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1 Introduction
Let k be an algebraic number field and Cj 5 its 5-class group, that is the 5-Sylow subgroup of its class group C;. Let kgl)
be the Hilbert 5-class field of k, that is the unramified abelian maximal extension of k for finite and infinite primes. Put

k§0) =k and by kgiﬂ) we denote the Hilbert 5-class field of kgi) for any natural i > 0. Then the sequence of fields
=k crV kP ..kl c.....
is called the 5-class field tower of k. If forall i > 1, kgl) #+ kglﬂ), the tower is said to be infinite, otherwise the tower is said

to be finite, and the minimal natural i such that kgi) = kgiﬂ) is called the length of the tower.

The task to determine whether or not the 5-class field tower of a number field k is finite, is until nowday a classical and

difficult open problem of class field theory. Although, we have that if the rank of Ck“) 5 < 2, then by means of group
5 9

theory, the length of the tower is at most 2 [4].

Our contribution in this paper is to determine the length of the 5-class field tower and to investigate the capitulation
problem for some families of pure metacyclic fields, which are the normal closure of a pure quintic fields. The novelty in
this procedure is the combination of some results of 5-group theory and triviality of 5-class numbers of some fields.

Let I = Q(+/n) be a pure quintic field, where n is a 5 power-free natural number and ko = Q({s) be the 5 cyclotomic

field, then k = Q(+/n, {s) is the normal closure of I', and a pure metacyclic field of absolute degree 20. By C,E?

the subgroup of ambiguous ideal classes under the action of Gal(k/kg) = (o).
The aim of this paper is to investigate the 5-class field tower of k and the capitulation of the 5-ideal classes of k in its

six cyclic quintic unramified extensions within the Hilbert 5-class field kél) of k, whenever Cy 5 is of type (5,5) and rank

we denote

C ,E? = 1. Our main theorem is the following.

Theorem 1.Let ko be the 5" cyclotomic field and k be the normal closure of a pure quintic field. Suppose that the 5-class
group Cys of k is of type (5,5) and the rank of ambiguous ideal classes C,E? under the action of Gal(k/ko) = (o) is 1,

then the length of the 5-class field tower of k is 2. Furthermore there is a total capitulation of Cy 5 in the all unramified
quintic cyclic extensions of k.
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The computational number theory system PARI/GP [17] allowed us to underpin this results by numerical examples.

2 Some Results of Group Theory

Let G be p-groupe and 1»(G) = [G, G] be its commutator group. G is called metabelian if 95(G) is abelian. The Frattini
subgroup ¢(G) of G is the intersection of all maximal subgroups of G [[3], page 25, Definition 1]. The subgroup G? of
G, generated by the p'" powers is contained in 9% (G), which as a result, coincides with the Frattini subgroup ¢(G) =
G?%(G) = 1»(G). By the basis theorem of Burnside [[3], Theorem 1.12], every minimal system of generators of G
contains exactly d elements with p is the order of G/¢(G). In the case of G/%(G) is of type (p, p), the group G =< x,y >
can be generated by two elements x and y. If we declare the lower central series of G by

n(G)=G
vi(G) = [1j-1(G), Gl for j > 2,

By [[5], Corollary 2] we have Kaloujnine’s commutator relation [y;(G), % (G)] C ¥j+:(G), for j,I > 1, and for an index
of nilpotence ¢ > 2 the series

G=7%(G) D%(G) D ... 2%(G) D ¥+1(G) =1

becomes stationary.

The coclass cc(G) of a p-group G of order p" and nilpotency class ¢ is defined as cc(G) =n—c. If cc(G) = 1, then G is
called of maximal class.
The two-step centralizer

x2(G) ={g € G|[g,u] € 1a(G)forallu € p(G)}

of the two-step factor group 1 (G)/7(G), that is the largest subgroup of G such that [x2(G),1(G)] C %(G). It is
characteristic and contains the commutator subgroup »(G). If G is of maximal class and order p", according to [[9],
Proposition 3.1.4] and [[5], Lemma 2.5] we have that x»(G) is maximal normal subgroup of G for n > 4 Moreover
%2(G) coincides with G if and only if n = 3, because if n = 3, then 95 (G) is central and y4(G) is trivial, so x2(G) = G. If
G is not of maximal class then the "only if" clause fails, as clearly any group of class at most two will have 1> (G) central
and 14 (G) trivial, so x2(G) =G.

Let k = k(G), the isomorphism invariant of G, be defined by [¥2(G),%(G)] = ¥%—«(G), where k = 0 for n = 3 and
0<k<n-—4ifn>4, alsoforn> p+ 1 wehave k =min{n—4,p—2}[[13], p.331].

k gives a measure for the deviation from the maximal degree of commutativity [x2(G),1>(G)] = 1 and is called defect of
commutativity of G.

With a further invariant e, it will be expressed, which factor ¥;(G)/7;j+1(G) is cyclic for the first time in the lower central
series [15], and we have e+ 1 = min{3 < j < c[1 <|¥;(G)/Vj+1] < p}.

In this definition of e, we exclude % (G)/73(G), since is always cyclic. The value e = 2 is characteristic for a group G of
maximal class. For e > 3, that is for G of «coclass c¢c(G) > 2, we can also define
e=max{3 < j <c—1]|yj(G)/¥j+1| > p} [[11], Definition 2.2].

2.1 On the 5-class group of maximal class

Let G be a metabelian 5-group of order 5", and cc(G) = 1. Then G is of maximal class and the commutator factor G/ (G)
is of type (5,5) [13].

By G ~ G,(I") (z,w), we denote the representative of an isomorphism class of metabelian 5-groups G, with a system of
invariants z, w and a, which satisfy the theorem:

Theorem 2.Let G be a metabelian 5-group of order 5" where n > 5 and k = k(G) its invariant defined before. Suppose
that G is of maximal class, then G can be generated by two elements, G =< x,y >, be selected such that x € G\ }2(G)
and y € 22(G) \ 12(G).

Let s; = [y,x] € »(G) and sj = [sj_1,x] € ¥;(G) for j > 3. Then we have:

5.0 10 5 _ .
=S85 1057438 +4 = 1 for j > 2.
-0 =5 withw € {0,1,2,3,4}.

5305105355 = sv_ withz€{0,1,2,3,4}.
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k )
—[,s2] =11 SZ":I.‘ with a = (ap—1,...a,_y) exponents such that 0 < a,_; < 4.
i=1

Proof.See [[14], Theorem 1] for p = 5.

Let G = (x,y) be a metabelian 5-group of maximal class and order 5", such that G/»(G) is of type (5,5), then G admits
six maximal normal subgroups Hj, ..., Hg, which contain »(G) as a normal subgroup of index 5. We have that x»(G) is
one of the groups H;.

We keep that x € G\ %2(G) and y € x2(G) \ %2(G). The six normal maximal subgroups Hj, ..., He are arranged as follows:
Hy = (y,1(G)) = 22(G). Hi = (xy*,12(G)) for 2 < i <6.

The order of the abelianization of each H;, is given by the following theorem.

Theorem 3.Let G, H; and the invariant k be as before. Suppose that the commutator group ¥ (G) is abelian. Then for
1 <i <6, the order of the commutator factor groups of H; is given by:

~Ifn=2we have : |H;/(H;)| =5 for 1 <i<6.
—Ifn >3 we have : |H;/»(H;)| =5 for2 <i< 6, and |H,/p(H;)| = 5" !

Proof:See [[11], Theorem 3.1] for p = 5.

Lemma 1.Lez G be a 5-group of order |G| = 5" where n > 3, with abelian commutator group 1 (G). Assume that G/ (G)
is of type (5,5). Then G is of maximal class if and only if G admits a normal maximal subgroup with factor commutator
of order 5%. Furthermore G admits at least five normal maximal subgroups with factor commutator of order 5>.
Proof.Suppose that G is of maximal class, then according to Theorem 3, we conclude that G has five maximal normal
subgroups with the order of commutator factor is 52 if n > 4, and has six when n = 3. Conversely, Assume that cc(G) > 2,

the invariant e defined before is greater than 3, and since each maximal normal subgroup H of G verify |H/y:(H)| > 5¢
we get that |H/p(H)| > 5°

2.2 On the transfer concept
Let G be a group and let H be a subgroup of G. The transfer from G to H, denoted V;_ g, can be decomposed as follows:

G - H/y(H)

VG%H

G/7(G)

Definition 1.Let G be a group, H be a normal subgroup of G, and let g € G such that, f is the order of gH in G/H,

r= @ and gy, ....gr be a representative system of G/H modulo (gH), then the transfer from G to H is defined by:

VG—>H N G/'J/Q(G) — H/’)/z(H)
en(G) — I & "¢/ gim(H)

according to [[2], p50].
In the special case that G/H is a cyclic group of order 5 and G = (h, H), then the transfer Vs_, 5 is given as:

(1) If g € H, we have Vg _u (g2(G)) = g 7 +h ity (1)
(2) Voosu (hp(G)) = By (H)

Let G be a 5-group of maximal class, with G/7>(G) is of type (5,5), we keep that x € G\ x2(G) and y € x2(G) \ (G).
The six maximal normal subgroups Hj, ..., H are arranged as follows: H; = (y,5(G)) = x2(G), H; = (xy'~2,%(G)) for
2 <i < 6. The image of the transfers from G to its six normal maximal subgroups H;, 1 <i < 6, is given by the following
theorem:
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Theorem 4.Let G = (x,y) be a metabelian 5-group of maximal class of order 5", where n > 3, and H;, 1 <i < 6 are its
six maximal normal subgroups. Assume that x and'y are selected such that x € G\ Y2(G) andy € x2(G)\ %2(G), and the
relations of Theorem 2 with exponents w, z are satisfied. Suppose that the cosets gv:(G) € G/1(G) are represented in the
form g = x/y! (mod 15 (G)) with 0 < j,1 < 4, then the images of the transfers V_,u, are given by:

Vo, (Y5 (G)) = stTZlyz(Hi)for 1<i<eé6.

Proof.See [[10], Theorem 2.2] for p = 5.

2.3 Invariants of metabelian 5-group of maximal class

In this paragraph, we investigate the purely group theoretic results to determine the invariants of metabelian 5-group of
maximal class developed in Theorem 2. We keep the same hypothesis of the group G, the generators x and y of the group
G = (x,y), and the six normal maximal subgroups H;, 1 <i <6, of G.

In the case that the transfers from two subgroups H; and H; to % (G) are trivial, we can determine completely the 5-group
G.

Proposition 1.Let G be a metabelian 5-group of maximal class and order 5", n > 5. If the transfers Vy, )y (c) and
Vi, sy (G) are trivial, then n < 6 and 1(G) is of exponent 5. Furthermore:

~Ifn==06then G ~ G(é)( ,0) where a =0 or 1.
~Ifn=>5then G ~ Gg)( 0) where a =0 or 1.

ProofLet s, z,w and a defined as Theorem 2. Suppose that n > 7, 50 75(G) = (s5,%(G)), because G is of maximal class and
1%5(G)/%(G)| = 5. By [[5], Lemma 3.3] we have y°ss € ¥%/(G), thus 15(G) = (s2,%(G)) = (y°s55%,%(G)) = (°, %(G)),
and since Vi, (G)—p(6) (V) = y> = 1, because the transfers are trivial by hypothesis, we get that y5(G) = %(G), which is
impossible, whence n < 6 and According to [[5], Theorem 3.2], }»(G) is of exponent 5.

If n =6, we have Vy, (G)—p(G) and Vi, () are trivial, so by Theorem 2 we obtain x° = sy =1 which imply w = 0,

because 0 <w < 4. Smce 12(G) is of exponent 5, we have 52 =1 and by Theorem 2 the relation siséoséos%Sg =1 gives

53 = 1, also 83s4%s105357 = 1 gives 53 = 1. We replace in y’s3°si%s;s5s = s¢ and we get s5 = 5%, whence z = 1. We have
[12(G),12(G)] C %6-_+(G) C 14(G) then 6 —k >4, and 0 < k < 2, thus [y,s7] = sffﬂ, a=(a,B). If k=0, then a =0 and
G~GY(1,0),ifk=1thena=1and G~ G\ (1,0) and if k = 2 then G ~ G\ (1,0).

If n =35, we have [x2(G),%2(G)] C 15_+(G) C 74(G) then 5—k >4, and 0 < k < 1. We have s; = 1, s = 53 = 1 and

[V, 5] = 5¢. the relation y*s10s10s3s5 = s3 imply 55 = 1 50 z = 0. As n = 6 we obtain w = 0. If k = 0 then G ~ G| (0,0)

andifk =1 G~ GS(0,0).

Proposition 2.Let G be a metabelian 5-group of maximal class and order 5", n > 5. If the transfers Vy, .y, ) and
VH,'*)}Q(G)’ 3 <i <6, are trivial, then we have:

—Ifn=>5 or 6 then G ~ G (0,0).
—Ifn > 17 then G ~ G§"(0,0) .

Proof.Let s,z,w and a defined as Theorem 2. If n =5 or 6, by [[5], Theorem 1.6] we have [x2(G),7%2(G)] = 1 and

2 (G), 72( )] € %(G) elementary, and (%(x2(G)))’ = 1 and [[,[%(G),%-i(G)] = 1, we conclude that
(xy)’ = Xy séoséosig and we have ysséos%0s255 = s-_, then (xy)’ = xssn_l and since Vy, ,y,(G) and Vi, () are
trivial then (xy)° =x> =s° | =5, =1, thus z=w = 0. Since [}2(G),$2(G)] = %—«(G) C %(G) we have n —k > 4,
whenceO§k§Zbecausen:50r6thenG~Gé )( 0,0).

If n > 7, according to [[5], corollary 1 p.69] we have, yj(G)S = ¥j+4(G) for j > 2, and since ySSioséosf‘g =5, we
obtain:

V= 52_155—15;533—10 550 =5 155_1 modys(G)

because 53 € %(G), 53 € %(G) and s, € %(G), and since n > 7 we have s,.1 € ¥%(G), therefore
V=V pc) ) = s5 ' mod¥(G). Thus Im(V) C %5(G), In fact Im(V) = 5(G), and also we have y ¢ Ker(V) and
Vf>2 yksﬁp ¢ Ker(V). The kernel of V is formed by elements of 7»(G) of exponent 5, its exactly 1,—4(G), and since G is

of maximal class then the rank of %(G) is 2 and 7»(G) admits exactly 25 elements of exponent 3, these elements form
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1h-4(G). We conclude that |22(G)/%(%2(G))| = [1a-4(G)| x [15(G)| = 5% x 5" = 5""1 = |2(G)], (G) is

abelian because % (x2(G)) = 1, consequently [y,s;] = 1, thus @ = 0. As the cases n = 5 or 6 we obtain (xy)’ = x5’
therefore z =w = 0, hence G ~ G(()") (0,0).
In the case when VHzﬁyz(G) and Vg (G, 4 < i < 6 are trivial, according to [[5], Theorem 1.6] we have

(oyH)® =3 (5752051053 s5)H = s s8¢ | with u = 2,3,4, then we can admit the same reasoning to prove the result.

n—1°

Proposition 3.Let G be a metabelian 5-group of maximal class of order 5", n > 5. If the transfers Vy,_,y, ) and Vi —p(G)
where i, j € {3,4,5,6} and i # j, are trivial, then we have: G ~ G(()”) (0,0).

ProofLet s,z,w and a defined as Theorem 2. Assume that H; = (xy*!,7%(G)) and H; = (xy*2,75(G)) where u;,us €

{1,2,3,4} and y; # Uy. According to [[5], Theorem 1.6] we have already proved that (xy"1)> = W+“ “and (xy?2)° =

WHRT Since Vi, (6) and Vi, () are trivial, we obtain s WHIT — THRE — ] then wt iz = w+ l.lzz = 0(mod5) and

since 5 does not divide u; — U, we get z =0 and at the same time w = O To prove a = 0 we admit the same reasoning as
Proposition 2.

N

3 Realisation of Metabelian 5-Group of Maximal Class

Let k be the normal closure of a pure quintic field I' = Q(/n), where n is a 5" power-free natural number. Let

= Q(&s) be the 5 cyclotomic field. Since k = Q(&s, /1) = ko(+/n), we have that k is a cyclic Kummer extension of
degree 5 of kg. By k* = (k/ko)* we denote the relative genus field of k/ko, that is the maximal unramified extension of k
and abelian on ko. Let Cy 5 be the 5-class group of k. By class field theory, k* is contained in the Hilbert 5-class field of £,

and [k* : k] = 5", where ¢ is the rank of the subgroup C,E? of ambiguous classes under the action of Gal(k/ko) = (o) [[7],
Lemma 2.3]. ’

According to [[8], Proposition 5.8], we have the explicit form of k*, depending on the decomposition of n in k.

Let p and g be a prime numbers such that p = —1(mod5) and ¢ = £2(mod5). According to [[6], Theorem 1.1,

Conjecture 4.1], if Cy 5 is of type (5,5) and rank C,E? = 1, we have three forms of the natural number 7 as follows:

-n = 5°pwithe € {1,2,3,4} and p Z —1 (mod25).
-n = p°q = £1+£7(mod25) withe € {1,2,3,4}, p Z —1(mod25) and ¢ £ +7 (mod25).
-n = p¢ = £1£7(mod25) with e € {1,2,3,4} and p = —1(mod?25).

Under these hypothesis, the extension k*/ko has order 25 and admits six sub-extensions, where k is one of them,
determined explicitly as follows:

(o)

Proposition 4.We keep the same hypothesis on k, k*, Cy 5 and C, 5. Then we have:

~If n = p = —1(mod25), then the six sub-extensions of (k/ko)*/ky are: k, ko(\s/n?la‘ m?), ko(\/ a‘“ﬂéxﬁl),

ko(\/n{xl+2ﬂ2062+2), ko(\/nfxl+3n2062+3) andk ( 5/ 061+47_c2062+4)

~If n = p°q with p # —1(mod25) and q % £7(mod25), then the six sub-extensions of (k/ko)* /ko are: k, ko({/ 7" q),

kO(\/anral”zqz)’ ko (\/”126+a17rzq ), ko(y/ 7 N w5 q*) and ko(§) 7T S).
-If n = 5% with p % —1(mod25), then the six sub-extensions of (k/ko)*/ko are: k, ko({/Aem ny?),

ko( S/AQeﬂflalﬂngZH) ( mgnaﬁzngﬁz) ( 5/l4e7tlal+37t32+3), ko( 5 7tlal+47t32+4).

Where oy, 0p,e € {1,2,3,4} with o # 0, 7|, T, are primes of ko above p such that p = w7y and A = 1 — s is the
unique prime of ko above 5.

Proof..
-If n = p = —1(mod25), according to the proof of [[8], Theorem 5.15] we have k* = k({/ nfx‘ 7r2az) with a # o5, then
k* = ko(/mim, {/ ﬂfx 1 ﬂg 2), because p = m T in ko, hence the six sub-extensions given are proved.
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—If n = p°q with p Z —1(mod25) and ¢ # +7(mod25), according to [[8], Proposition 5.8] we have k* = k( \S/E)
since p = my M and q is inert in kg. Then k* = ko(f/ﬁ7 \S/E), so we get the six sub-extensions by calculus.

-If n = 5¢p with p # —1(mod25), by the proof of [[8], Theorem 5.15], we have k* = k({/ 7L€77: 7172 %), o # 0. Since
n=5p=(A%emm = A¢mm in ko, then (k/ko)* = ko(YAm 73, { Aem ' w5?), hence the six sub-extensions given
are proved.

By means of the explicit forms of the six sub-extensions of k* /ky given by Proposition 4, we can state the following
theorem:

Theorem 5.Let k = Q(/n, s) be the normal closure of Q(/n). Let ko be the the 5" cyclotomic field. Suppose that the
5-class group Cys of k is of type (5,5) and rank C,Ec? =1, then Gal(k* /ko) is of type (5,5), and two sub-extensions of
k* /ko admit a trivial 5-class number.

Proof.Since Cy s is of type (5,5) and rank C,E? = 1, then by class field theory, we have [k* : k] =5, whence Gal (k* /ko) is
of type (5,5).

—If n = p = —1(mod25) the six sub-extensions of k* /kg are k, ko({/ " 752), ko({/ 7 a‘“ﬂéxﬁl) ko(+ ﬂf‘ﬁzﬂ;@”)

ko(% nf‘1+37r;‘2+3) and ko({/ al+4n§‘2+4) with e, a1, € {1,2,3,4}, and ) # . For each values of o and o,
we can see that the extensions L; = ko(+/7) and Ly = ko(~/72) are sub-extensions of k*/ko.

In [[8], section 5.1], we have a detailed investigation of the rank of ambigous classes of ko(+/x)/ko denoted . Precisely,
we have t = d + ¢g* — 3, where d is the number of prime divisors of x in kg, and ¢* is an index of units defined as [[8],
section 5.1].

For the extensions L;/ko, (i = 1,2) we have d = 1, and by [[8], Theorem 5.15] we have ¢* = 2, hence r = 0.

—If n = pq with p Z —1(mod25) and g # £7(mod25) then the six sub-extensions of k*/ko are: k, ko({/7"q),

ko(3/ 7T meq?), ko({/ TN meqd), ko(/m TN reqt), ko({/m{T ¥ mg). For the four extensions k
ko({/ 7T mq?), ko(}) n12e+a1 m5g3) and ko(y/ 3eJrO”nzq“), we have d = 3 and by [[8], Theorem 5.14] we have
q* = 1,501 = 1. For the extensions ko({/7*"® %) and ko({/7™¢) we have d =2 and also ¢* = 1,50 = 0.

~If n =5°p with p Z —1(mod25), then the six sub-extensions of k* /k are: k, ko(f/leﬂlal ny?), ko(i/lzeﬂlaﬁl 77:20’2Jrl ),
ko(/A3emM 2ot ko (3/ Adem® P a2 ko () m T g .

Since @ # @, we get that ko({/ 7 %) and ko(\/le MY with i, j € {1,2,3,4} and i # j, are among the six. We see that
these two extensions admit the value r = 0.

In short, we just proved that if Cy 5 is of type (5,5) and rank C,Eg) =1, then two sub-extensions, denoted L; and L,, of
k* /ko admit O as value of rank of the subgroup of ambiguous classes.

By hs(L;), (i = 1,2), we denote the class number of L;, then we have hs(L;) = hs(L,) = 1. Otherwise hs(L;) # 1, then
there exists a cyclic unramified extension of L;, denoted F. We have that F is abelian over ko, as [F : ko] = 52, then F
is contained in (L;/ko)* the relative genus field of L;/kq. Since [(L;/ko)* : L] = 5" = 1, we get that (L; /ko)* = L;, which
contradicts the existence of F. Hence the 5-class number of L;, (i = 1,2), is trivial.

In the sequel, we denote by L; and L, the two sub-extensions of k* /kg, which verify Theorem 5, and by L the three
remaining sub-extensions different to k.
Let G = Gal((k*)(I /ko), we have %(G) = Gal((k* /k*), then G/ (G) = Gal(k* /ky) is of type (3,5), therefore G is
metabelian 5-group with factor commutator of type (5,5), thus G admits exactly six maximal normal subgroups as
follows:

H = Gal((k* /k) Hp, = Gal((k* /L (i=1,2), H= Gal((k") /L)
With x2(G) is one of them.

Theorem 6.Let G = Gal((k ) /ko) be a 5-group of order 5", n > 5, then G is metabelian of maximal class. Furthermore
we have:
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- If 12(G) = Hy,(i = 1,2) then: G ~ G (z,0) with n € {5,6} and a,z € {0,1}.
- If 32(G) = H then : G ~ G (0,0) with n =5 or 6.
G~ G(()")(0,0) with n > 7 such that n = s+ 1 where hs(L) = 5°.

ProofLet G = Gal((k*)gl)/ko) and H = Gal((k*)gl)/k) its maximal normal subgroup, then

©(H)= Gal((k*)gl)/kgl)), therefore H/ v, (H) = Gal(kgl)/k) ~ Cy 5, and as Cy 5 is of type (5,5) by hypothesis we get that
|H /7> (H)| = 5°. Lemma 1 imply that G is a metabelian 5-group of maximal class, generated by two elements G = (x,y),
such that, x € G\ x2(G) and y € x2(G) \ 12(G). Since x2(G) = (y,12(G)), we have x2(G) # H. Otherwise we get that
|H /v (H)| = 5%, which contradict Theorem 3.

According to Theorem 5, we have hs(L;) = hs(L,) = 1, then the transfers Vi, (G) are trivial.

If x»(G) = H, the results are nothing else than Proposition 1.

If %2(G) = H and n = 4 then %(G) = 1 and [x2(G), (G)] = 1(H), also [x2(G),»(G)] = 1(G) = 1 then x»(H) = 1,
whence H is abelian. Consequently /7 (H) = Cj 5, so hs(L) = |H| = 5° because its a maximal subgroup of G. Since L
and k have always the same conductor, we deduce that /5 (k) and hs(L) verify the relations 5°h; = uh}- and 5°hy = uhf-,
given by C. Parry in [16], where u is a unit index and a divisor of 5. Using the 5-valuation on these relations we get that
hs(L) = 5° where s is even, which contradict the fact that s5(L) = 5°, hence n > 5.

The results of the theorem are exactly application of Propositions 2, 3.

According to Proposition 2, if n > 7 we have |,(G)| = 5"~ ! and since hs(L) = |H/p(H)| = |[H| = 5"~ = 5%, we deduce
thatn =s+ 1.

4 Proof of Main Theorem

Let k be the normal closure of I' = Q(y/n) having elementary abelian bicyclic 5-class group Ci s of type (5,5). the

subgroup C,Eg-) of Cy 5, of ambiguous ideal classes under the action of Gal(k/ky) = (o) has rank 1 or 2. If rank C,Eg) =1,
then the relative genus field £* is a quintic cyclic extension of k.

Let M = Gal((k*)gz) /ko) and let R = Gal((k*)gz) /k) be a normal maximal subgroup of M, whose commutator
©(R) = Gal((k*)gz)/kgl)). Then by Artin reciprocity low [1], we get that R/9(R) ~ Gal(kgw/k) ~ Cy 5 of type (5,5),
which means that R/ (R)| = 52, hence by Lemma 1, M is a 5-group of maximal class .

We have that 1% (M) = Gal((k*)?) /k*) and 15(M) = Gal((k*){? /(k*)")), which imply that M/1,(M) = Gal(k* /ko) of
type (5,5) and p(M)/ (M) = Gal((k*)gl)/k*). Since M is of maximal class, rank % (M)/y3(M) < 2, consequently
13(M) can be generated by two elements. By [[4], Theorem 2.1], we deduce that 1> (M) is abelian, therefore y3(M) = 1,
hence (k*)gl) = (k*)gz), and since (k*)gl) C kgz) C (k*)gQ), we conclude that the Hilbert 5-class field tower of k must stop

at the second stage, which means that the length of the tower is 2.

D. C. Mayer in [[12], Section 3.1] has studied the structure of the coclass graph on the set of all isomorphism classes
G~ Gg") (z,w) of finite p-groups G of maximal class. By means of the position of G ~ ng) (z,w) in the coclass graph we

can determine the possible cases of its maximal subgroups.
Since (k*)gl) = kgz) then the second S5-class group of k, G,(f) = Gal(kgz)/k), is a maximal subgroup of
G = Gal ((k*)gl) /ko) = Gal (ng) /ko) of index 5. The results of Theorem 6, and the distribution of metabelian 5-groups of
maximal class given in [[12], Figure 3.3], allow us to know all possible cases of G,(f), as follows:
—If G ~ G (z,0) with n € {5,6} and a,z € {0, 1} then G\” ~ G} (0,0) with n € {4,5}
—If G ~ G4(0,0) with n € {5,6} then G*) ~ G"~"(0,0)
If G ~ G (0,0) with n > 7 then G{” ~ G\ (0,0)

We see that all these cases of G,(cz) satisfy w=2z=0.

By the Galois correspondence H; = Gal (ng) /K;), the six maximal normal subgroups Hj,...,Hg of G,(f) are associated

with the six unramified cyclic quintic extensions Ki,...,K¢ of k, which are represented by the norm class groups
Normy, /i (Ck; 5) as subgroups of index 5 in Ci 5 according to [1]. The abelianizations of the H; are isomorphic to the
5-class groups of the K; because,
2 2 1 1
Hi/v2(H;) = Gal (k) /K;) /Gal () ) (K)) =~ Gal(K)\" /Ki) =~ Cx, 5
We are interested in the capitulation of ideal classes of Ci 5 in Ck, 5. Therefore, we investigate the kernel of the class
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extension homomorphism j, /i : Cr5 — Ck; 5.
We say that we have total capitulation if Ker(j, /k) = C5 and partial capitulation otherwise.
According to Artin [2], the following commutative diagram establishes the connection between the number theoretical

extensions j, /x of 5-class groups and the group theoretical transfers V Oy = Vi,
k 1
JKi Jk
Cis > Ck. 5
Artin isomorphism Artin isomorphism
6 n(6) —~ Hi/ 1o (Hy)

1

The commutativity of this diagram shows that Ker(j, /i) ~ Ker(V;) for 1 <i <6.
wj+zl
n—1

According to Theorem 4, the image of the transfer V; is Vl-(gYZ(G](CZ))) = v (H;), where g = x/y/ (modyg(Gliz)))

and G,(f) = (x,y). Since for all possible cases of G,(cz) we have z = w = 0, then all images of the transfers are trivial,

V,'(gJ/Z(G,(f))) =1,forall g € G,(f) and 1 <i < 6. Thus we have Ker(V;) = G,EQ)/)Q(G,EZ)), which means that Ker(jx, k) =
Cr.5. Hence we have total capitulation of C; 5 in the six cyclic quintic unramified extensions of k.

S Numerical Examples

(o)

For these numerical examples of the natural n, we have that C 5 is of type (5,5) and rank Ck(; = 1, which means that
k* is cyclic quintic extension of k. Hence by Theorem 1, the length of the 5-class field tower of k is 2, and there is total
capitulation of Cy 5 in the six cyclic quintic unramified extensions of k. We note that the absolute degree of (k*) gl) surpass
100, then the task to determine the order of G is definitely far beyond the reach of computational algebra systems like

MAGMA and PARI/GP.
Table 1: k = Q(y/n, {5) with Cy 5 is of type (5,5) and rankC,E? = 1.

n hk,S Ck,5 rank (CIE?) n hk,S Ck,S rank (CIE?)
118 25 (5,5) 1 1999 25 (5,5) 1
145 25 (5,5 1 2007 25 (5,5) 1
449 25 (5,5 1 2507 25 (5,5) 1
475 25  (5,5) 1 2725 25 (5,5) 1
559 25 (5,5) 1 6725 25 (5,5) 1
718 25 (5,5) 1 7375 25 (5,5) 1
818 25 (5,5) 1 7493 25 (5,5) 1
1018 25 (5,5) 1 28625 25 (5,5) 1
1195 25 (5,5 1 55625 25 (5,5) 1
1249 25 (5,5) 1 168125 25 (5,5) 1
1499 25 (5,5) 1 1492 25 (5,5) 1
1945 25 (5,5) 1 1993 25 (5,5) 1

Declarations

Competing interests: The authors declare that they have no competing interests

Authors’ contributions: FOUAD ELMOUHIB and MOHAMED TALBI proved the main results of the paper and
ABDELMALEK AZIZI examined organisation and language. All authors read and approved the final manuscript
Funding: There is no sources of funding for the paper

Availability of data and materials: There is no materials used in the realization of the paper

Acknowledgments: The authors would like to thank the referees for the thoughtful comments and efforts towards
improvingour manuscript.

©2025 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



JIMS 18, No. 1, 17-25 (2025 ) / 25

References

[1] E. Artin, Beweis des allgemeinen Reziprozititsgesetzes, Abh. Math. Sem. Univ. Hamburg, 5, (1927), 353-363.
[2] E. Artin, Idealklassen in Oberkorpern und allgemeines Reziprozititsgesetz, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 46-51.
[3]1 Y. Berkovich, Groups of prime power order, Volume 1, de Gruyter, Expositions in Mathematics, 46, 2008.
[4] N. Blackburn, On prime-power groups with two generators, Proc. Camb. Phil. Soc, 53, (1958), 327-337.
[5] N. Blackburn, On a special class of p-groups, Acta Math, 100, (1958), 45-92.
[6] F. Elmouhib, M. Talbi, and A. Azizi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc Math Sci 132, 12
(2022). https://doi.org/10.1007/312044-022-00660-z
[7] F. Gerth III, On 3-class groups of cyclic cubic extensions of certain number fields, J.Number Theory, 8, (1976), 84-98.
[8]1 M. Kulkarni, D. Majumdar, B. Sury, /-class groups of cyclic extension of prime degree [, J. Ramanujan Math. Soc. 30, (2015),
413-454.
[9] C. R. Leedham-Green and S. McKay. The structure of groups of prime power order, London Math. Soc. Monographs, New Series,
27, Oxford Univ. Press, 2002.
[10] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math, 166, (2012), 467-495.
[11] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory, 8, (2012), 471-505.
[12] D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théorie des Nombres Bordeaux, 25, (2013), 401-456.
[13] R. J. Miech, Metabelian p-groups of maximal class, Trans. Amer. Math. Soc, 152, (1970), 331-373.
[14] R. J. Miech, The metabelian p-groups of maximal class, Trans. Amer. Math. Soc, 236, (1978), 93-119.
[15] B. Nebelung, Klassiffication metabesher 3-gruppen mit Faktorkommutatogruppe von typ (3,3) und anwendung auf das
Kapitulationsproblem, doctoral thesis, (1989), Kolon.
[16] C. Parry, Class number relations in pure quintic fields, Symposia Mathematica, 15, (1975), 475-485.
[17] The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr.

©2025 YU
Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.


https://doi.org/10.1007/s12044-022-00660-z
http://pari.math.u-bordeaux.fr

	 Introduction
	Some Results of Group Theory
	Realisation of Metabelian 5-Group of Maximal Class
	Proof of Main Theorem
	Numerical Examples

