we investigate the behavior of co-n-submodules under module
homomorphisms (Theorem 2.6). In Theorem 2.11, it is proved that every proper
submodule of M is an n-submodule if and only if every non-zero submodule of M is
a co-n-submodule. Also, it is shown that if (0 :p; J(R)) C Socg(M) (in particular,
M is a strong comultiplication R-module), then every co-n-submodule of M is a
co-J-submodule of M (Proposition 3.12). In Corollary 3.6, we characterize co-.J-
submodules when M is a strong comultiplication R-module. Moreover, we investigate
the behavior of co-J-submodules under localizations and module homomorphisms

(Proposition 3.11 and Proposition 3.12).

2. THE DUAL OF n-SUBMODULES OF MODULES

In this section we introduce and investigate the dual notion of n-submodules (that

is co-n-submodules) of an R-module M.

Definition 2.1. We say that a non-zero submodule N of an R-module M is a co-

n-submodule of M if for a € R and submodule K of M, whenever aN C K and

a & \/Anng(M), then N C K.
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Let M be an R-module. A non-zero submodule S of M is said to be second if for
each a € R, the homomorphism S % S is either surjective or zero [13]. Also, a non-
zero submodule S of M is said to be secondary if for each a € R the endomorphism

of S given by multiplication by a is either surjective or nilpotent [10].

Lemma 2.2. For a submodule S of an R-module M we have the following.

(a) S is a second submodule of M if and only if S # 0 and S C K, where r € R
and K is a submodule of M implies either rS = 0 or S C K [5, Theorem
2.10].

(b) S is a secondary submodule of M if and only if S # 0 and 7S C K, where
r € R and K is a submodule of M implies either S = 0 for some positive

integer n or S C K [6, Theorem 2.8].

Now /Anng(M) C \/Anng(N) implies that if N is a co-n-submodule of M, then
N is a secondary submodule of M by Lemma 2.2(b). The following example shows

that the converse is not true, in general.

Example 2.3. Consider the Z-module Z,2,, where p, g are positive prime numbers.
Then since p & pqZe = \/ Annz(Zy2g), P(alyzg) S (PLyp2g), and (qZyzg) E (PLyp2g), We
have N = qZ,2, is not a co-n-submodule of Z,2,. But N is a secondary submodule
of Z,2,. Because if r € pZ, then r?N = 0. If r € pZ, then rZ + pZ = Z. This implies
that 7N + p?N = N and so rN = N.

The following example shows that the the concepts of second submodules and

co-n-submodules are are different in general.

Example 2.4. (a) Consider the Z-module Zy;. Note that /Anng(Za) = 3Z.
One can see that 3Zy; is a co-n-submodule of Zy;. But the submodule 3Zo;
is not second submodule because (3)(3)Zy; C 9Zy7, while, 3Zo; € 9797 and
(3)(3) 77 0.

(b) Consider the Z-module Z,2,, where p,q are positive prime numbers. Then
since ¢ & pgZ = /Anng(Zyz,), ¢(p*Zy2,) = 0, and (p*Z,2,) # 0, we have
N = p?Z,2, is not a co-n-submodule of Z,,. But N is a second submodule
of Z,2,. Because if r € gZ, then rN = 0. If r & ¢qZ, then rZ + qZ = Z. This
implies that rN +gN = N and so rN = N.
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Let M be an R-module. M is said to be a multiplication module if for every
submodule N of M there exists an ideal I of R such that N = IM [8]. M is said
to be a comultiplication module if for every submodule N of M there exists an ideal
I of R such that N = (0 :p; I) [7]. Let N and K be two submodules of M. The
product (resp. coproduct) of N and K is defined by (N :g M)(K :p M)M (resp.
(0 :pr Anng(N)Anng(K))) and denoted by NK (resp C(NK)) [2]. A submodule
N of M is said to be idempotent (resp. coidempotent) if N = (N :g M)?>M (resp.
N = (0227 Ann3(N))) [4].

Proposition 2.5. Let N be a submodule of an R-module M. Then we have the

following.

(a) If N is a co-n-submodule of M such that v/0 = \/Anng(M), then Annp(N)
is an n-ideal of R.

(b) If M is a comultiplication R-module and Anng(N) is an n-ideal of R, then
N is a co-n-submodule of M.

(c) If N is a co-n-submodule of a multiplication R-module M such that (N :g
M) & \/Anng(M), then N is an idempotent submodule of M.

(d) If N is an n-submodule of a comultiplication R-module M such that Anng(N) €
\/W , then N is a coidempotent submodule of M.

Proof. (a) Let a,b € R, a ¢ v/0 and ab € Anng(N). Then a ¢ V0 = \/Annp(M)
and alN C aN imply that N C a/N. Thus bN = 0, as needed.

(b) Let a € R, K be a submodule of M, a ¢ \/Anng(M), and aN C K. Then
we have Anng(K)aN = 0. So by assumption, Anng(K)N = 0. Hence, Anng(K) C
Anng(N). Thus as M is a comultiplication R-module, N C K.

(c) As M is a multiplication R-module, we have
(N :g M)N = (N :g M)(N :g M)M = N*.

Let a € (N :g M)\\/Anng(M). Then aN C (N :g M)N = N? implies that N C N?
since N is a co-n-submodule of M. The reverse inclusion is clear.

(d) Since M is a comultiplication R-module, we have

(N :3r Anng(N)) = (0 :ay Ann%(N)) = C(N?).
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Let a € Anng(N) \ /Anng(M). Then
C(N?) = (0 13y Ann’%(N)) C (0 13y aAnng(N)) = (N s a).

Thus aC(N?) C N. Hence, C(N?) C N since N is an n-submodule of M. This

complete the proof because the reverse inclusion is clear. O

Theorem 2.6. Let f: M — M be a monomorphism of R-modules. Then we have
the following.
(a) If N is a co-n-submodule of M, then f(N) is a co-n-submodule of M.
(b) If N is a co-n-submodule of M and N C f(M), then f~Y(N) is a co-n-
submodule of M.

Proof. (a) Since N # 0 and f is a monomorphism, we have f(N) # 0. Let a € R,
K be a submodule of M, and af(N) € K. Then aN C f~'(K). As N is a co-n-
submodule, N C f~Y(K) or a € \/Anng(M). Therefore,

FIN) S F(fHUE) = f(M)NK C K

ora € \/Anng(f(M)), as needed.

(b) If f~Y(N) =0, then f(M)NN = f(f~Y(N)) = f(0) = 0. Thus N = 0, which
is a contradiction. So, f~1(N) # 0. Now let a € R, K be a submodule of M, and
af ' (N) C K. Then

aN = a(f(M)NN) =af(f1(N)) C f(K).

As N is a co-n-submodule, N C f(K) or a € y/Anng(M). Therefore, f~1(N) C

fYUf(K)=Korac \/AnnR(f_l(M)) as desired. 0

Corollary 2.7. Let M be an R-module and N C K be two submodules of M. Then

N is a co-n-submodule of K if and only if N is a co-n-submodule of M.

Proof. This follows from Theorem 2.6 by using the natural monomorphism K —

M. U

Proposition 2.8. Let M be an R-module. Then we have the following.

(a) M is a co-n-submodule of M if M is a secondary R-module.
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(b) The sum of an arbitrary non-empty set of co-n-submodules of M is a co-n-

submodule of M.

Proof. (a) This is clear.

(b) Let N; be a co-n-submodule of M for every i € I. Assume that a) ., N; € K
with a & \/m for a € R and submodule K of M. This implies that alV; C K
for every i € I. As N; is a co-n-submodule of M, we conclude that N; C K for every
i € I. Hence ), ., N; C K, as needed. O

Lemma 2.9. Let N be non-zero submodule of an R-module. Then N is a co-n-
submodule of M if and only if whenever [ is an ideal of R such that I Z /Anng(M))
and K is a submodule of M with IN C K, then N C K.

Proof. Suppose that N is a co-n-submodule and IN C K for some ideal I of R with
IN(R\ \/Anng(M)) # § and submodule K of M. Then there exists a € I such
that a ¢ \/W . Since N is a co-n-submodule, N C K. For the converse, let
aN C K and a & \/W for a € R, and submodule K of M. We take I = aR.
Note that I N (R \ \/m) # (). Then by assumption we have N C K, and so
N is a co-n-submodule of M. O

Theorem 2.10. Let Ky, Ky, K be submodules of an R-module M and I be an ideal
of R with I  \/Anng(M)). Then the following hold.
(a) If K1, Ky are co-n-submodules of M with (Ky :py 1) = (K3 iy 1), then
K, = K.
(b) If (K :p 1) is a co-n-submodule, then (K :p I) = K. In particular, K is a

co-n-submodule.

Proof. (a) Since I K; C K5 and K] is a co-n-submodule, we have K; C K5 by Lemma
2.9. Similarly, we have Ky C Ky, and so K7 = K.

(b) As (K :p I) is a co-n-submodule and I(K :j; I) C K, we have (K ;) I) C K
by Lemma 2.9. Hence, (K :p I) = K. O

Theorem 2.11. Let M be an R-module. FEvery proper submodule of M is an n-

submodule if and only if every non-zero submodule of M is a co-n-submodule.
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Proof. First suppose that every proper submodule of M is an n-submodule. Let N
be a non-zero submodule of M and aN C K for some a € R and a submodule K
of M with a & \/W. If K = M, then we are done. If K is proper, then
by assumption, K is an n-submodule. Hence for each € N, ax € K implies that
x € K. Thus N C K, as needed. Now suppose that every non-zero submodule of M
is a co-n-submodule. Let N be a proper submodule of M and am C N for some a € R
and m € M with a & \/W. If m = 0, then we are done. If Rm is non-zero,

then by assumption, Rm is a co-n-submodule and so m € N, as requested. O

3. THE DUAL OF J-SUBMODULES OF MODULES

In this section we introduce the dual notion of J-submodules (that is co-J-submodules)
of an R-module M. Also, we investigate first properties of this class of modules and

obtain some related results.

Definition 3.1. We say that a non-zero submodule N of an R-module M is a co-
J-submodule of M if for a« € R and submodule K of M, whenever aN C K and
a ¢ Anng((0 :pr J(R))), then N C K.

Recall that an R-module M is said to be finitely cogenerated if for every set { M, }ier

of submodules of M, N;e;M; = 0 implies NI, M; = 0 for some positive integer n [1].

Remark 3.2. If Anng((0 :py J(R))) = R, then our definition implies that any
non-zero submodule of M is a co-J-submodule of M. The only finitely cogenerated
R-module M such that Anng((0 :py J(R))) = R is 0 by the dual of Nakayama’s
Lemma [3, Theorem 3.14].

Proposition 3.3. Let M be an R-module and N be a submodule of M. Then the

following are equivalent:

(a) N is a co-J-submodule of M;
(b) N # 0 and for each a € Anng((0 :p J(R))), we have aN = N.

Proof. (a) = (b) This follows from the fact that aN C aN.
(b) = (a) This is clear. O

Theorem 3.4. Let M be an R-module. Then we have the following results.
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(a) Any sum of co-J-submodules of M is a co-J-submodule of M.

(b) If N is a co-J-submodule of M and Anng((0 :p J(R))) = J(R), then
Anng(N) is a J-ideal of R.

(¢) If N is a co-J-submodule of M, then IN s also a co-J-submodule of M, where
I is an ideal of R.

(d) If M is a comultiplication R-module and N is a submodule of M such that
Anng(N) is a J-ideal of R, then N is a co-J-submodule of M.

Proof. (a) This is straightforward.

(b) Let ab € Anng(N) such that a € J(R). Then we have abN = 0 and so aN C
(0 :ps b). Since N is a co-J-submodule of M and a € J(R) = Anng((0 3 J(R))), we
have bN = 0, as needed.

(c) Let aIN C K, where a € R and K is a submodule of M with a € Anng((0 :p
J(R))). Then we have abN C K for all b € I. Since N is a co-J-submodule of M,
we have DN C K for all b € I. Thus, IN C K, as requested.

(d) Let a € R and K be a submodule of M such that aN C K and a € Anng((0 :p/
J(R))). Then

Anng(K) C Anng(aN) C (Anng(N) :g a).
Hence, aAnng(K) C Anng(N). As a € Anng((0 :pr J(R))), we have a ¢ J(R).
Therefore, Anng(K) C Anng(N) since Anng(N) is a J-ideal of R. Now, M is a
comultiplication R-module implies that N C K by [7, Theorem 5]. Hence, N is a
co-J-submodule of M. O

The following example shows that if Anng((0:ys J(R))) € J(R), then part (b) of

Theorem 3.4 need not be true in general.

Example 3.5. Consider the Z-module M = Z,. Then 2Z = Anngz((0 :z, J(Z))) €
J(Z) = 0. We have N = M is clearly, a co-J-submodule of M but 2Z = Anngy(Z,) is
not a J-ideal of Z.

An R-module M satisfies the double annihilator conditions (DAC for short) if for
each ideal I of R we have I = Anng((0:p, I)). An R-module M is said to be a strong
comultiplication module if M is a comultiplication R-module and satisfies the DAC

conditions [7].
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Corollary 3.6. Let M be a strong comultiplication R-module and N a non-zero

submodule of M. Then the following are equivalent:

(a) N is a co-J-submodule of M;
(b) Anng(N) is a J-ideal of R;
(¢) N=1(0:p I), where I is a J-ideal of R.

Proof. (a) < (b) Follows by Theorem 3.4 and the fact that Anng((0 :p 1)) = I for
any ideal I of R.
(b) < (c) We just choose I = Anng(N). O

Recall that the socle of an R-module M is defined as the sum of all minimal
submodules of M and it is denoted by Socg(M).

A non-zero submodule N of an R-module M is said to be large, if for any submodule
K of M, NN K =0 implies K = 0.

A proper ideal I of R is said to be small if whenever J is an ideal of R with
I+ J =R, then J = R.

Theorem 3.7. Let M be a strong comultiplication R-module. If N is a co-J-
submodule of M, then we have the following.

(a) Socgr(M) C N.

(b) N is a large submodule of M.

Proof. (a) We have Socgr(M) = (0 :p; J(R)) by [12, Corollary 2.7]. Suppose Socg(M) €
N. Then clearly, Anng(N) € Anngr(Socg(M)) = J(R). But Anng(N) is a J-ideal
by Corollary 3.6, which contradicts [9, Proposition 2.2]. Hence, Socg(M) C N.

(b) Anngr(N) is a J-ideal of R by Corollary 3.6. Hence, by [9, Proposition 2.9],
Anng(N) is a small ideal of R. Now the result follows from [12, Theorem 2.5]. [

Proposition 3.8. Let M be an R-module such that (0 :py J(R)) C Socg(M) (in
particular, M be a strong comultiplication R-module). Then every co-n-submodule

of M is a co-J-submodule of M.

Proof. As (0 :ps J(R)) C Socg(M), we have Anng(Socg(M)) C Anng((0:p J(R))).
So it is enough to prove that \/Anng(M) C Anng(Socgr(M)). Let a € \/Anng(M)

and S be a minimal submodule of M. Then Anng(S) is a maximal ideal of R and
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so v/ Anng(S) = Anng(S). Clearly Anng(M) C Anng(S). Thus, a € Anng(S) and
so aS = 0 for all minimal submodules S of M. It follows that a € Anng(Socg(M)),
as needed. U

Proposition 3.9. If N is a secondary submodule of an R-module M such that
Anng(N) C J(R), then N is a co-J-submodule of M.

Proof. Suppose that N is a secondary submodule of M and Anng(N) C J(R). Then
VAnngr(N) € y/J(R) = J(R). Let a € R and K be a submodule of M such that

aN C K and a € Anng((0 :py J(R))). Then a € J(R) and so a & y/Anng(N). It
follows that N C K, as needed O

Corollary 3.10. If N is a secondary submodule of an R-module M such that
Anng(N) is a J-ideal of R, then N is a co-J-submodule of M.

Proof. This follows from [9, Proposition 2.2] and Proposition 3.9. O

Proposition 3.11. Let M be an R-module, S a multiplicatively closed subset of R,
and N be a finitely generated co-J-submodule of M. If J(R) is a finitely generated
ideal of R and S7'(J(R)) = J(S™'R), then ST'N is a co-J-submodule of S™'M if
SN #£ 0 (in particular, S N Anng(N) = 0).

Proof. As J(R) is a finitely generated ideal of R and S™'(J(R)) = J(S™'R), we have
S~ Anng((0 13 J(R)))) € Anng-15((0 ;5127 J(ST'R))).

Now let (a/s)(ST!N) C ST'K for some a/s € ST'R and submodule S™'K of S™'M
with a/s & Anng-1x((0 :g-13s J(ST'R))). Then a/s & S~ (Anng((0 :3r J(R)))) and
so a & Anng((0 :pr J(R))). As N is finitely generated and (a/s)(S7'N) C S7'K,
there exists ¢ € S such that taN C K. This implies that aN C (K :js t). Now since
N is a co-J-submodule of M, tN C K. It follows that S™'N C S™'K, as needed. O

Proposition 3.12. Let M and M be R-modules, and let f : M — M be an R-
monomorphism. If N is a co-J-submodule of M such that N C Im(f), then f~(N)

is a co-J-submodule of M.
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Proof. As N # 0 and N C Im(f), we have f~'(N) # 0. We have Anng((0 :,
J)) € Anng((0 :pr J)) because if r € Anng((0 :y; J)), then 7(0 par) J) = 0
and so rf((0 :py J)) = 0. Now as ker(f) = 0, we have (0 :jy J) = 0 and thus
r € Anng((0 :pr J)). Let r & Anng((0 :p J)) and K be a submodule of M
with 7f~Y(N) € K. Then r ¢ Anng((0 :y; J)) and rN C f(K). Thus as N is
a co-J-submodule of M, we have N C f(K). This implies that f~'(N) C K, as

requested. O
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