

Jordan Journal of Mathematics and Statistics. Yarmouk University

On the Hilbert 5-Class Field Towers of Some Pure Metacyclic Fields and Total Capitulation

Fouad Elmouhib^{1,*}, Abdelmalek Azizi¹ Mohamed Talbi²

¹ Department of Mathematics and Computer Sciences, Mohammed First University, Oujda, Morocco.

² Regional Center of Professions of Education and Training, Oujda, Morocco.

Received: Sept. 11, 2023

Accepted : March 12, 2024

Abstract: In this paper, we study the length of the Hilbert 5-class field towers of some pure metacyclic fields of degree 20 over \mathbb{Q} , which are the normal closure of some pure quintic fields, by means of some results of 5-groups. The capitulation problem is investigated too.

Keywords: Groups of maximal class, 5-class field, Transfer, 5-class groups.

2020 Mathematics Subject Classification. 20D15; 20D35; 11R29; 11R37.

1 Introduction

Let *k* be an algebraic number field and $C_{k,5}$ its 5-class group, that is the 5-Sylow subgroup of its class group C_k . Let $k_5^{(1)}$ be the Hilbert 5-class field of *k*, that is the unramified abelian maximal extension of *k* for finite and infinite primes. Put $k_5^{(0)} = k$ and by $k_5^{(i+1)}$ we denote the Hilbert 5-class field of $k_5^{(i)}$ for any natural $i \ge 0$. Then the sequence of fields

$$k = k_5^{(0)} \subset k_5^{(1)} \subset k_5^{(2)} \subset \dots \subset k_5^{(i)} \subset \dots$$

is called the 5-class field tower of k. If for all $i \ge 1$, $k_5^{(i)} \ne k_5^{(i+1)}$, the tower is said to be infinite, otherwise the tower is said to be finite, and the minimal natural i such that $k_5^{(i)} = k_5^{(i+1)}$ is called the length of the tower. The task to determine whether or not the 5-class field tower of a number field k is finite, is until nowday a classical and difficult open problem of class field theory. Although, we have that if the rank of $C_{k_5^{(1)},5} \le 2$, then by means of group

theory, the length of the tower is at most 2 [4].

Our contribution in this paper is to determine the length of the 5-class field tower and to investigate the capitulation problem for some families of pure metacyclic fields, which are the normal closure of a pure quintic fields. The novelty in this procedure is the combination of some results of 5-group theory and triviality of 5-class numbers of some fields. Let $\Gamma = \mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, where *n* is a 5th power-free natural number and $k_0 = \mathbb{Q}(\zeta_5)$ be the 5th cyclotomic

field, then $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$ is the normal closure of Γ , and a pure metacyclic field of absolute degree 20. By $C_{k,5}^{(\sigma)}$ we denote the subgroup of ambiguous ideal classes under the action of $Gal(k/k_0) = \langle \sigma \rangle$. The aim of this paper is to investigate the 5-class field tower of k and the capitulation of the 5-ideal classes of k in its

six cyclic quintic unramified extensions within the Hilbert 5-class field $k_5^{(1)}$ of k, whenever $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$. Our main theorem is the following.

Theorem 1.Let k_0 be the 5th cyclotomic field and k be the normal closure of a pure quintic field. Suppose that the 5-class group $C_{k,5}$ of k is of type (5,5) and the rank of ambiguous ideal classes $C_{k,5}^{(\sigma)}$ under the action of $Gal(k/k_0) = \langle \sigma \rangle$ is 1, then the length of the 5-class field tower of k is 2. Furthermore there is a total capitulation of $C_{k,5}$ in the all unramified quintic cyclic extensions of k.

^{*} Corresponding author e-mail: fouad.cd@gmail.com

The computational number theory system PARI/GP [17] allowed us to underpin this results by numerical examples.

2 Some Results of Group Theory

Let *G* be *p*-groupe and $\gamma_2(G) = [G,G]$ be its commutator group. *G* is called metabelian if $\gamma_2(G)$ is abelian. The Frattini subgroup $\phi(G)$ of *G* is the intersection of all maximal subgroups of *G* [[3], page 25, Definition 1]. The subgroup G^p of *G*, generated by the p^{th} powers is contained in $\gamma_2(G)$, which as a result, coincides with the Frattini subgroup $\phi(G) = G^p \gamma_2(G) = \gamma_2(G)$. By the basis theorem of Burnside [[3], Theorem 1.12], every minimal system of generators of *G* contains exactly *d* elements with p^d is the order of $G/\phi(G)$. In the case of $G/\gamma_2(G)$ is of type (p, p), the group $G = \langle x, y \rangle$ can be generated by two elements *x* and *y*. If we declare the lower central series of *G* by

$$\begin{cases} \gamma_1(G) = G \\ \gamma_j(G) = [\gamma_{j-1}(G), G] \text{ for } j \ge 2, \end{cases}$$

By [[5], Corollary 2] we have Kaloujnine's commutator relation $[\gamma_j(G), \gamma_l(G)] \subseteq \gamma_{j+l}(G)$, for $j, l \ge 1$, and for an index of nilpotence $c \ge 2$ the series

$$G = \gamma_1(G) \supset \gamma_2(G) \supset \dots \supset \gamma_c(G) \supset \gamma_{c+1}(G) = 1$$

becomes stationary.

The coclass cc(G) of a *p*-group *G* of order p^n and nilpotency class *c* is defined as cc(G) = n - c. If cc(G) = 1, then *G* is called of maximal class.

The two-step centralizer

$$\chi_2(G) = \{g \in G \mid [g, u] \in \gamma_4(G) \text{ for all } u \in \gamma_2(G)\}$$

of the two-step factor group $\gamma_2(G)/\gamma_4(G)$, that is the largest subgroup of G such that $[\chi_2(G), \gamma_2(G)] \subset \gamma_4(G)$. It is characteristic and contains the commutator subgroup $\gamma_2(G)$. If G is of maximal class and order p^n , according to [[9], Proposition 3.1.4] and [[5], Lemma 2.5] we have that $\chi_2(G)$ is maximal normal subgroup of G for $n \ge 4$ Moreover $\chi_2(G)$ coincides with G if and only if n = 3, because if n = 3, then $\gamma_2(G)$ is central and $\gamma_4(G)$ is trivial, so $\chi_2(G) = G$. If G is not of maximal class then the "only if" clause fails, as clearly any group of class at most two will have $\gamma_2(G)$ central and $\gamma_4(G)$ trivial, so $\chi_2(G) = G$.

Let k = k(G), the isomorphism invariant of G, be defined by $[\chi_2(G), \gamma_2(G)] = \gamma_{n-k}(G)$, where k = 0 for n = 3 and $0 \le k \le n-4$ if $n \ge 4$, also for $n \ge p+1$ we have $k = min\{n-4, p-2\}$ [[13], p.331].

k gives a measure for the deviation from the maximal degree of commutativity $[\chi_2(G), \gamma_2(G)] = 1$ and is called *defect of commutativity* of *G*.

With a further invariant *e*, it will be expressed, which factor $\gamma_j(G)/\gamma_{j+1}(G)$ is cyclic for the first time in the lower central series [15], and we have $e + 1 = min\{3 \le j \le c \mid 1 \le |\gamma_j(G)/\gamma_{j+1}| \le p\}$.

In this definition of *e*, we exclude $\gamma_2(G)/\gamma_3(G)$, since is always cyclic. The value e = 2 is characteristic for a group *G* of maximal class. For $e \ge 3$, that is for *G* of coclass $cc(G) \ge 2$, we can also define $e = max\{3 \le j \le c-1 | |\gamma_j(G)/\gamma_{j+1}| > p\}$ [[11], Definition 2.2].

2.1 On the 5-class group of maximal class

Let *G* be a metabelian 5-group of order 5^n , and cc(G) = 1. Then *G* is of maximal class and the commutator factor $G/\gamma_2(G)$ is of type (5,5) [13].

By $G \sim G_a^{(n)}(z, w)$, we denote the representative of an isomorphism class of metabelian 5-groups G, with a system of invariants z, w and a, which satisfy the theorem:

Theorem 2.Let G be a metabelian 5-group of order 5^n where $n \ge 5$ and k = k(G) its invariant defined before. Suppose that G is of maximal class, then G can be generated by two elements, $G = \langle x, y \rangle$, be selected such that $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \chi_2(G)$.

Let $s_2 = [y,x] \in \gamma_2(G)$ and $s_j = [s_{j-1},x] \in \gamma_j(G)$ for $j \ge 3$. Then we have: $-s_j^5 s_{j+1}^{10} s_{j+2}^{10} s_{j+3}^5 s_{j+4} = 1$ for $j \ge 2$. $-x^5 = s_{n-1}^w$ with $w \in \{0,1,2,3,4\}$.

 $-y^5 s_2^{10} s_3^{10} s_4^{5} s_5 = s_{n-1}^z \text{ with } z \in \{0, 1, 2, 3, 4\}.$

$$-[y, s_2] = \prod_{i=1}^{k} s_{n-i}^{a_{n-i}} \text{ with } a = (a_{n-1}, \dots, a_{n-k}) \text{ exponents such that } 0 \le a_{n-i} \le 4$$

Proof.See [[14], Theorem 1] for p = 5.

Let $G = \langle x, y \rangle$ be a metabelian 5-group of maximal class and order 5^n , such that $G/\gamma_2(G)$ is of type (5,5), then G admits six maximal normal subgroups $H_1, ..., H_6$, which contain $\gamma_2(G)$ as a normal subgroup of index 5. We have that $\chi_2(G)$ is one of the groups H_i .

We keep that $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \gamma_2(G)$. The six normal maximal subgroups $H_1, ..., H_6$ are arranged as follows: $H_1 = \langle y, \gamma_2(G) \rangle = \chi_2(G), H_i = \langle xy^{i-2}, \gamma_2(G) \rangle$ for $2 \le i \le 6$.

The order of the abelianization of each H_i , is given by the following theorem.

Theorem 3.Let G, H_i and the invariant k be as before. Suppose that the commutator group $\gamma_2(G)$ is abelian. Then for $1 \le i \le 6$, the order of the commutator factor groups of H_i is given by:

-If n = 2 we have : $|H_i/\gamma_2(H_i)| = 5$ for $1 \le i \le 6$. -If $n \ge 3$ we have : $|H_i/\gamma_2(H_i)| = 5^2$ for $2 \le i \le 6$, and $|H_1/\gamma_2(H_1)| = 5^{n-k-1}$

Proof.See [[11], Theorem 3.1] for p = 5.

Lemma 1.Let G be a 5-group of order $|G| = 5^n$ where $n \ge 3$, with abelian commutator group $\gamma_2(G)$. Assume that $G/\gamma_2(G)$ is of type (5,5). Then G is of maximal class if and only if G admits a normal maximal subgroup with factor commutator of order 5^2 . Furthermore G admits at least five normal maximal subgroups with factor commutator of order 5^2 .

*Proof.*Suppose that *G* is of maximal class, then according to Theorem 3, we conclude that *G* has five maximal normal subgroups with the order of commutator factor is 5^2 if $n \ge 4$, and has six when n = 3. Conversely, Assume that $cc(G) \ge 2$, the invariant *e* defined before is greater than 3, and since each maximal normal subgroup *H* of *G* verify $|H/\gamma_2(H)| \ge 5^e$ we get that $|H/\gamma_2(H)| > 5^2$

2.2 On the transfer concept

Let *G* be a group and let *H* be a subgroup of *G*. The transfer from *G* to *H*, denoted $V_{G \to H}$, can be decomposed as follows:

Definition 1.Let G be a group, H be a normal subgroup of G, and let $g \in G$ such that, f is the order of gH in G/H, $r = \frac{[G:H]}{f}$ and g_1, \dots, g_r be a representative system of G/H modulo $\langle gH \rangle$, then the transfer from G to H is defined by:

$$V_{G \to H} : G/\gamma_2(G) \longrightarrow H/\gamma_2(H)$$

$$g\gamma_2(G) \longrightarrow \prod_{i=1}^r g_i^{-1} g^f g_i \gamma_2(H)$$

according to [[2], p50].

In the special case that G/H is a cyclic group of order 5 and $G = \langle h, H \rangle$, then the transfer $V_{G \to H}$ is given as:

(1) If $g \in H$, we have $V_{G \to H}(g\gamma_2(G)) = g^{1+h+h^2+h^3+h^4}\gamma_2(H)$

(2)
$$V_{G \to H}(h\gamma_2(G)) = h^5\gamma_2(H)$$

Let *G* be a 5-group of maximal class, with $G/\gamma_2(G)$ is of type (5,5), we keep that $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \gamma_2(G)$. The six maximal normal subgroups $H_1, ..., H_6$ are arranged as follows: $H_1 = \langle y, \gamma_2(G) \rangle = \chi_2(G), H_i = \langle xy^{i-2}, \gamma_2(G) \rangle$ for $2 \le i \le 6$. The image of the transfers from *G* to its six normal maximal subgroups H_i , $1 \le i \le 6$, is given by the following theorem: **Theorem 4.**Let $G = \langle x, y \rangle$ be a metabelian 5-group of maximal class of order 5^n , where $n \ge 3$, and H_i , $1 \le i \le 6$ are its six maximal normal subgroups. Assume that x and y are selected such that $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \chi_2(G)$, and the relations of Theorem 2 with exponents w, z are satisfied. Suppose that the cosets $g\gamma_2(G) \in G/\gamma_2(G)$ are represented in the form $g \equiv x^i y^l \pmod{\gamma_2(G)}$ with $0 \le j, l \le 4$, then the images of the transfers $V_{G \to H_i}$ are given by:

$$V_{G \to H_i}(x^j y^l \gamma_2(G)) = s_{n-1}^{wj+zl} \gamma_2(H_i) \text{ for } 1 \le i \le 6.$$

*Proof.*See [[10], Theorem 2.2] for p = 5.

2.3 Invariants of metabelian 5-group of maximal class

In this paragraph, we investigate the purely group theoretic results to determine the invariants of metabelian 5-group of maximal class developed in Theorem 2. We keep the same hypothesis of the group *G*, the generators *x* and *y* of the group $G = \langle x, y \rangle$, and the six normal maximal subgroups H_i , $1 \le i \le 6$, of *G*. In the case that the transfers from two subgroups H_i and H_j to $\gamma_2(G)$ are trivial, we can determine completely the 5-group *G*.

Proposition 1.Let G be a metabelian 5-group of maximal class and order 5^n , $n \ge 5$. If the transfers $V_{\chi_2(G) \to \gamma_2(G)}$ and $V_{H_2 \to \gamma_2(G)}$ are trivial, then $n \le 6$ and $\gamma_2(G)$ is of exponent 5. Furthermore:

-If n = 6 then $G \sim G_a^{(6)}(1,0)$ where a = 0 or 1. -If n = 5 then $G \sim G_a^{(5)}(0,0)$ where a = 0 or 1.

*Proof.*Let s, z, w and a defined as Theorem 2. Suppose that $n \ge 7$, so $\gamma_5(G) = \langle s_5, \gamma_6(G) \rangle$, because G is of maximal class and $|\gamma_5(G)/\gamma_6(G)| = 5$. By [[5], Lemma 3.3] we have $y^5s_5 \in \gamma_6(G)$, thus $\gamma_5(G) = \langle s_5^4, \gamma_6(G) \rangle = \langle y^5s_5s_5^4, \gamma_6(G) \rangle = \langle y^5, \gamma_6(G) \rangle$, and since $V_{\chi_2(G) \to \gamma_2(G)}(y) = y^5 = 1$, because the transfers are trivial by hypothesis, we get that $\gamma_5(G) = \gamma_6(G)$, which is impossible, whence n < 6 and According to [[5], Theorem 3.2], $\gamma_7(G)$ is of exponent 5.

industries $V_{\chi_2(G)\to\gamma_2(G)}(y) = y^{-1} + y^{-1}$, because the unisters are drivin by hypothesis, we get that $\gamma_5(G) = \gamma_6(G)$, which is impossible, where $n \le 6$ and According to [[5], Theorem 3.2], $\gamma_2(G)$ is of exponent 5. If n = 6, we have $V_{\chi_2(G)\to\gamma_2(G)}$ and $V_{H_2\to\gamma_2(G)}$ are trivial, so by Theorem 2 we obtain $x^5 = s_5^w = 1$ which imply w = 0, because $0 \le w \le 4$. Since $\gamma_2(G)$ is of exponent 5, we have $s_2^5 = 1$ and by Theorem 2 the relation $s_4^5 s_5^{10} s_6^{10} s_7^5 s_8 = 1$ gives $s_4^5 = 1$, also $s_3^5 s_4^{10} s_5^{10} s_6^5 s_7 = 1$ gives $s_3^5 = 1$. We replace in $y^5 s_2^{10} s_3^{10} s_4^5 s_5 = s_5^z$ and we get $s_5 = s_5^z$, whence z = 1. We have $[\chi_2(G), \gamma_2(G)] \subset \gamma_{6-k}(G) \subset \gamma_4(G)$ then $6 - k \ge 4$, and $0 \le k \le 2$, thus $[y, s_2] = s_4^{\alpha\beta}$, $a = (\alpha, \beta)$. If k = 0, then a = 0 and $G \sim G_0^{(6)}(1,0)$, if k = 1 then a = 1 and $G \sim G_1^{(6)}(1,0)$ and if k = 2 then $G \sim G_a^{(6)}(1,0)$. If n = 5, we have $[\chi_2(G), \gamma_2(G)] \subset \gamma_{5-k}(G) \subset \gamma_4(G)$ then $5 - k \ge 4$, and $0 \le k \le 1$. We have $s_4^5 = 1$, $s_2^5 = s_3^5 = 1$ and

If n = 5, we have $[\chi_2(G), \gamma_2(G)] \subset \gamma_{5-k}(G) \subset \gamma_4(G)$ then $5-k \ge 4$, and $0 \le k \le 1$. We have $s_4^5 = 1$, $s_2^5 = s_3^5 = 1$ and $[y, s_2] = s_4^a$. the relation $y^5 s_2^{10} s_3^{10} s_4^5 s_5 = s_4^z$ imply $s_4^z = 1$ so z = 0. As n = 6 we obtain w = 0. If k = 0 then $G \sim G_0^{(5)}(0,0)$ and if k = 1 $G \sim G_a^{(5)}(0,0)$.

Proposition 2.Let G be a metabelian 5-group of maximal class and order 5^n , $n \ge 5$. If the transfers $V_{H_2 \to \gamma_2(G)}$ and $V_{H_i \to \gamma_2(G)}$, $3 \le i \le 6$, are trivial, then we have:

-If n = 5 or 6 then $G \sim G_a^{(n)}(0,0)$. -If $n \ge 7$ then $G \sim G_0^{(n)}(0,0)$.

*Proof.*Let s, z, w and a defined as Theorem 2. If n = 5 or 6, by [[5], Theorem 1.6] we have $[\chi_2(G), \gamma_2(G)] = 1$ and $[\chi_2(G), \gamma_2(G)] \subset \gamma_4(G)$ elementary, and $(\gamma_2(\chi_2(G)))^5 = 1$ and $\prod_{i=2}^3 [\gamma_i(G), \gamma_{5-i}(G)] = 1$, we conclude that $(xy)^5 = x^5y^5s_{2}^{10}s_{3}^{10}s_{4}^{5}s_{5}$ and we have $y^5s_{2}^{10}s_{3}^{10}s_{4}^{5}s_{5} = s_{n-1}^z$ then $(xy)^5 = x^5s_{n-1}^z$ and since $V_{H_2 \to \gamma_2(G)}$ and $V_{H_3 \to \gamma_2(G)}$ are trivial then $(xy)^5 = x^5 = s_{n-1}^z = s_{n-1}^w = 1$, thus z = w = 0. Since $[\chi_2(G), \gamma_2(G)] = \gamma_{n-k}(G) \subset \gamma_4(G)$ we have $n - k \ge 4$, whence $0 \le k \le 2$ because n = 5 or 6 then $G \sim G_a^{(n)}(0, 0)$.

If $n \ge 7$, according to [[5], corollary 1 p.69] we have, $\gamma_j(G)^5 = \gamma_{j+4}(G)$ for $j \ge 2$, and since $y^5 s_2^{10} s_3^{10} s_4^5 s_5 = s_{n-1}^z$ we obtain:

$$y^{5} = s_{n-1}^{z} s_{5}^{-1} s_{4}^{-5} s_{3}^{-10} s_{2}^{-10} \equiv s_{n-1}^{z} s_{5}^{-1} \operatorname{mod} \gamma_{6}(G)$$

because $s_2^5 \in \gamma_6(G)$, $s_3^5 \in \gamma_6(G)$ and $s_4^5 \in \gamma_6(G)$, and since $n \ge 7$ we have $s_{n-1} \in \gamma_6(G)$, therefore $V = V_{H_3 \to \gamma_2(G)}(y) \equiv s_5^{-1} \mod \gamma_6(G)$. Thus $\operatorname{Im}(V) \subset \gamma_5(G)$, In fact $\operatorname{Im}(V) = \gamma_5(G)$, and also we have $y \notin \operatorname{Ker}(V)$ and $\forall f \ge 2 y^k s_f^l \notin \operatorname{Ker}(V)$. The kernel of V is formed by elements of $\gamma_2(G)$ of exponent 5, its exactly $\gamma_{n-4}(G)$, and since G is of maximal class then the rank of $\gamma_2(G)$ is 2 and $\gamma_2(G)$ admits exactly 25 elements of exponent 5, these elements form

 $\gamma_{n-4}(G)$. We conclude that $|\chi_2(G)/\gamma_2(\chi_2(G))| = |\gamma_{n-4}(G)| \times |\gamma_5(G)| = 5^4 \times 5^{n-5} = 5^{n-1} = |\chi_2(G)|$, whence $\chi_2(G)$ is abelian because $\gamma_2(\chi_2(G)) = 1$, consequently $[y, s_2] = 1$, thus a = 0. As the cases n = 5 or 6 we obtain $(xy)^5 = x^5 s_{n-1}^z$, therefore z = w = 0, hence $G \sim G_0^{(n)}(0, 0)$.

In the case when $V_{H_2 \to \gamma_2(G)}$ and $V_{H_i \to \gamma_2(G)}$, $4 \le i \le 6$ are trivial, according to [[5], Theorem 1.6] we have $(xy^{\mu})^5 = x^5(y^5s_2^{10}s_3^{10}s_5^{4}s_5)^{\mu} = s_{n-1}^{w}s_{n-1}^{\mu}$ with $\mu = 2, 3, 4$, then we can admit the same reasoning to prove the result.

Proposition 3.Let G be a metabelian 5-group of maximal class of order 5ⁿ, $n \ge 5$. If the transfers $V_{H_i \to \gamma_2(G)}$ and $V_{H_j \to \gamma_2(G)}$, where $i, j \in \{3, 4, 5, 6\}$ and $i \ne j$, are trivial, then we have: $G \sim G_0^{(n)}(0, 0)$.

*Proof.*Let s, z, w and a defined as Theorem 2. Assume that $H_i = \langle xy^{\mu_1}, \gamma_2(G) \rangle$ and $H_j = \langle xy^{\mu_2}, \gamma_2(G) \rangle$ where $\mu_1, \mu_2 \in \{1, 2, 3, 4\}$ and $\mu_1 \neq \mu_2$. According to [[5], Theorem 1.6] we have already proved that $(xy^{\mu_1})^5 = s_{n-1}^{w+\mu_1 z}$ and $(xy^{\mu_2})^5 = s_{n-1}^{w+\mu_2 z}$. Since $V_{H_i \rightarrow \gamma_2(G)}$ and $V_{H_j \rightarrow \gamma_2(G)}$ are trivial, we obtain $s_{n-1}^{w+\mu_1 z} = s_{n-1}^{w+\mu_2 z} = 1$ then $w + \mu_1 z \equiv w + \mu_2 z \equiv 0 \pmod{5}$ and since 5 does not divide $\mu_1 - \mu_2$ we get z = 0 and at the same time w = 0. To prove a = 0 we admit the same reasoning as Proposition 2.

3 Realisation of Metabelian 5-Group of Maximal Class

Let *k* be the normal closure of a pure quintic field $\Gamma = \mathbb{Q}(\sqrt[5]{n})$, where *n* is a 5th power-free natural number. Let $k_0 = \mathbb{Q}(\zeta_5)$ be the 5th cyclotomic field. Since $k = \mathbb{Q}(\zeta_5, \sqrt[5]{n}) = k_0(\sqrt[5]{n})$, we have that *k* is a cyclic Kummer extension of degree 5 of k_0 . By $k^* = (k/k_0)^*$ we denote the relative genus field of k/k_0 , that is the maximal unramified extension of *k* and abelian on k_0 . Let $C_{k,5}$ be the 5-class group of *k*. By class field theory, k^* is contained in the Hilbert 5-class field of *k*, and $[k^*:k] = 5^t$, where *t* is the rank of the subgroup $C_{k,5}^{(\sigma)}$ of ambiguous classes under the action of $Gal(k/k_0) = \langle \sigma \rangle$ [[7], Lemma 2.3].

According to [[8], Proposition 5.8], we have the explicit form of k^* , depending on the decomposition of n in k_0 . Let p and q be a prime numbers such that $p \equiv -1 \pmod{5}$ and $q \equiv \pm 2 \pmod{5}$. According to [[6], Theorem 1.1, Conjecture 4.1], if $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, we have three forms of the natural number n as follows:

 $\begin{array}{l} -n = 5^e p \text{ with } e \in \{1, 2, 3, 4\} \text{ and } p \not\equiv -1 \pmod{25}. \\ -n = p^e q \equiv \pm 1 \pm 7 \pmod{25} \text{ with } e \in \{1, 2, 3, 4\}, p \not\equiv -1 \pmod{25} \text{ and } q \not\equiv \pm 7 \pmod{25}. \\ -n = p^e \equiv \pm 1 \pm 7 \pmod{25} \text{ with } e \in \{1, 2, 3, 4\} \text{ and } p \equiv -1 \pmod{25}. \end{array}$

Under these hypothesis, the extension k^*/k_0 has order 25 and admits six sub-extensions, where k is one of them, determined explicitly as follows:

Proposition 4. We keep the same hypothesis on k, k^* , $C_{k,5}$ and $C_{k,5}^{(\sigma)}$. Then we have:

$$-If \ n = p \equiv -1 \pmod{25}, \ then \ the \ six \ sub-extensions \ of \ (k/k_0)^*/k_0 \ are: \ k, \ k_0(\sqrt[5]{\pi_1^{\alpha_1} \pi_2^{\alpha_2}}), \ k_0(\sqrt[5]{\pi_1^{\alpha_{1+1}} \pi_2^{\alpha_{2+1}}}), k_0(\sqrt[5]{\pi_1^{\alpha_{1+3}} \pi_2^{\alpha_{2+3}}}) \ and \ k_0(\sqrt[5]{\pi_1^{\alpha_{1+4}} \pi_2^{\alpha_{2+4}}}).$$

$$-If n = p^{e}q \text{ with } p \neq -1 \pmod{25} \text{ and } q \neq \pm 7 \pmod{25}, \text{ then the six sub-extensions of } (k/k_{0})^{*}/k_{0} \text{ are: } k, k_{0}(\sqrt[5]{\pi_{1}^{2e+\alpha_{1}}\pi_{2}^{e}q^{3}}), k_{0}(\sqrt[5]{\pi_{1}^{2e+\alpha_{1}}\pi_{2}^{e}q^{3}}), k_{0}(\sqrt[5]{\pi_{1}^{3e+\alpha_{1}}\pi_{2}^{e}q^{4}}) \text{ and } k_{0}(\sqrt[5]{\pi_{1}^{4e+\alpha_{1}}\pi_{2}^{e}}).$$

$$-If \ n = 5^{e}p \ with \ p \not\equiv -1(\text{mod}25), \ then \ the \ six \ sub-extensions \ of \ (k/k_{0})^{*}/k_{0} \ are: \ k, \ k_{0}(\sqrt[5]{\lambda^{e}\pi_{1}^{\alpha_{1}}\pi_{2}^{\alpha_{2}}}), k_{0}(\sqrt[5]{\lambda^{2e}\pi_{1}^{\alpha_{1}+1}\pi_{2}^{\alpha_{2}+1}}), k_{0}(\sqrt[5]{\lambda^{3e}\pi_{1}^{\alpha_{1}+2}\pi_{2}^{\alpha_{2}+2}}), k_{0}(\sqrt[5]{\lambda^{4e}\pi_{1}^{\alpha_{1}+3}\pi_{2}^{\alpha_{2}+3}}), k_{0}(\sqrt[5]{\lambda^{4e}\pi_{1}^{\alpha_{1}+3}\pi_{2}^{\alpha_{2}+3}}), k_{0}(\sqrt[5]{\pi_{1}^{\alpha_{1}+4}\pi_{2}^{\alpha_{2}+4}}).$$

Where $\alpha_1, \alpha_2, e \in \{1, 2, 3, 4\}$ with $\alpha_1 \neq \alpha_2$, π_1, π_2 are primes of k_0 above p such that $p = \pi_1 \pi_2$ and $\lambda = 1 - \zeta_5$ is the unique prime of k_0 above 5.

Proof ..

-If
$$n = p \equiv -1 \pmod{25}$$
, according to the proof of [[8], Theorem 5.15] we have $k^* = k (\sqrt[5]{\pi_1^{\alpha_1} \pi_2^{\alpha_2}})$ with $\alpha_1 \neq \alpha_2$, then $k^* = k_0 (\sqrt[5]{\pi_1 \pi_2}, \sqrt[5]{\pi_1^{\alpha_1} \pi_2^{\alpha_2}})$, because $p = \pi_1 \pi_2$ in k_0 , hence the six sub-extensions given are proved.

-If $n = p^e q$ with $p \not\equiv -1 \pmod{25}$ and $q \not\equiv \pm 7 \pmod{25}$, according to [[8], Proposition 5.8] we have $k^* = k (\sqrt[5]{\pi_1^{\alpha_1} q})$ since $p = \pi_1 \pi_2$ and q is inert in k_0 . Then $k^* = k_0 (\sqrt[5]{\pi_1^e \pi_2^e q}, \sqrt[5]{\pi_1^{\alpha_1} q})$, so we get the six sub-extensions by calculus.

-If $n = 5^e p$ with $p \not\equiv -1 \pmod{25}$, by the proof of [[8], Theorem 5.15], we have $k^* = k (\sqrt[5]{\lambda^e \pi_1^{\alpha_1} \pi_2^{\alpha_2}})$, $\alpha_1 \neq \alpha_2$. Since $n = 5^e p = (\lambda^4)^e \pi_1 \pi_2 = \lambda^{e'} \pi_1 \pi_2$ in k_0 , then $(k/k_0)^* = k_0 (\sqrt[5]{\lambda^e \pi_1 \pi_2}, \sqrt[5]{\lambda^e \pi_1^{\alpha_1} \pi_2^{\alpha_2}})$, hence the six sub-extensions given are proved.

By means of the explicit forms of the six sub-extensions of k^*/k_0 given by Proposition 4, we can state the following theorem:

Theorem 5.Let $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$ be the normal closure of $\mathbb{Q}(\sqrt[5]{n})$. Let k_0 be the the 5th cyclotomic field. Suppose that the 5-class group $C_{k,5}$ of k is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, then $Gal(k^*/k_0)$ is of type (5,5), and two sub-extensions of k^*/k_0 admit a trivial 5-class number.

Proof.Since $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, then by class field theory, we have $[k^* : k] = 5$, whence $Gal(k^*/k_0)$ is of type (5,5).

-If
$$n = p \equiv -1 \pmod{25}$$
 the six sub-extensions of k^*/k_0 are k , $k_0(\sqrt[5]{\pi_1^{\alpha_1}\pi_2^{\alpha_2}})$, $k_0(\sqrt[5]{\pi_1^{\alpha_1+1}\pi_2^{\alpha_2+1}})$, $k_0(\sqrt[5]{\pi_1^{\alpha_1+2}\pi_2^{\alpha_2+2}})$
 $k_0(\sqrt[5]{\pi_1^{\alpha_1+3}\pi_2^{\alpha_2+3}})$ and $k_0(\sqrt[5]{\pi_1^{\alpha_1+4}\pi_2^{\alpha_2+4}})$, with $e, \alpha_1, \alpha_2 \in \{1, 2, 3, 4\}$, and $\alpha_1 \neq \alpha_2$. For each values of α_1 and α_2 we can see that the extensions $L_1 = k_0(\sqrt[5]{\pi_1})$ and $L_2 = k_0(\sqrt[5]{\pi_2})$ are sub-extensions of k^*/k_0 .
In [[8], section 5.1], we have a detailed investigation of the rank of ambigous classes of $k_0(\sqrt[5]{x})/k_0$ denoted t . Precisely we have $t = d + q^* - 3$, where d is the number of prime divisors of x in k_0 , and q^* is an index of units defined as [[8] section 5.1]

For the extensions L_i/k_0 , (i = 1, 2) we have d = 1, and by [[8], Theorem 5.15] we have $q^* = 2$, hence t = 0.

-If $n = p^e q$ with $p \neq -1 \pmod{25}$ and $q \neq \pm 7 \pmod{25}$ then the six sub-extensions of k^*/k_0 are: $k, k_0(\sqrt[5]{\pi_1^{\alpha_1}q}), k_0(\sqrt[5]{\pi_1^{e+\alpha_1}\pi_2^eq^2}), k_0(\sqrt[5]{\pi_1^{2e+\alpha_1}\pi_2^eq^3}), k_0(\sqrt[5]{\pi_1^{3e+\alpha_1}\pi_2^eq^4}), k_0(\sqrt[5]{\pi_1^{4e+\alpha_1}\pi_2^e}).$ For the four extensions k, $k_0(\sqrt[5]{\pi_1^{e+\alpha_1}\pi_2^eq^2}), k_0(\sqrt[5]{\pi_1^{2e+\alpha_1}\pi_2^eq^3})$ and $k_0(\sqrt[5]{\pi_1^{3e+\alpha_1}\pi_2^eq^4}),$ we have d = 3 and by [[8], Theorem 5.14] we have $q^* = 1$, so t = 1. For the extensions $k_0(\sqrt[5]{\pi_1^{4e+\alpha_1}\pi_2^eq^3})$ and $k_0(\sqrt[5]{\pi_1^{4e+\alpha_1}\pi_2^eq^4})$, we have d = 2 and also $q^* = 1$, so t = 0.

-If
$$n = 5^e p$$
 with $p \neq -1 \pmod{25}$, then the six sub-extensions of k^*/k_0 are: $k, k_0(\sqrt[5]{\lambda^e \pi_1^{\alpha_1} \pi_2^{\alpha_2}}), k_0(\sqrt[5]{\lambda^{2e} \pi_1^{\alpha_{1+1}} \pi_2^{\alpha_{2+1}}}), k_0(\sqrt[5]{\lambda^{4e} \pi_1^{\alpha_{1+3}} \pi_2^{\alpha_{2+3}}}), k_0(\sqrt[5]{\pi_1^{\alpha_{1+4}} \pi_2^{\alpha_{2+4}}}).$
Since $\alpha_1 \neq \alpha_2$, we get that $k_0(\sqrt[5]{\pi_i^{\alpha_i}})$ and $k_0(\sqrt[5]{\lambda^e \pi_i^{\alpha_j}})$ with $i, j \in \{1, 2, 3, 4\}$ and $i \neq j$, are among the six. We see that

Since $\alpha_1 \neq \alpha_2$, we get that $k_0(\sqrt[5]{\pi_i^{\alpha_i}})$ and $k_0(\sqrt[5]{\lambda^e \pi_j^{\alpha_j}})$ with $i, j \in \{1, 2, 3, 4\}$ and $i \neq j$, are among the six. We see that these two extensions admit the value t = 0.

In short, we just proved that if $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, then two sub-extensions, denoted L_1 and L_2 , of k^*/k_0 admit 0 as value of rank of the subgroup of ambiguous classes.

By $h_5(L_i)$, (i = 1, 2), we denote the class number of L_i , then we have $h_5(L_1) = h_5(L_2) = 1$. Otherwise $h_5(L_i) \neq 1$, then there exists a cyclic unramified extension of L_i , denoted F. We have that F is abelian over k_0 , as $[F : k_0] = 5^2$, then Fis contained in $(L_i/k_0)^*$ the relative genus field of L_i/k_0 . Since $[(L_i/k_0)^* : L_i] = 5^i = 1$, we get that $(L_i/k_0)^* = L_i$, which contradicts the existence of F. Hence the 5-class number of L_i , (i = 1, 2), is trivial.

In the sequel, we denote by L_1 and L_2 the two sub-extensions of k^*/k_0 , which verify Theorem 5, and by \tilde{L} the three remaining sub-extensions different to k.

Let $G = Gal((k^*)_5^{(1)}/k_0)$, we have $\gamma_2(G) = Gal((k^*)_5^{(1)}/k^*)$, then $G/\gamma_2(G) = Gal(k^*/k_0)$ is of type (5,5), therefore G is metabelian 5-group with factor commutator of type (5,5), thus G admits exactly six maximal normal subgroups as follows:

$$H = Gal((k^*)_5^{(1)}/k), H_{L_i} = Gal((k^*)_5^{(1)}/L_i), (i = 1, 2), \tilde{H} = Gal((k^*)_5^{(1)}/\tilde{L})$$

With $\chi_2(G)$ is one of them.

Theorem 6.Let $G = Gal((k^*)_5^{(1)}/k_0)$ be a 5-group of order 5^n , $n \ge 5$, then G is metabelian of maximal class. Furthermore we have:

- If $\chi_2(G) = H_{L_i}(i = 1, 2)$ then: $G \sim G_a^{(n)}(z, 0)$ with $n \in \{5, 6\}$ and $a, z \in \{0, 1\}$. - If $\chi_2(G) = \tilde{H}$ then : $G \sim G_a^{(n)}(0,0)$ with n = 5 or 6. $G \sim G_0^{(n)}(0,0)$ with $n \ge 7$ such that n = s + 1 where $h_5(\tilde{L}) = 5^s$.

*Proof.*Let $G = Gal((k^*)_5^{(1)}/k_0)$ and $H = Gal((k^*)_5^{(1)}/k)$ its maximal normal subgroup, then $\gamma_2(H) = Gal((k^*)_5^{(1)}/k_5^{(1)})$, therefore $H/\gamma_2(H) = Gal(k_5^{(1)}/k) \simeq C_{k,5}$, and as $C_{k,5}$ is of type (5,5) by hypothesis we get that $|H/\gamma_2(H)| = 5^2$. Lemma 1 imply that *G* is a metabelian 5-group of maximal class, generated by two elements $G = \langle x, y \rangle$, such that, $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \gamma_2(G)$. Since $\chi_2(G) = \langle y, \gamma_2(G) \rangle$, we have $\chi_2(G) \neq H$. Otherwise we get that $|H/\gamma_2(H)| = 5^2$ which control of $\chi_2(G) \setminus \gamma_2(G)$. $|H/\gamma_2(H)| = 5^2$, which contradict Theorem 3.

According to Theorem 5, we have $h_5(L_1) = h_5(L_2) = 1$, then the transfers $V_{H_{L_i} \to \gamma_2(G)}$ are trivial.

If
$$\chi_2(G) = H_{L_i}$$
 the results are nothing else than Proposition 1

If $\chi_2(G) = \tilde{H}$ and n = 4 then $\gamma_4(G) = 1$ and $[\chi_2(G), \gamma_2(G)] = \gamma_2(\tilde{H})$, also $[\chi_2(G), \gamma_2(G)] = \gamma_4(G) = 1$ then $\chi_2(\tilde{H}) = 1$, whence \tilde{H} is abelian. Consequently $\tilde{H}/\gamma_2(\tilde{H}) = C_{\tilde{L},5}$, so $h_5(\tilde{L}) = |\tilde{H}| = 5^3$ because its a maximal subgroup of G. Since \tilde{L} and k have always the same conductor, we deduce that $h_5(k)$ and $h_5(\tilde{L})$ verify the relations $5^5h_{\tilde{L}} = uh_{\Gamma}^4$ and $5^5h_k = uh_{\Gamma}^4$. given by C. Parry in [16], where u is a unit index and a divisor of 5⁶. Using the 5-valuation on these relations we get that $h_5(\tilde{L}) = 5^s$ where s is even, which contradict the fact that $h_5(\tilde{L}) = 5^3$, hence $n \ge 5$.

The results of the theorem are exactly application of Propositions 2, 3.

According to Proposition 2, if $n \ge 7$ we have $|\chi_2(G)| = 5^{n-1}$ and since $h_5(\tilde{L}) = |\tilde{H}/\gamma_2(\tilde{H})| = |\tilde{H}| = 5^{n-1} = 5^s$, we deduce that n = s + 1.

4 Proof of Main Theorem

Let k be the normal closure of $\Gamma = \mathbb{Q}(\sqrt[5]{n})$ having elementary abelian bicyclic 5-class group $C_{k,5}$ of type (5,5). the subgroup $C_{k,5}^{(\sigma)}$ of $C_{k,5}$, of ambiguous ideal classes under the action of $Gal(k/k_0) = \langle \sigma \rangle$ has rank 1 or 2. If rank $C_{k,5}^{(\sigma)} = 1$, then the relative genus field k^* is a quintic cyclic extension of k.

Let $M = Gal((k^*)_5^{(2)}/k_0)$ and let $R = Gal((k^*)_5^{(2)}/k)$ be a normal maximal subgroup of M, whose commutator $\gamma_2(R) = Gal((k^*)_5^{(2)}/k_5^{(1)}).$ Then by Artin reciprocity low [1], we get that $R/\gamma_2(R) \simeq Gal(k_5^{(1)}/k) \simeq C_{k,5}$ of type (5,5), which means that $|R/\gamma_2(R)| = 5^2$, hence by Lemma 1, M is a 5-group of maximal class. We have that $\gamma_2(M) = Gal((k^*)_5^{(2)}/k^*)$ and $\gamma_3(M) = Gal((k^*)_5^{(2)}/(k^*)_5^{(1)})$, which imply that $M/\gamma_2(M) = Gal(k^*/k_0)$ of

type (5,5) and $\gamma_2(M)/\gamma_3(M) = Gal((k^*)_5^{(1)}/k^*)$. Since *M* is of maximal class, rank $\gamma_2(M)/\gamma_3(M) \le 2$, consequently $\gamma_3(M)$ can be generated by two elements. By [[4], Theorem 2.1], we deduce that $\gamma_2(M)$ is abelian, therefore $\gamma_3(M) = 1$, hence $(k^*)_5^{(1)} = (k^*)_5^{(2)}$, and since $(k^*)_5^{(1)} \subset k_5^{(2)} \subset (k^*)_5^{(2)}$, we conclude that the Hilbert 5-class field tower of k must stop at the second stage, which means that the length of the tower is 2.

D. C. Mayer in [[12], Section 3.1] has studied the structure of the coclass graph on the set of all isomorphism classes $G \sim G_a^{(n)}(z, w)$ of finite *p*-groups *G* of maximal class. By means of the position of $G \sim G_a^{(n)}(z, w)$ in the coclass graph we can determine the possible cases of its maximal subgroups. Since $(k^*)_5^{(1)} = k_5^{(2)}$ then the second 5-class group of *k*, $G_k^{(2)} = Gal(k_5^{(2)}/k)$, is a maximal subgroup of $G = Gal((k^*)_5^{(1)}/k_0) = Gal(k_5^{(2)}/k_0)$ of index 5. The results of Theorem 6, and the distribution of metabelian 5-groups of

maximal class given in [[12], Figure 3.3], allow us to know all possible cases of $G_k^{(2)}$, as follows:

-If
$$G \sim G_a^{(n)}(z,0)$$
 with $n \in \{5,6\}$ and $a, z \in \{0,1\}$ then $G_k^{(2)} \sim G_0^{(n)}(0,0)$ with $n \in \{4,5\}$
-If $G \sim G_a^{(n)}(0,0)$ with $n \in \{5,6\}$ then $G_k^{(2)} \sim G_0^{(n-1)}(0,0)$
If $G \sim G_0^{(n)}(0,0)$ with $n \ge 7$ then $G_k^{(2)} \sim G_0^{(n-1)}(0,0)$

We see that all these cases of $G_k^{(2)}$ satisfy w = z = 0.

By the Galois correspondence $H_i = Gal(k_5^{(2)}/K_i)$, the six maximal normal subgroups $H_1, ..., H_6$ of $G_k^{(2)}$ are associated with the six unramified cyclic quintic extensions $K_1, ..., K_6$ of k, which are represented by the norm class groups Norm_{Ki/k}($C_{K_i,5}$) as subgroups of index 5 in $C_{k,5}$ according to [1]. The abelianizations of the H_i are isomorphic to the 5-class groups of the K_i , because,

$$H_i/\gamma_2(H_i) = Gal(k_5^{(2)}/K_i)/Gal(k_5^{(2)}/(K_i)_5^{(1)}) \simeq Gal((K_i)_5^{(1)}/K_i) \simeq C_{K_i,5}$$

We are interested in the capitulation of ideal classes of $C_{k,5}$ in $C_{K_i,5}$. Therefore, we investigate the kernel of the class

extension homomorphism $j_{K_i/k}: C_{k,5} \longrightarrow C_{K_i,5}$.

We say that we have total capitulation if $Ker(j_{K_i/k}) = C_{k,5}$ and partial capitulation otherwise.

According to Artin [2], the following commutative diagram establishes the connection between the number theoretical extensions $j_{K_i/k}$ of 5-class groups and the group theoretical transfers $V_{G_{k}^{(2)} \to H_i} = V_i$,

The commutativity of this diagram shows that $Ker(j_{K_i/k}) \simeq Ker(V_i)$ for $1 \le i \le 6$.

According to Theorem 4, the image of the transfer V_i is $V_i(g\gamma_2(G_k^{(2)})) = s_{n-1}^{wj+zl}\gamma_2(H_i)$, where $g \equiv x^j y^l (\operatorname{mod} \gamma_2(G_k^{(2)}))$ and $G_k^{(2)} = \langle x, y \rangle$. Since for all possible cases of $G_k^{(2)}$ we have z = w = 0, then all images of the transfers are trivial, $V_i(g\gamma_2(G_k^{(2)})) = 1$, for all $g \in G_k^{(2)}$ and $1 \le i \le 6$. Thus we have $Ker(V_i) = G_k^{(2)}/\gamma_2(G_k^{(2)})$, which means that $Ker(j_{K_i/k}) = C_{k,5}$. Hence we have total capitulation of $C_{k,5}$ in the six cyclic quintic unramified extensions of k.

5 Numerical Examples

For these numerical examples of the natural *n*, we have that $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$, which means that k^* is cyclic quintic extension of *k*. Hence by Theorem 1, the length of the 5-class field tower of *k* is 2, and there is total capitulation of $C_{k,5}$ in the six cyclic quintic unramified extensions of k. We note that the absolute degree of $(k^*)_5^{(1)}$ surpass 100, then the task to determine the order of G is definitely far beyond the reach of computational algebra systems like MAGMA and PARI/GP.

п	$h_{k,5}$	$C_{k,5}$	rank $(C_{k,5}^{(\sigma)})$	п	$h_{k,5}$	$C_{k,5}$	rank $(C_{k,5}^{(\sigma)})$
118	25	(5,5)	1	1999	25	(5,5)	1
145	25	(5,5)	1	2007	25	(5,5)	1
449	25	(5,5)	1	2507	25	(5,5)	1
475	25	(5,5)	1	2725	25	(5,5)	1
559	25	(5,5)	1	6725	25	(5,5)	1
718	25	(5,5)	1	7375	25	(5,5)	1
818	25	(5,5)	1	7493	25	(5,5)	1
1018	25	(5,5)	1	28625	25	(5,5)	1
1195	25	(5,5)	1	55625	25	(5,5)	1
1249	25	(5,5)	1	168125	25	(5,5)	1
1499	25	(5,5)	1	149^{2}	25	(5,5)	1
1945	25	(5,5)	1	199 ³	25	(5,5)	1

Table 1: $k = \mathbb{Q}(\sqrt[5]{n}, \zeta_5)$ with $C_{k,5}$ is of type (5,5) and rank $C_{k,5}^{(\sigma)} = 1$.

Declarations

Competing interests: The authors declare that they have no competing interests

Authors' contributions: FOUAD ELMOUHIB and MOHAMED TALBI proved the main results of the paper and ABDELMALEK AZIZI examined organisation and language. All authors read and approved the final manuscript Funding: There is no sources of funding for the paper

Availability of data and materials: There is no materials used in the realization of the paper

Acknowledgments: The authors would like to thank the referees for the thoughtful comments and efforts towards improvingour manuscript.

References

- [1] E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg, 5, (1927), 353-363.
- [2] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 46-51.
- [3] Y. Berkovich, Groups of prime power order, Volume 1, de Gruyter, Expositions in Mathematics, 46, 2008.
- [4] N. Blackburn, On prime-power groups with two generators, Proc. Camb. Phil. Soc, 53, (1958), 327-337.
- [5] N. Blackburn, On a special class of p-groups, Acta Math, 100, (1958), 45-92.
- [6] F. Elmouhib, M. Talbi, and A. Azizi, 5-rank of ambiguous class groups of quintic Kummer extensions, *Proc Math Sci 132*, 12 (2022). https://doi.org/10.1007/s12044-022-00660-z
- [7] F. Gerth III, On 3-class groups of cyclic cubic extensions of certain number fields, J.Number Theory, 8, (1976), 84-98.
- [8] M. Kulkarni, D. Majumdar, B. Sury, *l*-class groups of cyclic extension of prime degree *l*, *J. Ramanujan Math. Soc.* **30**, (2015), 413-454.
- [9] C. R. Leedham-Green and S. McKay. The structure of groups of prime power order, *London Math. Soc. Monographs*, New Series, 27, Oxford Univ. Press, 2002.
- [10] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math, 166, (2012), 467-495.
- [11] D. C. Mayer, The second *p*-class group of a number field, Int. J. Number Theory, 8, (2012), 471-505.
- [12] D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théorie des Nombres Bordeaux, 25, (2013), 401-456.
- [13] R. J. Miech, Metabelian p-groups of maximal class, Trans. Amer. Math. Soc, 152, (1970), 331-373.
- [14] R. J. Miech, The metabelian p-groups of maximal class, Trans. Amer. Math. Soc, 236, (1978), 93-119.
- [15] B. Nebelung, Klassiffication metabesher 3-gruppen mit Faktorkommutatogruppe von typ (3,3) und anwendung auf das Kapitulationsproblem, *doctoral thesis*, (1989), Kolon.
- [16] C. Parry, Class number relations in pure quintic fields, Symposia Mathematica, 15, (1975), 475-485.
- [17] The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr.