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1 Introduction

Let k be an algebraic number field and Ck,5 its 5-class group, that is the 5-Sylow subgroup of its class group Ck. Let k
(1)
5

be the Hilbert 5-class field of k, that is the unramified abelian maximal extension of k for finite and infinite primes. Put

k
(0)
5 = k and by k

(i+1)
5 we denote the Hilbert 5-class field of k

(i)
5 for any natural i ≥ 0. Then the sequence of fields

k = k
(0)
5 ⊂ k

(1)
5 ⊂ k

(2)
5 ⊂ ....⊂ k

(i)
5 ⊂ .....

is called the 5-class field tower of k. If for all i ≥ 1, k
(i)
5 6= k

(i+1)
5 , the tower is said to be infinite, otherwise the tower is said

to be finite, and the minimal natural i such that k
(i)
5 = k

(i+1)
5 is called the length of the tower.

The task to determine whether or not the 5-class field tower of a number field k is finite, is until nowday a classical and
difficult open problem of class field theory. Although, we have that if the rank of C

k
(1)
5

,5
≤ 2, then by means of group

theory, the length of the tower is at most 2 [4].
Our contribution in this paper is to determine the length of the 5-class field tower and to investigate the capitulation
problem for some families of pure metacyclic fields, which are the normal closure of a pure quintic fields. The novelty in
this procedure is the combination of some results of 5-group theory and triviality of 5-class numbers of some fields.
Let Γ =Q( 5

√
n) be a pure quintic field, where n is a 5th power-free natural number and k0 =Q(ζ5) be the 5th cyclotomic

field, then k =Q( 5
√

n,ζ5) is the normal closure of Γ , and a pure metacyclic field of absolute degree 20. By C
(σ)
k,5 we denote

the subgroup of ambiguous ideal classes under the action of Gal(k/k0) = 〈σ〉.
The aim of this paper is to investigate the 5-class field tower of k and the capitulation of the 5-ideal classes of k in its

six cyclic quintic unramified extensions within the Hilbert 5-class field k
(1)
5 of k, whenever Ck,5 is of type (5,5) and rank

C
(σ)
k,5 = 1. Our main theorem is the following.

Theorem 1.Let k0 be the 5th cyclotomic field and k be the normal closure of a pure quintic field. Suppose that the 5-class

group Ck,5 of k is of type (5,5) and the rank of ambiguous ideal classes C
(σ)
k,5 under the action of Gal(k/k0) = 〈σ〉 is 1,

then the length of the 5-class field tower of k is 2. Furthermore there is a total capitulation of Ck,5 in the all unramified

quintic cyclic extensions of k.
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The computational number theory system PARI/GP [17] allowed us to underpin this results by numerical examples.

2 Some Results of Group Theory

Let G be p-groupe and γ2(G) = [G,G] be its commutator group. G is called metabelian if γ2(G) is abelian. The Frattini
subgroup φ(G) of G is the intersection of all maximal subgroups of G [[3], page 25, Definition 1]. The subgroup Gp of
G, generated by the pth powers is contained in γ2(G), which as a result, coincides with the Frattini subgroup φ(G) =
Gpγ2(G) = γ2(G). By the basis theorem of Burnside [[3], Theorem 1.12], every minimal system of generators of G

contains exactly d elements with pd is the order of G/φ(G). In the case of G/γ2(G) is of type (p, p), the group G=< x,y>
can be generated by two elements x and y. If we declare the lower central series of G by

{

γ1(G) = G

γ j(G) = [γ j−1(G),G] for j ≥ 2,

By [[5], Corollary 2] we have Kaloujnine’s commutator relation [γ j(G),γl(G)] ⊆ γ j+l(G), for j, l ≥ 1 , and for an index
of nilpotence c ≥ 2 the series

G = γ1(G)⊃ γ2(G)⊃ .....⊃ γc(G)⊃ γc+1(G) = 1

becomes stationary.

The coclass cc(G) of a p-group G of order pn and nilpotency class c is defined as cc(G) = n− c. If cc(G) = 1, then G is
called of maximal class.
The two-step centralizer

χ2(G) = {g ∈ G | [g,u] ∈ γ4(G) for all u ∈ γ2(G)}
of the two-step factor group γ2(G)/γ4(G), that is the largest subgroup of G such that [χ2(G),γ2(G)] ⊂ γ4(G). It is
characteristic and contains the commutator subgroup γ2(G). If G is of maximal class and order pn, according to [[9],
Proposition 3.1.4] and [[5], Lemma 2.5] we have that χ2(G) is maximal normal subgroup of G for n ≥ 4 Moreover
χ2(G) coincides with G if and only if n = 3, because if n = 3, then γ2(G) is central and γ4(G) is trivial, so χ2(G) = G. If
G is not of maximal class then the "only if" clause fails, as clearly any group of class at most two will have γ2(G) central
and γ4(G) trivial, so χ2(G) = G.
Let k = k(G), the isomorphism invariant of G, be defined by [χ2(G),γ2(G)] = γn−k(G), where k = 0 for n = 3 and
0 ≤ k ≤ n− 4 if n ≥ 4, also for n ≥ p+ 1 we have k = min{n− 4, p− 2} [[13], p.331].
k gives a measure for the deviation from the maximal degree of commutativity [χ2(G),γ2(G)] = 1 and is called defect of

commutativity of G.
With a further invariant e, it will be expressed, which factor γ j(G)/γ j+1(G) is cyclic for the first time in the lower central
series [15], and we have e+ 1 = min{3 ≤ j ≤ c |1 ≤ |γ j(G)/γ j+1| ≤ p}.
In this definition of e, we exclude γ2(G)/γ3(G), since is always cyclic. The value e = 2 is characteristic for a group G of
maximal class. For e ≥ 3, that is for G of coclass cc(G) ≥ 2, we can also define
e = max{3 ≤ j ≤ c− 1 | |γ j(G)/γ j+1|> p} [[11], Definition 2.2].

2.1 On the 5-class group of maximal class

Let G be a metabelian 5-group of order 5n, and cc(G) = 1. Then G is of maximal class and the commutator factor G/γ2(G)
is of type (5,5) [13].

By G ∼ G
(n)
a (z,w), we denote the representative of an isomorphism class of metabelian 5-groups G, with a system of

invariants z,w and a, which satisfy the theorem:

Theorem 2.Let G be a metabelian 5-group of order 5n where n ≥ 5 and k = k(G) its invariant defined before. Suppose

that G is of maximal class, then G can be generated by two elements, G =< x,y >, be selected such that x ∈ G \ χ2(G)
and y ∈ χ2(G)\ γ2(G).
Let s2 = [y,x] ∈ γ2(G) and s j = [s j−1,x] ∈ γ j(G) for j ≥ 3. Then we have:

–s5
j s

10
j+1s10

j+2s5
j+3s j+4 = 1 for j ≥ 2.

–x5 = sw
n−1 with w ∈ {0,1,2,3,4}.

–y5s10
2 s10

3 s5
4s5 = sz

n−1 with z ∈ {0,1,2,3,4}.
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–[y,s2] =
k

∏
i=1

s
an−i

n−i with a = (an−1, ...an−k) exponents such that 0 ≤ an−i ≤ 4.

Proof.See [[14], Theorem 1] for p = 5.

Let G = 〈x,y〉 be a metabelian 5-group of maximal class and order 5n, such that G/γ2(G) is of type (5,5), then G admits
six maximal normal subgroups H1, ...,H6, which contain γ2(G) as a normal subgroup of index 5. We have that χ2(G) is
one of the groups Hi.
We keep that x ∈ G\χ2(G) and y ∈ χ2(G)\ γ2(G). The six normal maximal subgroups H1, ...,H6 are arranged as follows:
H1 = 〈y,γ2(G)〉= χ2(G), Hi = 〈xyi−2,γ2(G)〉 for 2 ≤ i ≤ 6.
The order of the abelianization of each Hi, is given by the following theorem.

Theorem 3.Let G, Hi and the invariant k be as before. Suppose that the commutator group γ2(G) is abelian. Then for

1 ≤ i ≤ 6, the order of the commutator factor groups of Hi is given by:

–If n = 2 we have : |Hi/γ2(Hi)|= 5 for 1 ≤ i ≤ 6.

–If n ≥ 3 we have : |Hi/γ2(Hi)|= 52 for 2 ≤ i ≤ 6, and |H1/γ2(H1)|= 5n−k−1

Proof.See [[11], Theorem 3.1] for p = 5.

Lemma 1.Let G be a 5-group of order |G|= 5n where n≥ 3, with abelian commutator group γ2(G). Assume that G/γ2(G)
is of type (5,5). Then G is of maximal class if and only if G admits a normal maximal subgroup with factor commutator

of order 52. Furthermore G admits at least five normal maximal subgroups with factor commutator of order 52.

Proof.Suppose that G is of maximal class, then according to Theorem 3, we conclude that G has five maximal normal
subgroups with the order of commutator factor is 52 if n ≥ 4, and has six when n = 3. Conversely, Assume that cc(G)≥ 2,
the invariant e defined before is greater than 3, and since each maximal normal subgroup H of G verify |H/γ2(H)| ≥ 5e

we get that |H/γ2(H)|> 52

2.2 On the transfer concept

Let G be a group and let H be a subgroup of G. The transfer from G to H, denoted VG→H , can be decomposed as follows:

H/γ2(H)G

G/γ2(G)

VG→H

Definition 1.Let G be a group, H be a normal subgroup of G, and let g ∈ G such that, f is the order of gH in G/H,

r = [G:H]
f

and g1, ....gr be a representative system of G/H modulo 〈gH〉, then the transfer from G to H is defined by:

VG→H : G/γ2(G)−→ H/γ2(H)

gγ2(G)−→ ∏r
i=1 g−1

i g f giγ2(H)

according to [[2], p50].
In the special case that G/H is a cyclic group of order 5 and G = 〈h,H〉, then the transfer VG→H is given as:

(1) If g ∈ H, we have VG→H(gγ2(G)) = g1+h+h2+h3+h4
γ2(H)

(2) VG→H(hγ2(G)) = h5γ2(H)

Let G be a 5-group of maximal class, with G/γ2(G) is of type (5,5), we keep that x ∈ G\ χ2(G) and y ∈ χ2(G)\ γ2(G).
The six maximal normal subgroups H1, ...,H6 are arranged as follows: H1 = 〈y,γ2(G)〉 = χ2(G), Hi = 〈xyi−2,γ2(G)〉 for
2 ≤ i ≤ 6. The image of the transfers from G to its six normal maximal subgroups Hi, 1 ≤ i ≤ 6, is given by the following
theorem:
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Theorem 4.Let G = 〈x,y〉 be a metabelian 5-group of maximal class of order 5n, where n ≥ 3, and Hi, 1 ≤ i ≤ 6 are its

six maximal normal subgroups. Assume that x and y are selected such that x ∈ G\ χ2(G) and y ∈ χ2(G)\ γ2(G), and the

relations of Theorem 2 with exponents w,z are satisfied. Suppose that the cosets gγ2(G) ∈ G/γ2(G) are represented in the

form g ≡ x jyl (modγ2(G)) with 0 ≤ j, l ≤ 4, then the images of the transfers VG→Hi
are given by:

VG→Hi
(x jylγ2(G)) = s

w j+zl
n−1 γ2(Hi) for 1 ≤ i ≤ 6.

Proof.See [[10], Theorem 2.2] for p = 5.

2.3 Invariants of metabelian 5-group of maximal class

In this paragraph, we investigate the purely group theoretic results to determine the invariants of metabelian 5-group of
maximal class developed in Theorem 2. We keep the same hypothesis of the group G, the generators x and y of the group
G = 〈x,y〉, and the six normal maximal subgroups Hi, 1 ≤ i ≤ 6, of G.
In the case that the transfers from two subgroups Hi and H j to γ2(G) are trivial, we can determine completely the 5-group
G.

Proposition 1.Let G be a metabelian 5-group of maximal class and order 5n, n ≥ 5. If the transfers Vχ2(G)→γ2(G) and

VH2→γ2(G) are trivial, then n ≤ 6 and γ2(G) is of exponent 5. Furthermore:

–If n = 6 then G ∼ G
(6)
a (1,0) where a = 0 or 1.

–If n = 5 then G ∼ G
(5)
a (0,0) where a = 0 or 1.

Proof.Let s,z,w and a defined as Theorem 2. Suppose that n≥ 7, so γ5(G) = 〈s5,γ6(G)〉, because G is of maximal class and
|γ5(G)/γ6(G)|= 5. By [[5], Lemma 3.3] we have y5s5 ∈ γ6(G), thus γ5(G) = 〈s4

5,γ6(G)〉= 〈y5s5s4
5,γ6(G)〉= 〈y5,γ6(G)〉,

and since Vχ2(G)→γ2(G)(y) = y5 = 1, because the transfers are trivial by hypothesis, we get that γ5(G) = γ6(G), which is

impossible, whence n ≤ 6 and According to [[5], Theorem 3.2], γ2(G) is of exponent 5.
If n = 6, we have Vχ2(G)→γ2(G) and VH2→γ2(G) are trivial, so by Theorem 2 we obtain x5 = sw

5 = 1 which imply w = 0,

because 0 ≤ w ≤ 4. Since γ2(G) is of exponent 5, we have s5
2 = 1 and by Theorem 2 the relation s5

4s10
5 s10

6 s5
7s8 = 1 gives

s5
4 = 1, also s5

3s10
4 s10

5 s5
6s7 = 1 gives s5

3 = 1. We replace in y5s10
2 s10

3 s5
4s5 = sz

5 and we get s5 = sz
5, whence z = 1. We have

[χ2(G),γ2(G)] ⊂ γ6−k(G) ⊂ γ4(G) then 6− k ≥ 4, and 0 ≤ k ≤ 2, thus [y,s2] = s
αβ
4 , a = (α,β ). If k = 0, then a = 0 and

G ∼ G
(6)
0 (1,0), if k = 1 then a = 1 and G ∼ G

(6)
1 (1,0) and if k = 2 then G ∼ G

(6)
a (1,0).

If n = 5, we have [χ2(G),γ2(G)] ⊂ γ5−k(G) ⊂ γ4(G) then 5− k ≥ 4, and 0 ≤ k ≤ 1. We have s5
4 = 1, s5

2 = s5
3 = 1 and

[y,s2] = sa
4. the relation y5s10

2 s10
3 s5

4s5 = sz
4 imply sz

4 = 1 so z = 0. As n = 6 we obtain w = 0. If k = 0 then G ∼ G
(5)
0 (0,0)

and if k = 1 G ∼ G
(5)
a (0,0).

Proposition 2.Let G be a metabelian 5-group of maximal class and order 5n, n ≥ 5. If the transfers VH2→γ2(G) and

VHi→γ2(G), 3 ≤ i ≤ 6, are trivial, then we have:

–If n = 5 or 6 then G ∼ G
(n)
a (0,0).

–If n ≥ 7 then G ∼ G
(n)
0 (0,0) .

Proof.Let s,z,w and a defined as Theorem 2. If n = 5 or 6, by [[5], Theorem 1.6] we have [χ2(G),γ2(G)] = 1 and

[χ2(G),γ2(G)] ⊂ γ4(G) elementary, and (γ2(χ2(G)))5 = 1 and ∏3
i=2[γi(G),γ5−i(G)] = 1, we conclude that

(xy)5 = x5y5s10
2 s10

3 s5
4s5 and we have y5s10

2 s10
3 s5

4s5 = sz
n−1 then (xy)5 = x5sz

n−1 and since VH2→γ2(G) and VH3→γ2(G) are

trivial then (xy)5 = x5 = sz
n−1 = sw

n−1 = 1, thus z = w = 0. Since [χ2(G),γ2(G)] = γn−k(G) ⊂ γ4(G) we have n− k ≥ 4,

whence 0 ≤ k ≤ 2 because n = 5 or 6 then G ∼ G
(n)
a (0,0).

If n ≥ 7, according to [[5], corollary 1 p.69] we have, γ j(G)5 = γ j+4(G) for j ≥ 2, and since y5s10
2 s10

3 s5
4s5 = sz

n−1 we
obtain:

y5 = sz
n−1s−1

5 s−5
4 s−10

3 s−10
2 ≡ sz

n−1s−1
5 modγ6(G)

because s5
2 ∈ γ6(G), s5

3 ∈ γ6(G) and s5
4 ∈ γ6(G), and since n ≥ 7 we have sn−1 ∈ γ6(G), therefore

V = VH3→γ2(G)(y) ≡ s−1
5 modγ6(G). Thus Im(V) ⊂ γ5(G), In fact Im(V) = γ5(G), and also we have y /∈ Ker(V ) and

∀ f ≥ 2 yksl
f /∈ Ker(V ). The kernel of V is formed by elements of γ2(G) of exponent 5, its exactly γn−4(G), and since G is

of maximal class then the rank of γ2(G) is 2 and γ2(G) admits exactly 25 elements of exponent 5, these elements form
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γn−4(G). We conclude that |χ2(G)/γ2(χ2(G))| = |γn−4(G)| × |γ5(G)| = 54 × 5n−5 = 5n−1 = |χ2(G)|, whence χ2(G) is
abelian because γ2(χ2(G)) = 1, consequently [y,s2] = 1, thus a = 0. As the cases n = 5 or 6 we obtain (xy)5 = x5sz

n−1,

therefore z = w = 0, hence G ∼ G
(n)
0 (0,0).

In the case when VH2→γ2(G) and VHi→γ2(G), 4 ≤ i ≤ 6 are trivial, according to [[5], Theorem 1.6] we have

(xyµ)5 = x5(y5s10
2 s10

3 s5
4s5)

µ = sw
n−1s

µz
n−1 with µ = 2,3,4, then we can admit the same reasoning to prove the result.

Proposition 3.Let G be a metabelian 5-group of maximal class of order 5n, n≥ 5. If the transfers VHi→γ2(G) and VH j→γ2(G),

where i, j ∈ {3,4,5,6} and i 6= j, are trivial, then we have: G ∼ G
(n)
0 (0,0).

Proof.Let s,z,w and a defined as Theorem 2. Assume that Hi = 〈xyµ1 ,γ2(G)〉 and H j = 〈xyµ2 ,γ2(G)〉 where µ1,µ2 ∈
{1,2,3,4} and µ1 6= µ2. According to [[5], Theorem 1.6] we have already proved that (xyµ1)5 = s

w+µ1z
n−1 and (xyµ2)5 =

s
w+µ2z
n−1 . Since VHi→γ2(G) and VH j→γ2(G) are trivial, we obtain s

w+µ1z
n−1 = s

w+µ2z
n−1 = 1 then w+µ1z ≡ w+µ2z ≡ 0(mod5) and

since 5 does not divide µ1 − µ2 we get z = 0 and at the same time w = 0. To prove a = 0 we admit the same reasoning as
Proposition 2.

3 Realisation of Metabelian 5-Group of Maximal Class

Let k be the normal closure of a pure quintic field Γ = Q( 5
√

n), where n is a 5th power-free natural number. Let
k0 = Q(ζ5) be the 5th cyclotomic field. Since k = Q(ζ5, 5

√
n) = k0( 5

√
n), we have that k is a cyclic Kummer extension of

degree 5 of k0. By k∗ = (k/k0)
∗ we denote the relative genus field of k/k0, that is the maximal unramified extension of k

and abelian on k0. Let Ck,5 be the 5-class group of k. By class field theory, k∗ is contained in the Hilbert 5-class field of k,

and [k∗ : k] = 5t , where t is the rank of the subgroup C
(σ)
k,5 of ambiguous classes under the action of Gal(k/k0) = 〈σ〉 [[7],

Lemma 2.3].
According to [[8], Proposition 5.8], we have the explicit form of k∗, depending on the decomposition of n in k0.
Let p and q be a prime numbers such that p ≡ −1(mod5) and q ≡ ±2(mod5). According to [[6], Theorem 1.1,

Conjecture 4.1], if Ck,5 is of type (5,5) and rank C
(σ)
k,5 = 1, we have three forms of the natural number n as follows:

–n = 5e p with e ∈ {1,2,3,4} and p 6≡ −1(mod25).
–n = peq ≡ ±1± 7(mod25) with e ∈ {1,2,3,4}, p 6≡ −1(mod25) and q 6≡ ±7(mod25).
–n = pe ≡ ±1± 7(mod25) with e ∈ {1,2,3,4} and p ≡ −1(mod25).

Under these hypothesis, the extension k∗/k0 has order 25 and admits six sub-extensions, where k is one of them,
determined explicitly as follows:

Proposition 4.We keep the same hypothesis on k, k∗, Ck,5 and C
(σ)
k,5 . Then we have:

–If n = p ≡ −1(mod25), then the six sub-extensions of (k/k0)
∗/k0 are: k, k0(

5

√

π
α1
1 π

α2
2 ), k0(

5

√

π
α1+1
1 π

α2+1
2 ),

k0(
5

√

π
α1+2
1 π

α2+2
2 ), k0(

5

√

π
α1+3
1 π

α2+3
2 ) and k0(

5

√

π
α1+4
1 π

α2+4
2 ).

–If n = peq with p 6≡ −1(mod25) and q 6≡ ±7(mod25), then the six sub-extensions of (k/k0)
∗/k0 are: k, k0(

5

√

πα1
1 q),

k0(
5

√

π
e+α1
1 πe

2q2), k0(
5

√

π
2e+α1
1 πe

2q3), k0(
5

√

π
3e+α1
1 πe

2q4) and k0(
5

√

π
4e+α1
1 πe

2).

–If n = 5e p with p 6≡ −1(mod25), then the six sub-extensions of (k/k0)
∗/k0 are: k, k0(

5

√

λ eπα1
1 πα2

2 ),

k0(
5

√

λ 2eπ
α1+1
1 π

α2+1
2 ), k0(

5

√

λ 3eπ
α1+2
1 π

α2+2
2 ), k0(

5

√

λ 4eπ
α1+3
1 π

α2+3
2 ), k0(

5

√

π
α1+4
1 π

α2+4
2 ).

Where α1,α2,e ∈ {1,2,3,4} with α1 6= α2, π1,π2 are primes of k0 above p such that p = π1π2 and λ = 1− ζ5 is the

unique prime of k0 above 5.

Proof..

–If n = p ≡−1(mod25), according to the proof of [[8], Theorem 5.15] we have k∗ = k( 5

√

π
α1
1 π

α2
2 ) with α1 6= α2, then

k∗ = k0( 5
√

π1π2,
5

√

π
α1
1 π

α2
2 ), because p = π1π2 in k0, hence the six sub-extensions given are proved.
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–If n = peq with p 6≡ −1(mod25) and q 6≡ ±7(mod25), according to [[8], Proposition 5.8] we have k∗ = k( 5

√

π
α1
1 q)

since p = π1π2 and q is inert in k0. Then k∗ = k0( 5
√

πe
1πe

2q, 5

√

π
α1
1 q), so we get the six sub-extensions by calculus.

–If n = 5e p with p 6≡ −1(mod25), by the proof of [[8], Theorem 5.15], we have k∗ = k( 5

√

λ eπ
α1
1 π

α2
2 ), α1 6= α2. Since

n = 5e p = (λ 4)eπ1π2 = λ e′π1π2 in k0, then (k/k0)
∗ = k0(

5
√

λ eπ1π2,
5

√

λ eπ
α1
1 π

α2
2 ), hence the six sub-extensions given

are proved.

By means of the explicit forms of the six sub-extensions of k∗/k0 given by Proposition 4, we can state the following
theorem:

Theorem 5.Let k = Q( 5
√

n,ζ5) be the normal closure of Q( 5
√

n). Let k0 be the the 5th cyclotomic field. Suppose that the

5-class group Ck,5 of k is of type (5,5) and rank C
(σ)
k,5 = 1, then Gal(k∗/k0) is of type (5,5), and two sub-extensions of

k∗/k0 admit a trivial 5-class number.

Proof.Since Ck,5 is of type (5,5) and rank C
(σ)
k,5 = 1, then by class field theory, we have [k∗ : k] = 5, whence Gal(k∗/k0) is

of type (5,5).

–If n = p ≡ −1(mod25) the six sub-extensions of k∗/k0 are k, k0(
5

√

πα1
1 πα2

2 ), k0(
5

√

πα1+1
1 πα2+1

2 ), k0(
5

√

πα1+2
1 πα2+2

2 ),

k0(
5

√

π
α1+3
1 π

α2+3
2 ) and k0(

5

√

π
α1+4
1 π

α2+4
2 ), with e,α1,α2 ∈ {1,2,3,4}, and α1 6= α2. For each values of α1 and α2,

we can see that the extensions L1 = k0( 5
√

π1) and L2 = k0( 5
√

π2) are sub-extensions of k∗/k0.
In [[8], section 5.1], we have a detailed investigation of the rank of ambigous classes of k0( 5

√
x)/k0 denoted t. Precisely,

we have t = d + q∗− 3, where d is the number of prime divisors of x in k0, and q∗ is an index of units defined as [[8],
section 5.1].
For the extensions Li/k0, (i = 1,2) we have d = 1, and by [[8], Theorem 5.15] we have q∗ = 2, hence t = 0.

–If n = peq with p 6≡ −1(mod25) and q 6≡ ±7(mod25) then the six sub-extensions of k∗/k0 are: k, k0(
5

√

π
α1
1 q),

k0(
5

√

π
e+α1
1 πe

2q2), k0(
5

√

π
2e+α1
1 πe

2q3), k0(
5

√

π
3e+α1
1 πe

2q4), k0(
5

√

π
4e+α1
1 πe

2). For the four extensions k ,

k0(
5

√

π
e+α1
1 πe

2q2), k0(
5

√

π
2e+α1
1 πe

2q3) and k0(
5

√

π
3e+α1
1 πe

2q4), we have d = 3 and by [[8], Theorem 5.14] we have

q∗ = 1, so t = 1. For the extensions k0(
5

√

π4e+α1
1 πe

2) and k0(
5

√

πα1
1 q) we have d = 2 and also q∗ = 1, so t = 0.

–If n = 5e p with p 6≡ −1(mod25), then the six sub-extensions of k∗/k0 are: k, k0(
5

√

λ eπ
α1
1 π

α2
2 ), k0(

5

√

λ 2eπ
α1+1
1 π

α2+1
2 ),

k0(
5

√

λ 3eπ
α1+2
1 π

α2+2
2 ), k0(

5

√

λ 4eπ
α1+3
1 π

α2+3
2 ), k0(

5

√

π
α1+4
1 π

α2+4
2 ).

Since α1 6= α2, we get that k0(
5

√

παi
i ) and k0(

5

√

λ eπ
α j

j ) with i, j ∈ {1,2,3,4} and i 6= j, are among the six. We see that

these two extensions admit the value t = 0.

In short, we just proved that if Ck,5 is of type (5,5) and rank C
(σ)
k,5 = 1, then two sub-extensions, denoted L1 and L2, of

k∗/k0 admit 0 as value of rank of the subgroup of ambiguous classes.
By h5(Li), (i = 1,2), we denote the class number of Li, then we have h5(L1) = h5(L2) = 1. Otherwise h5(Li) 6= 1, then
there exists a cyclic unramified extension of Li, denoted F . We have that F is abelian over k0, as [F : k0] = 52, then F

is contained in (Li/k0)
∗ the relative genus field of Li/k0. Since [(Li/k0)

∗ : Li] = 5t = 1, we get that (Li/k0)
∗ = Li, which

contradicts the existence of F . Hence the 5-class number of Li, (i = 1,2), is trivial.

In the sequel, we denote by L1 and L2 the two sub-extensions of k∗/k0, which verify Theorem 5, and by L̃ the three
remaining sub-extensions different to k.

Let G = Gal((k∗)(1)5 /k0), we have γ2(G) = Gal((k∗)(1)5 /k∗), then G/γ2(G) = Gal(k∗/k0) is of type (5,5), therefore G is
metabelian 5-group with factor commutator of type (5,5), thus G admits exactly six maximal normal subgroups as
follows:

H = Gal((k∗)(1)5 /k), HLi
= Gal((k∗)(1)5 /Li), (i = 1,2), H̃ = Gal((k∗)(1)5 /L̃) .

With χ2(G) is one of them.

Theorem 6.Let G = Gal((k∗)(1)5 /k0) be a 5-group of order 5n, n ≥ 5, then G is metabelian of maximal class. Furthermore

we have:
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- If χ2(G) = HLi
(i = 1,2) then: G ∼ G

(n)
a (z,0) with n ∈ {5,6} and a,z ∈ {0,1}.

- If χ2(G) = H̃ then : G ∼ G
(n)
a (0,0) with n = 5 or 6.

....... G ∼ G
(n)
0 (0,0) with n ≥ 7 such that n = s+ 1 where h5(L̃) = 5s.

Proof.Let G = Gal((k∗)(1)5 /k0) and H = Gal((k∗)(1)5 /k) its maximal normal subgroup, then

γ2(H) = Gal((k∗)(1)5 /k
(1)
5 ), therefore H/γ2(H) =Gal(k

(1)
5 /k)≃Ck,5, and as Ck,5 is of type (5,5) by hypothesis we get that

|H/γ2(H)|= 52. Lemma 1 imply that G is a metabelian 5-group of maximal class, generated by two elements G = 〈x,y〉,
such that, x ∈ G \ χ2(G) and y ∈ χ2(G) \ γ2(G). Since χ2(G) = 〈y,γ2(G)〉, we have χ2(G) 6= H. Otherwise we get that
|H/γ2(H)|= 52, which contradict Theorem 3.
According to Theorem 5, we have h5(L1) = h5(L2) = 1, then the transfers VHLi

→γ2(G) are trivial.

If χ2(G) = HLi
the results are nothing else than Proposition 1.

If χ2(G) = H̃ and n = 4 then γ4(G) = 1 and [χ2(G),γ2(G)] = γ2(H̃), also [χ2(G),γ2(G)] = γ4(G) = 1 then χ2(H̃) = 1,
whence H̃ is abelian. Consequently H̃/γ2(H̃) =CL̃,5, so h5(L̃) = |H̃|= 53 because its a maximal subgroup of G. Since L̃

and k have always the same conductor, we deduce that h5(k) and h5(L̃) verify the relations 55hL̃ = uh4
Γ and 55hk = uh4

Γ ,

given by C. Parry in [16], where u is a unit index and a divisor of 56. Using the 5-valuation on these relations we get that
h5(L̃) = 5s where s is even, which contradict the fact that h5(L̃) = 53, hence n ≥ 5.
The results of the theorem are exactly application of Propositions 2, 3.
According to Proposition 2, if n ≥ 7 we have |χ2(G)|= 5n−1 and since h5(L̃) = |H̃/γ2(H̃)|= |H̃|= 5n−1 = 5s, we deduce
that n = s+ 1.

4 Proof of Main Theorem

Let k be the normal closure of Γ = Q( 5
√

n) having elementary abelian bicyclic 5-class group Ck,5 of type (5,5). the

subgroup C
(σ)
k,5 of Ck,5, of ambiguous ideal classes under the action of Gal(k/k0) = 〈σ〉 has rank 1 or 2. If rank C

(σ)
k,5 = 1,

then the relative genus field k∗ is a quintic cyclic extension of k.

Let M = Gal((k∗)(2)5 /k0) and let R = Gal((k∗)(2)5 /k) be a normal maximal subgroup of M, whose commutator

γ2(R) = Gal((k∗)(2)5 /k
(1)
5 ). Then by Artin reciprocity low [1], we get that R/γ2(R) ≃ Gal(k

(1)
5 /k) ≃ Ck,5 of type (5,5),

which means that |R/γ2(R)|= 52, hence by Lemma 1, M is a 5-group of maximal class .

We have that γ2(M) = Gal((k∗)(2)5 /k∗) and γ3(M) = Gal((k∗)(2)5 /(k∗)(1)5 ), which imply that M/γ2(M) = Gal(k∗/k0) of

type (5,5) and γ2(M)/γ3(M) = Gal((k∗)(1)5 /k∗). Since M is of maximal class, rank γ2(M)/γ3(M) ≤ 2, consequently
γ3(M) can be generated by two elements. By [[4], Theorem 2.1], we deduce that γ2(M) is abelian, therefore γ3(M) = 1,

hence (k∗)(1)5 = (k∗)(2)5 , and since (k∗)(1)5 ⊂ k
(2)
5 ⊂ (k∗)(2)5 , we conclude that the Hilbert 5-class field tower of k must stop

at the second stage, which means that the length of the tower is 2.
D. C. Mayer in [[12], Section 3.1] has studied the structure of the coclass graph on the set of all isomorphism classes

G ∼ G
(n)
a (z,w) of finite p-groups G of maximal class. By means of the position of G ∼ G

(n)
a (z,w) in the coclass graph we

can determine the possible cases of its maximal subgroups.

Since (k∗)(1)5 = k
(2)
5 then the second 5-class group of k, G

(2)
k = Gal(k

(2)
5 /k), is a maximal subgroup of

G = Gal((k∗)(1)5 /k0) = Gal(k
(2)
5 /k0) of index 5. The results of Theorem 6, and the distribution of metabelian 5-groups of

maximal class given in [[12], Figure 3.3], allow us to know all possible cases of G
(2)
k , as follows:

–If G ∼ G
(n)
a (z,0) with n ∈ {5,6} and a,z ∈ {0,1} then G

(2)
k ∼ G

(n)
0 (0,0) with n ∈ {4,5}

–If G ∼ G
(n)
a (0,0) with n ∈ {5,6} then G

(2)
k ∼ G

(n−1)
0 (0,0)

If G ∼ G
(n)
0 (0,0) with n ≥ 7 then G

(2)
k ∼ G

(n−1)
0 (0,0)

We see that all these cases of G
(2)
k satisfy w = z = 0.

By the Galois correspondence Hi = Gal(k
(2)
5 /Ki), the six maximal normal subgroups H1, ...,H6 of G

(2)
k are associated

with the six unramified cyclic quintic extensions K1, ...,K6 of k, which are represented by the norm class groups
NormKi/k(CKi,5) as subgroups of index 5 in Ck,5 according to [1]. The abelianizations of the Hi are isomorphic to the
5-class groups of the Ki, because,

Hi/γ2(Hi) = Gal(k
(2)
5 /Ki)/Gal(k

(2)
5 /(Ki)

(1)
5 )≃ Gal((Ki)

(1)
5 /Ki)≃CKi,5

We are interested in the capitulation of ideal classes of Ck,5 in CKi ,5. Therefore, we investigate the kernel of the class
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extension homomorphism jKi/k : Ck,5 −→CKi ,5.

We say that we have total capitulation if Ker( jKi/k) =Ck,5 and partial capitulation otherwise.
According to Artin [2], the following commutative diagram establishes the connection between the number theoretical
extensions jKi/k of 5-class groups and the group theoretical transfers V

G
(2)
k

→Hi
=Vi,

CKi ,5

Hi/γ2(Hi)

Ck,5

G
(2)
k /γ2(G

(2)
k )

jKi/k

Artin isomorphismArtin isomorphism

Vi

The commutativity of this diagram shows that Ker( jKi/k)≃ Ker(Vi) for 1 ≤ i ≤ 6.

According to Theorem 4, the image of the transfer Vi is Vi(gγ2(G
(2)
k )) = s

w j+zl
n−1 γ2(Hi), where g ≡ x jyl(modγ2(G

(2)
k ))

and G
(2)
k = 〈x,y〉. Since for all possible cases of G

(2)
k we have z = w = 0, then all images of the transfers are trivial,

Vi(gγ2(G
(2)
k )) = 1, for all g ∈ G

(2)
k and 1 ≤ i ≤ 6. Thus we have Ker(Vi) = G

(2)
k /γ2(G

(2)
k ), which means that Ker( jKi/k) =

Ck,5. Hence we have total capitulation of Ck,5 in the six cyclic quintic unramified extensions of k.

5 Numerical Examples

For these numerical examples of the natural n, we have that Ck,5 is of type (5,5) and rank C
(σ)
k,5 = 1, which means that

k∗ is cyclic quintic extension of k. Hence by Theorem 1, the length of the 5-class field tower of k is 2, and there is total

capitulation of Ck,5 in the six cyclic quintic unramified extensions of k. We note that the absolute degree of (k∗)(1)5 surpass
100, then the task to determine the order of G is definitely far beyond the reach of computational algebra systems like
MAGMA and PARI/GP.

Table 1: k = Q( 5
√

n,ζ5) with Ck,5 is of type (5,5) and rankC
(σ)
k,5 = 1.

n hk,5 Ck,5 rank (C
(σ)
k,5 ) n hk,5 Ck,5 rank (C

(σ)
k,5 )

118 25 (5,5) 1 1999 25 (5,5) 1
145 25 (5,5) 1 2007 25 (5,5) 1
449 25 (5,5) 1 2507 25 (5,5) 1
475 25 (5,5) 1 2725 25 (5,5) 1
559 25 (5,5) 1 6725 25 (5,5) 1
718 25 (5,5) 1 7375 25 (5,5) 1
818 25 (5,5) 1 7493 25 (5,5) 1

1018 25 (5,5) 1 28625 25 (5,5) 1
1195 25 (5,5) 1 55625 25 (5,5) 1
1249 25 (5,5) 1 168125 25 (5,5) 1

1499 25 (5,5) 1 1492 25 (5,5) 1

1945 25 (5,5) 1 1993 25 (5,5) 1
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