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AMALGAMATIONS OF POTENT, SEMIPOTENT, AND

SEMISUITABLE RINGS

KHALID ADARBEH (1) AND MOHAMMAD ADARBEH (2)

Abstract. We investigate the transfer of the notion of semisuitable, potent, and

semipotent rings in different settings of the amalgamated algebras along an ideal.

We put the transfer results in use to provide examples subject to the involved ring

theoretic notions as well as to recover some previous results related to the transfer

of these notions in other constructions such as trivial ring extension.

1. Introduction

All rings considered in this paper are commutative with unity. Let A and B be

rings, J an ideal of B, and f : A → B a ring homomorphism. In this setting, we can

consider the following subring of A×B:

A ⊲⊳f J := {(a, f(a) + j) | a ∈ A, j ∈ J}

which is called the amalgamation of A with B along J with respect to f . This

construction was introduced and studied by M. DAnna, C. A. Finocchiaro, and M.

Fontana in [7, 9]. It is a generalization of the amalgamated duplication of a ring along

an ideal (introduced and studied by M. DAnna and M. Fontana in [10, 11, 12]). Let

A be a ring, I an ideal of A, and idA : A → A the identity ring homomorphism. The

amalgamated duplication of A along I, denoted by A ⊲⊳ I is the subring of A × A

given by

A ⊲⊳ I = A ⊲⊳idA I := {(a, a+ i) | a ∈ A, i ∈ I}.
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For more information about the amalgamation, we refer the reader to [4, 6, 7, 8, 9,

11, 12, 13]. The amalgamated algebras along an ideal also generalize the trivial ring

extension (idealization) [7], which was introduced by Nagata in 1955. He defined it

in the following way: Let A be a commutative ring and M an A-module. The trivial

ring extension of R by M is the commutative ring A⋉M = A×M with component-

wise addition and multiplication given by (a,m)(a′, m′) = (aa′, am′+a′m). For more

about the trivial ring extension, we refer the reader to [2, 3, 5, 16, 14].

Let A be a ring and I be an ideal of A. We say that idempotents lift modulo I

if for each x in A such that x − x2 ∈ I, there is an idempotent e in A such that

e − x ∈ I [15]. A is called a suitable ring if idempotents lift modulo every left ideal

of A [17]. Examples of suitable rings include clean rings (a ring is called clean if all

of its elements are clean. Where the clean element is the element that can be written

as a sum of a unit and an idempotent) [17]. Let J(A) denote the Jacobson radical of

A. A is called semisuitable ring if idempotents lift modulo J(A) [1].

A is called semipotent ring if any ideal I that is not contained in J(A) contains a

non zero idempotent, equivalently; A is semipotent if and only if for any a ∈ A\J(A),

there is a non zero x ∈ A such that xax = x. A semipotent ring A is called potent if

idempotents lift modulo J(A) [15]. It is easy to see from the definitions that potent

rings are semipotent and suitable rings are potent. Also, A is potent if and only if A

is semipotent and semisuitable. Hence we have the following diagram of implications:

Clean rings ⇒ Suitable rings ⇒ Potent rings ⇒ Semipotent rings

⇓

Semisuitable rings

The first implication is reversible in the commutative case [17, Proposition 1.8], while

all the others are irreversible in general even in the commutative case. For counterex-

amples, we refer the reader to [17, Page 271], [18, Example 25], and [1, Example 2.2].

Once more, the ring of integers Z is semisuitable which is not semipotent [1, Ex-

ample 2.2] and the existence of a semipotent ring which is not potent implies the

existence of a semipotent ring which is not semisuitable. In summary, the follow-

ing diagram of implications displays the relation among the distinct classes of clean,

potent, semipotent and semisuitable rings in the commutative case:
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Semisuitable rings ⇔⇔⇔ Clean rings ⇒ Potent rings ⇒ Semipotent rings

In 2014, M. Chhiti, N. Mahdou, and M. Tamekkante gave a characterization for

the amalgamation of A with B along J with respect to f (A ⊲⊳f J) to be clean [6].

In 2019, K. Adarbeh investigated the transfer of the (Semi)suitable rings along with

related concepts, such as potent and semipotent rings in the general context of the

trivial ring extension [1].

Throughout, J(A) denotes the Jacobson radical of A; Nil(A) denotes the nilradical

of A; Id(A) denotes the set of all idempotents of A; Max(A) denotes the set of all

maximal ideals of A; A ⊲⊳f J denotes the amalgamation of A with B along J with

respect to f as it is defined above.

In Section 2 of this paper, we establish necessary and sufficient conditions for

A ⊲⊳f J to be semisuitable or (semi)potent ring in the commutative case under the

condition, J ⊆ J(B). Namely, If J is an ideal of B such that J ⊆ J(B), then A ⊲⊳f J

is semisuitable if and only if A is semisuitable. If in addition, f(A)J = 0, then

A ⊲⊳f J is (semi)potent if and only if A is (semi)potent. In section 3, more transfer

results are obtained by assuming conditions on Id(B). For example, we prove that

under the assumptions, f is surjective and J ⊆ Id(B), A ⊲⊳f J is semisuitable if and

only if A is semisuitable. In both sections, we illustrate the results by examples and

counterexamples subject to the involved ring theoretic concepts.

2. Transfer Results Subject to conditions on J(B)

This section is devoted to study the transfer of Potent, Semipotent, and Semisuit-

able rings in amalgamations along ideals contained in the Jacobson radical. We start

this section by recalling the following facts:

Lemma 2.1. Let f : A → B be a ring homomorphism and J an ideal of B.

(1) If I is an ideal of A, then I ⊲⊳f J := {(i, f(i) + j) | i ∈ I, j ∈ J} is an ideal

of A ⊲⊳f J and A⊲⊳fJ
I⊲⊳fJ

∼= A
I
[7].

(2) Max(A ⊲⊳f J) = {m ⊲⊳f J : m ∈ Max(A)}∪{Q
′

: Q ∈ Max(B) and J * Q},

where Q
′

= {(a, f(a) + j) : a ∈ A, j ∈ J, f(a) + j ∈ Q} [8, Corollary 2.5 and

Corollary 2.7].
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The following lemma describes the Jacobson radical of A ⊲⊳f J , where J ⊆ J(B).

This lemma will be used frequently to prove the main results of this article.

Lemma 2.2. Let f : A → B be a ring homomorphism and J an ideal of B. If

J ⊆ J(B), then J(A ⊲⊳f J) = J(A) ⊲⊳f J .

Proof. Since J ⊆ J(B), then J ⊆ Q for each Q ∈ Max(B). So the set {Q
′

: Q ∈

Max(B) and J * Q} is empty. Hence, by Lemma 2.1, Max(A ⊲⊳f J) = {m ⊲⊳f

J : m ∈ Max(A)} where m ⊲⊳f J = {(a, f(a) + j) | a ∈ m, j ∈ J}. So that,

(a, f(a) + j) ∈ J(A ⊲⊳f J) if and only if a ∈ m for each m ∈ Max(A), and j ∈ J .

Consequently, (a, f(a)+j) ∈ J(A ⊲⊳f J) if and only if a ∈ J(A) and j ∈ J . Therefore,

J(A ⊲⊳f J) = J(A) ⊲⊳f J .

�

The following theorem provides a necessary and sufficient condition for A ⊲⊳f J to

be semisuitable, when J ⊆ J(B).

Theorem 2.1. Let f : A → B be a ring homomorphism and let J be an ideal of B

such that J ⊆ J(B). Then A ⊲⊳f J is semisuitable if and only if A is semisuitable.

Proof. Since J ⊆ J(B), then by Lemma 2.2, J(A ⊲⊳f J) = J(A) ⊲⊳f J . Let

(a, f(a)+ j) ∈ A ⊲⊳f J be such that (a, f(a)+ j)− (a, f(a)+ j)2 ∈ J(A ⊲⊳f J).

Then (a − a2, (f(a) + j) − (f(a) + j)2) ∈ J(A) ⊲⊳f J . So a − a2 ∈ J(A).

Since A is semisuitable, there is an idempotent e in A such that e−a ∈ J(A).

Then (e, f(e)) is an idempotent in A ⊲⊳f J and (e, f(e)) − (a, f(a) + j) =

(e − a, f(e − a) − j) ∈ J(A) ⊲⊳f J = J(A ⊲⊳f J). Thus, idempotents lift

modulo J(A ⊲⊳f J). Hence, A ⊲⊳f J is semisuitable.

Conversely, suppose that A ⊲⊳f J is semisuitable. Let a ∈ A be such that

a−a2 ∈ J(A). Then (a, f(a))−(a, f(a))2 = (a−a2, f(a−a2)) ∈ J(A) ⊲⊳f J =

J(A ⊲⊳f J). But A ⊲⊳f J is semisuitable, so there is an idempotent (e, f(e)+j)

in A ⊲⊳f J such that (e, f(e) + j)− (a, f(a)) = (e− a, f(e− a) + j) ∈ J(A ⊲⊳f

J) = J(A) ⊲⊳f J . Then clearly, e is an idempotent in A and e − a ∈ J(A).

Therefore, A is semisuitable.

�
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For the special case of B is local, we obtain the following corollary of Theorem 2.1.

Corollary 2.1. Let f : A → B be a ring homomorphism, (B,m) be a local ring,

and let J be a proper ideal of B. Then A ⊲⊳f J is semisuitable if and only if A is

semisuitable.

Proof. This follows from Theorem 2.1 and the fact that J ⊆ m = J(B).

�

As an application of Theorem 2.1, we recover [1, Theorem 3.1, part (2)]; which

describes the transfer of semisuitable rings in the trivial ring extension.

Corollary 2.2. [1, Theorem 3.1, parts (1) and (2)] Let A be a ring and M an A-

module. Then A⋉M is semisuitable if and only if A is semisuitable.

Proof. Notice that A⋉M = A ⊲⊳ιA (0⋉M), where ιA : A → A⋉M is the canonical

embedding a 7→ (a, 0). Since J = 0 ⋉ M ⊆ J(A ⋉ M), this corollary follows from

Theorem 2.1. �

Next, we are interested in constructing an example of a semisuitable ring which is

not semipotent. For this purpose we prove the following proposition, which will be

used later to prove Proposition 2.2. On another hand, the following proposition in-

sures that the homomorphic image through an ideal contained in the Jacobson radical

of a (semi)potent ring is (semi)potent, and hence it is a recovery of [1, Proposition

2.4, Corollary 2.5].

Proposition 2.1. Let A be a commutative ring and I ⊆ J(A) be an ideal of A.

(1) If A is semipotent, then A
I
is a semipotent ring.

(2) If A is potent, then A
I
is a potent ring.

Proof. (1) Assume that A is semipotent and I is a ideal of A such that I ⊆ J(A).

Let K
I
be an ideal of A

I
that is not contained in J(A

I
). But J(A

I
) = J(A)

I
. So

K * J(A). Since A is semipotent, K contains a nonzero idempotent e. Then

e + I ∈ K
I

is an idempotent (since (e + I)2 = e2 + I = e + I). It remains

to show that e + I 6= 0 + I. Suppose not, that is, e + I = 0 + I. Then

e ∈ I ⊆ J(A). So 1 − e = 1 − ee is a unit in A but 1 − e is an idempotent
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(since (1 − e)2 = 1 − 2e+ e2 = 1− 2e+ e = 1 − e). It follows that 1 − e = 1

which implies e = 0, a contradiction. Hence, e + I 6= 0 + I. Therefore, A
I
is

semipotent.

(2) Since A is potent, then A is semipotent and semisuitable. By Part (1), A is

semipotent gives that A
I
is semipotent, for every ideal I subset of J(A). And

by [1, Theorem 2.3], A is semisuitable gives that A
I
is semisuitable, for every

ideal I subset of J(A). Therefore, A
I
is a potent ring, for every ideal I subset

of J(A).

�

The following proposition is a direct consequence of Lemma 2.2 and Proposition

2.1.

Proposition 2.2. Let f : A → B be a ring homomorphism and let J be an ideal of

B such that J ⊆ J(B). If A ⊲⊳f J is (semi)potent, then so is A.

Proof. Since J ⊆ J(B), then by Lemma 2.2, J(A ⊲⊳f J) = J(A) ⊲⊳f J . So 0 ⊲⊳f J ⊆

J(A ⊲⊳f J). Hence, by Theorem 2.1, A ∼= A⊲⊳fJ
0⊲⊳fJ

is (semi)potent. �

Theorem 2.1 and Proposition 2.2 can be used to provide new examples of semisuit-

able rings which are not semipotent rings (consequently, not clean), as shown below.

Example 2.1. Let A = Z and B = Z16. Then A is a semisuitable ring [1] and B is

a local ring with maximal ideal 〈2〉. Consider the ring homomorphism f : Z → Z16,

x 7→ x. Then by Corollary 2.1, Z ⊲⊳f 〈4〉 is semisuitable. On the other hand, Z is

not semipotent [1]. Since 〈4〉 ⊆ J(Z16) = 〈2〉, then by Proposition 2.2, Z ⊲⊳f 〈4〉 is

not semipotent.

Next, our goal is to introduce a new counterexample of a potent ring that is not

clean. We first prove the following theorem which provides a necessary and sufficient

condition for that A ⊲⊳f J to be (semi)potent, under the conditions J ⊆ J(B) and

f(A)J = 0.

Theorem 2.2. Let f : A → B be a ring homomorphism and let J be an ideal of B

such that J ⊆ J(B). If f(A)J = 0, then:
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(1) A ⊲⊳f J is semipotent if and only if A is semipotent.

(2) A ⊲⊳f J is potent if and only if A is potent.

Proof. (1) Assume that A is semipotent. Let (a, f(a)+j) ∈ A ⊲⊳f J−J(A ⊲⊳f J).

But J ⊆ J(B) implies that J(A ⊲⊳f J) = J(A) ⊲⊳f J by Lemma 2.2. So a ∈

A−J(A). Since A is semipotent, there exists x ∈ A−{0} such that ax2 = x.

Consider X = (x, f(x)). Then 0 6= X ∈ A ⊲⊳f J and moreover, (a, f(a) +

j)X2 = (a, f(a)+j)(x2, f(x2)) = (ax2, f(ax2)+f(x2)j) = (x, f(x)) = X (note

that since f(A)J = 0, then f(x2)j = 0). Therefore, A ⊲⊳f J is semipotent.

The other direction follows from Proposition 2.2.

(2) Follows immediately from Theorem 2.1, Part(1), and the fact that a ring is

potent if and only if it is semipotent and semisuitable.

�

Recall that a division ring is the ring in which every nonzero element a has a

multiplicative inverse (Fields in the commutative case). Let D be a division ring and

S be a subring of D containing 1. Then

R(D,S) = {(x1, x2, · · · , xn, s, s, s, · · · ) | n ≥ 1, xi ∈ D, s ∈ S}

is a ring with component-wise operations [17]. In the following example, we use

part(2) of Theorem 2.2 to provide a new counterexample of a potent ring that is not

clean.

Example 2.2. Let A = R(Q,Z) and B = Z10 ⋉ Z10. Then A is a commutative

potent ring which is not clean [17]. Consider the ring homomorphisms g : A → Z,

(x1, x2, · · · , xn, s, s, s, · · · ) 7→ s and h : Z4 → Z10⋉Z10, x 7→ (5x, 0). Let f be the ring

homomorphism A → Z → Z4 → B, given by (x1, x2, · · · , xn, s, s, s, · · · ) 7→ (5s, 0).

Let J = 0⋉ 〈2〉. Then J is an ideal of B and J ⊂ 0⋉Z10 = J(B). It is easy to check

that f(A)J = 0. Thus, by part (2) of Theorem 2.2, A ⊲⊳f J is potent. But since A is

not clean and J ⊂ J(B), then by [6, Corollary 2.6], A ⊲⊳f J is not clean.

3. Transfer results subject to conditions on Id(B)

More transfer results can be built by interacting J with Id(B). We begin with the

following proposition.
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Proposition 3.1. Let f : A → B be a ring homomorphism and let J be an ideal of

B such that J ∩ Id(B) = 0.

(1) If A ⊲⊳f J is semipotent, then A is semipotent.

(2) If A ⊲⊳f J is potent, then A is potent.

Proof. (1) Assume that A ⊲⊳f J is semipotent. We claim that J ⊆ J(B). On the

contrary, suppose that J * J(B). Then there is j ∈ J such that j /∈ J(B).

Then (0, j) /∈ J(A ⊲⊳f J). So there exists (x, f(x)+k) ∈ A ⊲⊳f J−{(0, 0)} such

that (0, j)(x, f(x)+ k)2 = (x, f(x)+ k). This implies that x = 0 and jk2 = k.

Since (0, k) = (x, f(x)+k) 6= (0, 0), then k 6= 0. Now, jk = j(jk2) = (jk)2. So

jk ∈ J∩Id(B) = 0. Hence, jk = 0 which implies k = jk2 = 0, a contradiction.

Thus, J ⊆ J(B). Therefore, by Proposition 2.2, A is semipotent

(2) Assume that A ⊲⊳f J is potent. Then it is semipotent and semisuitable. By

part (1), A is semipotent. Also, by the proof of part (1), J ⊆ J(B). But

A ⊲⊳f J is semisuitable, so by Proposition 2.1, A is semisuitable. Therefore,

A is potent.

�

The following proposition proves that A ⊲⊳f J inherits the semipotency from A

and B, under the conditions J ⊆ Id(B) and Ann(J) = 0.

Proposition 3.2. Let f : A → B be a ring homomorphism and let J be an ideal of

B such that J ⊆ Id(B) and Ann(J) = 0. If A and B are semipotent rings, then so

is A ⊲⊳f J .

Proof. First, note that since J ⊆ Id(B), then j2 = j and 2j = 0 for all j ∈ J . Now,

let (a, f(a)+ j) ∈ A ⊲⊳f J − J(A ⊲⊳f J). Then there is a maximal ideal M of A ⊲⊳f J

such that (a, f(a) + j) /∈ M . By Lemma 2.1, Max(A ⊲⊳f J) = {m ⊲⊳f J : m ∈

Max(A)} ∪ {Q
′

: Q ∈ Max(B) and J * Q}. If M = m ⊲⊳f J , where m ∈ Max(A),

then a /∈ m and so a /∈ J(A). Since A is semipotent, then there is x ∈ A− {0} such

that ax2 = x. Then (x, f(x)+ f(x)j) ∈ A ⊲⊳f J −{(0, 0)}. Since (1+ j)2 = 1+ j and

j(1 + j) = 0, then (a, f(a) + j)(x, f(x) + f(x)j)2 = (ax2, (f(a) + j)f(x2)(1 + j)2) =

(x, (f(a)+j)f(x2)(1+j)) = (x, f(ax2)(1+j)+f(x2)j(1+j)) = (x, f(x)(1+j)+0) =

(x, f(x) + f(x)j).
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If M = Q
′

, where Q ∈ Max(B) and J * Q, then (a, f(a) + j) /∈ Q
′

which implies

f(a) + j /∈ Q, so f(a) + j /∈ J(B). Since B is semipotent, then there is y ∈ B − {0}

such that (f(a) + j)y2 = y. Since Ann(J) = 0 and y 6= 0, then there exists k ∈ J

such that yk 6= 0. So (0, yk) ∈ A ⊲⊳f J − {(0, 0)} and (a, f(a) + j)(0, yk)2 =

(a, f(a)+j)(0, (yk)2) = (a, f(a)+j)(0, y2k) = (0, (f(a)+j)y2k) = (0, yk). Therefore,

A ⊲⊳f J is semipotent. �

The following proposition proves that A ⊲⊳f J inherits the potency from A, under

the condition J ⊆ Id(B).

Proposition 3.3. Let f : A → B be a surjective ring homomorphism and let J be

an ideal of B such that J ⊆ Id(B). Then A ⊲⊳f J is semisuitable if and only if A is

semisuitable.

Proof. Let (a, f(a)+ j) ∈ A ⊲⊳f J be such that (a, f(a)+ j)− (a, f(a)+ j)2 ∈ J(A ⊲⊳f

J). Then (a − a2, (f(a) + j) − (f(a) + j)2) = (a − a2, f(a) − f(a2)) ∈ J(A ⊲⊳f J)

(since J ⊆ Id(B) implies (f(a) + j)2 = f(a2) + j). For any m ∈ Max(A), m ⊲⊳f J ∈

Max(A ⊲⊳f J), so (a− a2, f(a)− f(a2)) ∈ m ⊲⊳f J and hence a− a2 ∈ m. It follows

that a− a2 ∈ J(A). Since A is semisuitable, there is an idempotent e in A such that

e− a ∈ J(A). Then (e− a, f(e− a)) ∈ m ⊲⊳f J , for each m ∈ Max(A). Also, since f

is surjective and e− a ∈ J(A), then f(e− a) ∈ J(B). Hence, (e− a, f(e− a)) ∈ Q
′

,

for each Q ∈ Max(B) with J * Q. It follows that (e − a, f(e − a)) ∈ J(A ⊲⊳f J).

Since e ∈ Id(A) and J ⊆ Id(B), it is easy to check that (e, f(e)+ j) is an idempotent

in A ⊲⊳f J . Moreover, (e, f(e) + j)− (a, f(a) + j) = (e− a, f(e − a)) ∈ J(A ⊲⊳f J).

Thus, idempotents lift modulo J(A ⊲⊳f J). Hence, A ⊲⊳f J is semisuitable.

Conversely, suppose that A ⊲⊳f J is semisuitable. Let a ∈ A be such that a − a2 ∈

J(A). Again, since f is surjective, then as above, (a, f(a))−(a, f(a))2 = (a−a2, f(a−

a2)) ∈ J(A ⊲⊳f J). But A ⊲⊳f J is semisuitable, so there is an idempotent (e, f(e)+j)

in A ⊲⊳f J such that (e, f(e) + j) − (a, f(a)) = (e − a, f(e − a) + j) ∈ J(A ⊲⊳f J).

Then clearly, e is an idempotent in A and moreover, e − a ∈ J(A). Therefore, A is

semisuitable. �

Propositions 3.2 and 3.3 can be used to prove that A ⊲⊳f J inherits the potent

condition from A and B under the same conditions.
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Corollary 3.1. Let f : A → B be a surjective ring homomorphism and let J be an

ideal of B such that J ⊆ Id(B) and Ann(J) = 0. If A and B are potent rings, then

so is A ⊲⊳f J .

Proof. This follows from Propositions 3.2, 3.3, and the fact that a ring is potent if

and only if it is semipotent and semisuitable. �

Another application of Proposition 3.3 is the following corollary, which deals with

the duplication as a special case of the amalgamation.

Corollary 3.2. Let A be a ring and let I be an ideal of A such that I ⊆ Id(A). Then

A ⊲⊳ I is semisuitable if and only if A is semisuitable.

Proof. Notice that A ⊲⊳ I = A ⊲⊳idA I, where idA : A → A the identity ring homo-

morphism. Since idA is surjective and I ⊆ Id(A), then by Proposition 3.3, A ⊲⊳ I is

semisuitable if and only if A is semisuitable. �

The following is an illustrative example for Proposition 3.3.

Example 3.1. Let A = Z, B = Z6, and J = 〈3〉 = {0, 3}. Clearly, J ⊆ Id(B).

Now, consider the surjective ring homomorphism f : A → B, x 7→ x. Since A is

semisuitable [1], then by Proposition 3.3, A ⊲⊳f J = Z ⊲⊳f 〈3〉 is a semisuitable ring.

The following proposition proves that A ⊲⊳ I inherits the semipotency from A,

under the condition I ⊆ Id(A).

Proposition 3.4. Let A be a ring and let I be an ideal of A.

(1) If A ⊲⊳ I is semipotent, then so is A.

(2) If A is semipotent and I ⊆ Id(A), then A ⊲⊳ I is semipotent.

Proof. (1) Let a ∈ A − J(A). Then (a, a) ∈ A ⊲⊳ I − J(A ⊲⊳ I). But A ⊲⊳ I is

semipotent, so there is (0, 0) 6= (x, x+ i) ∈ A ⊲⊳ I such that (a, a)(x, x+ i)2 =

(x, x+ i). So we have ax2 = x and a(x+ i)2 = (x+ i). If x 6= 0, then we are

done. If x = 0, then 0 6= i ∈ A and ai2 = i. Therefore, A is semipotent.

(2) First, note that since I ⊆ Id(A), then i2 = i and 2i = 0 for all i ∈ I. Now, let

(a, a+i) ∈ A ⊲⊳ I−J(A ⊲⊳ I). Then there is a maximal ideal M of A ⊲⊳ I such
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that (a, a + i) /∈ M . If M = m ⊲⊳ I, where m ∈ Max(A), then a /∈ m and so

a /∈ J(A). Since A is semipotent, then there is x ∈ A−{0} such that ax2 = x.

Since (1 + i)2 = 1+ i and i(1 + i) = 0, then (a, a+ i)(x, x+ xi)2 = (ax2, (a+

i)x2(1+ i)2) = (x, (a+ i)x2(1 + i)) = (x, ax2(1+ i) + x2i(1 + i)) = (x, x+ xi).

If M = Q
′

, where Q ∈ Max(A) and I * Q, then (a, a + i) /∈ Q
′

which

implies a+ i /∈ Q, so a+ i /∈ J(A). Again since A is semipotent, then there is

y ∈ A−{0} such that (a+ i)y2 = y. This implies ay2 = y− iy2 = y− (iy)2 =

y − yi = (1− i)y, but then ay2i = 0 and so ayi = 0. If yi = 0, then ay2 = y.

So (y, y) 6= 0 and (a, a+ i)(y, y)2 = (a, a+ i)(y2, y2) = (ay2, (a+ i)y2) = (y, y).

If yi 6= 0, then (0, yi) 6= 0 and (a, a + i)(0, yi)2 = (a, a + i)(0, (yi)2) = (a, a +

i)(0, yi) = (0, (a + i)yi) = (0, ayi + yi2) = (0, yi). Therefore, A ⊲⊳ I is

semipotent.

�

The following corollary proves that A ⊲⊳ I inherits the potency from A, under the

condition I ⊆ Id(A).

Corollary 3.3. Let A be a ring and let I be an ideal of A such that I ⊆ Id(A). Then

A ⊲⊳ I is potent if and only if A is potent.

Proof. This follows from Corollary 3.2 and Proposition 3.4. �

Next, we use Corollary 3.3; which is a consequence of Proposition 3.4; to construct

the following example of potent ring.

Example 3.2. Since Z6 is potent (since it’s clean) and 〈3〉 ⊆ Id(Z6), then by Corol-

lary 3.3, Z6 ⊲⊳ 〈3〉 is a potent ring.
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