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Abstract: In this paper, the finite element Galerkin method (FEGM) with piecewise cubic Hermite basis function is applied to prove

the existence and uniqueness of a couple state vector solution for a system of fourth-order linear partial differential equations (PDEs) of

elliptic type with Dirichlet-Neumann boundary conditions (DNBCs), when the continuous classical couple control vector (CCCPCV)

is considered. An existence theorem for a coupled continuous classical optimal control vector associated with the fourth-order linear

PDEs of elliptic type is formulated and proved under appropriate conditions. The paper also discusses the existence and uniqueness of

the solution to the coupled adjoint equations involving the couple state vector, when the classical couple optimal control vector is given.

Finally, the derivation of the Fréchet derivative (FrD) of the cost function (CFn) to establish the theorem of the necessary condition

(NEC) for optimality of the considered problem is demonstrated.
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1 Introduction

The continuous classical optimal control problems (CCOCPs) were developed in the beginning of this century, governing
by either partial differential equations (PDEs) [2][4] or ordinary differential equations (ODEs) [1]. The use of optimal
control problems (OCPs) has become widespread in many real-life such as economic [11], biology [10], electric
power[12], and aircraft [9], and many others field. In the last century, many researchers were interested in studying OCPs
governing by either ODEs [8] or linear PDEs [7]. In the resent years, the importance of OCPs has led to increased
attention from researchers, who are now studying and developing OCPs involving second-order nonlinear PDEs of
elliptic type [3], hyperbolic type [6] or parabolic type[5]. the OCP considered in this work is governing by coupled
fourth-order linear elliptic PDEs with DNBCs, In this paper, the FEGM with piecewise cubic Hermite (PCH) basis
function is applied to prove the existence and uniqueness of a couple state vector (CPSV) solution for a systen of coupled
fourth-order linear elliptic PDEs (LEPDEs) with DNBCs, when the CCCPCV is considered. Under appropriate
assumptions, the paper develops and proves an existence theorem of a continuous classical couple optimal control vector
(CCCPOCV) associated with the couple fourth-order linear PDEs of elliptic type. Additionally it discusses the existence
and uniqueness of the solution of the couple adjoint equations involving the CPSV, when the CCCPOCV is given.
Furthermore, it derives the FrD of the cost function (CFn). Finally, the paper establishes the theorem of the NEC for
optimality of the considered problem.

2 Problem Statement

Let Ω be an open and bounded domain with Lipschitz boundary Γ = ∂Ω in R2. Consider the CCOCP of a coupled fourth
order LEPDEs with DNBCs:

∆ 2y1 −∆y1 + y1 − y2 = f1(X)+ q1,onΩ (1)
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∆ 2y2 −∆y2 + y2 + y1 = f2(X)+ q2,onΩ (2)

y1 = 0,onΓ (3)

∂y1

∂n
= 0,onΓ (4)

y2 = 0,onΓ (5)

∂y2

∂n
= 0,onΓ (6)

where −→y = (y1,y2) = (y1(x1,x2),y2(x1,x2)) ∈ (H4
0 (Ω))2is the CPSV corresponding to CCCPCV

(q1,q2) = (q1(x1,x2),q2(x1,x2)) ∈ (L2(Ω))2 and ( f1, f2) = ( f1(X), f2(X)) ∈ (L2(Ω))2 is a vector of a given function
defined on Ω ×Ω for all X = (x1,x2) ∈ Ω .
The set of admissible CCCPCV is−→
Qa ⊂ L2(Ω)×L2(Ω)

= {−→q = (q1,q2) ∈ (L2(Ω))2|(q1,q2) ∈ Q1 ×Q2 =
−→
Q ⊂ R2a.e.inΩ} with

−→
Q ⊂ R2 is convex and bounded

The CFn is given by

Min.J0(
−→q ) =

1

2
‖ y1 − y1d ‖

2 +
1

2
‖ y2 − y2d ‖

2 +
1

2
‖ q1 ‖

2 +
1

2
‖ q2 ‖

2
,(q1,q2) ∈

−→
Qa (7)

where (y1d,y2d) = (y1d(x1,x2),y2d(x1,x2)) is the desired state and (y1,y2) = (y1q1
,y2q2

) is the solution of CPSV (1-6)
corresponding to the CCCPCV −→q = (q1,q2).

The continuous classical couple optimal control problem (CCCPOCP) is to minimize the CFn (7) subject to (q1,q2) ∈
−→
Qa

where the notations (u,u) and (−→u ,
−→u )(L2(Ω))2 denote the inner product in L2(Ω) and (L2(Ω))2 respectively, by ‖ u ‖ and

‖ −→u ‖(L2(Ω))2= ∑n
i=1 ‖ ui ‖L2(Ω) denote the norm in L2(Ω) and (L2(Ω))2 respectively, by ‖ u ‖H2

0 (Ω) and ‖ −→u ‖(H2
0 (Ω))2=

∑n
i=1 ‖ ui ‖H2

0 (Ω) denote the norm in H2
0 (Ω) and (H2

0 (Ω))2 respectively, , also the notations⇀and −→will refer to the

weak convergence and strong convergence of a sequence respectively.

3 Solution of the CPSV Equations (CPSVEs)

In order to find the classical solution of problem (1-6), we shall first obtain their weak forms (WFs). Let
−→
S = H2

0 (Ω)×H2
0 (Ω)

= {−→v : −→v = (v1,v2) = (v1(x1,x2),v2(x1,x2)) ∈ (H2
0 (Ω))2,∀(x1,x2) ∈ Ω , with v1 = v2 = 0 and

∂y1
∂n

= ∂y2
∂n

= 0 on Γ }

The WF of the CPSVEs (1-6), when −→y ∈ (H2
0 (Ω))2 are obtained by multiplying both sides of equations (1) and (2) by

v1 ∈ H2
0 (Ω) and v2 ∈ H2

0 (Ω) respectively, integrating both sides of the obtained equations over Ωand then using the
generalized Green’s theorem twice for the first term which have the fourth order derivatives and once for the second term
which have the second order derivatives, we obtain the WFs.

(∆y1,∆v1)+ (∇y1,∇v1)+ (y1,v1)− (y2,v1) = ( f1(X),v1)+ (q1,v1),∀v1 ∈ H2
0 (Ω) (8)

and

(∆y2,∆v2)+ (∇y2,∇v2)+ (y2,v2)+ (y1,v2) = ( f2(X),v2)+ (q2,v2),∀v2 ∈ H2
0 (Ω) (9)

By adding (8) and (9), we find ∀−→y ∈ (H2
0 (Ω))2

E(−→y ,
−→v ) = l(−→v ),∀−→v = (v1,v2) ∈

−→
S (10)

Where the symmetric BLF E(−→y ,
−→v ) and the continuous linear form l(−→v ) are defined when −→q ∈ (L2(Ω)2 is fixed by

E(−→y ,
−→v ) = (∆y1,∆v1)+ (∇y1,∇v1)+ (y1,v1)− (y2,v1)+ (∆y2,∆v2)+ (∇y2,∇v2)+ (y2,v2)+ (y1,v2) (11)

l(−→v ) = ( f1(X),v1)+ (q1,v1)+ ( f2(X),v2)+ (q2,v2),∀(v1,v2) ∈
−→
S (12)
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3.1 Assumptions

1.The bilinear form E(., .) is satisfied the following properties:

a) E(−→y ,
−→v ) is coercive, i.e. ∀−→y ∈

−→
S ∃c0 > 0 such that E(−→y ,

−→v )≥ c0 ‖
−→y ‖2

(H2
0 (Ω))2 .

b) E(−→y ,
−→v )s continuous, i.e.∃ c1 > 0 such that | E(−→y ,

−→v ) |≤ c1 ‖
−→y ‖(H2

0 (Ω))2‖
−→v ‖(H2

0 (Ω))2 , ∀−→y ,
−→v ∈

−→
S

2.l(−→v )is a bounded functional on
−→
S where −→q is bounded, i.e. ∃c2 > 0 such that | l(−→v ) |≤ c2 ‖

−→v ‖(H2
0 (Ω))2 , ∀−→v ∈

−→
S

To find the solution of the general classical problem (10), the GFEM is used by choosing an approximation subspace
−→
Sn ⊂

−→
S (which has a finite dimension n) and the problem (10) reduce to the discrete Galerkin WF: find −→yn ∈

−→
Sn such that

E(−→yn ,
−→v ) = l(−→v ),∀−→v ∈

−→
Sn (13)

Theorem 1.For every fixed CCCPCV −→q = (q1,q2) ∈ (L2(Ω))2 there exists a unique approximation solution
−→yn = (y1n,y2n) ∈

−→
Sn for problem (13).

Proof.For each n,
−→
Sn be the set of continuous and PCH type polynomials functions in Ω , since continuity in (C1(Ω))2 is

required. We will define two Hermite basis functions namely
−→ϕ j and

−→
ϕ̄ j, i.e. {−→ϕ1,

−→ϕ2, ...,
−→ϕn,

−→
ϕ̄1,

−→
ϕ̄2, ...,

−→
ϕ̄n}be a finite basis

of
−→
Sn,∀n. We now express −→yn =−→yn(x1,x2) as finite linear combination as

−→yn =
n

∑
i=1

(−→c j
−→ϕ j +

−→
c̄ j
−→
ϕ̄ j)≡ (

n

∑
j=1

c1 jϕ1 j + c̄1 jϕ̄1 j,

n

∑
j=1

c2 jϕ2 j + c̄2 jϕ̄2 j) (14)

where −→c j ,
−→
c̄ j are unknown constant vector,∀ j = 1,2, ...,n.

By substituting the solution −→yn in equation (13) and −→v j =
−→ϕ j +

−→
ϕ̄ j, then can be rewriting in matrix notation

Kc̄ = b (15)

where K = (ki j)n×n, ki j = E(−→ϕ j +
−→
ϕ̄ j,

−→ϕ i +
−→
ϕ̄ i), b = (bi)n×1, bi = l(−→ϕ i +

−→
ϕ̄ i) and −→c = (−→c1 , ...,

−→cn ,
−→
c̄1 , ...,

−→
c̄n)

T

By using assumption (3.1(1- a)), then equation (15) has a unique solution.

Remark.∀−→v ∈ (H2
0 (Ω))2,there exists a sequence {−→ϕ n} with

−→ϕ n ∈
−→
Sn ,∀n and

−→ϕ n −→
−→v in

−→
S ,problem (13) has a unique

solution −→yn ,hence corresponding to the sequence {−→yn}
∞
n=1we have a sequence of approximation problem (13), for each

n = 1,2, ..., i.e.,
−→ϕ n ∈

−→
Sn such that

E(−→yn ,
−→ϕn) = l(−→ϕn),∀

−→ϕn ∈
−→
Sn ,∀n (16)

which has a sequence of{−→yn}
∞
n=1

Theorem 2(Existence of solution of the CPSVEs). The sequence of solution{−→yn}
∞
n=1(of the sequence of WF (16))

converges to −→y (solution of (12)).

Proof.Since −→yn is a solution of (16), then using assumptions (3.1(1- a)) and (3.1-2), we find ‖−→yn‖(H2
0 (Ω))2 ≤ c2,c2 > 0, ∀n

From Alaoglu theorem [3], there exists a subsequence of {−→yn} (say again {−→yn} such that −→yn ⇀
−→y in

−→
S

We want to show that the sequence {−→yn}
∞
n=1 of the solutions of (16) converges to the solution −→y of (12)

First, to prove the L.H.S. of (16)−→the L.H.S. of (12)

Since −→yn ⇀
−→y in

−→
S and

−→ϕn −→
−→v in

−→
S , we obtain

|E(−→yn ,
−→ϕn)−E(−→y ,

−→v )|=|E(−→yn ,
−→ϕn −

−→v )−E(−→yn −
−→y ,

−→v )|
≤ c1‖

−→yn‖(H2
0 (Ω))2‖

−→ϕn −
−→v ‖(H2

0 (Ω))2 + c1‖
−→yn −

−→y ‖(H2
0 (Ω))2‖

−→v ‖(H2
0 (Ω))2 −→ 0

then E(−→yn ,
−→ϕn)−→ E(−→y ,

−→v ).
Second, to prove the R.H.S. of (16) −→ the R.H.S. of (12).

since
−→ϕn −→

−→v in
−→
S and

−→ϕn ⇀
−→v in

−→
S , and for fixed −→v ∈

−→
S

l−→v (
−→ϕ ) = E(−→ϕ ,

−→v )is linear with respect to
−→
S (17)
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Then l(−→ϕn)−→ l(−→v )

This gives E(−→y ,
−→v ) = l(−→v ),∀−→v ∈

−→
S

Therefore −→y is a solution of (12)
From assumption (3.1(1- a)) and (17), it follows that
c0‖

−→y −−→yn‖(H2
0 (Ω))2 ≤ E(−→y −−→yn ,

−→y −−→yn) = E(−→y −−→yn ,
−→y )−E(−→y −−→yn ,

−→yn)

= E(−→y −−→yn ,
−→y )−E(−→y ,

−→yn)+E(−→yn ,
−→yn)

= l−→y (
−→y −−→yn)−→ 0

Therefore ‖−→y −−→yn‖(H2
0 (Ω))2

Hence {−→yn}converges strongly to −→y with respect to ‖.‖(H2
0 (Ω))2

Uniqueness of the solution
Let −→y1 ,

−→y2 be two solutions of (12), then

E(−→y1 ,
−→v ) = l(−→v ), ∀−→v ∈

−→
S

E(−→y2 ,
−→v ) = l(−→v ), ∀−→v ∈

−→
S

The a above two equation give

E(−→y1 −
−→y2 ,

−→v ) = 0,∀−→v ∈
−→
S (18)

Now, by inserting −→v =−→y1 −
−→y2 in (18) and using assumption (I(1- a)), we find that

−→y1 =−→y2 ,i.e. the solution is unique.

4 Existence of a couple optimal classical control

In this section, the following lemmas are important in the proof of the existence of a couple optimal classical control
theorem

Lemma 1.The operator −→q 7→ −→y −→q from
−→
Qa to (L2(Ω))2is Lipschitz continuous, i.e.

‖
−→
δy‖(H2

0 (Ω))2 ≤ k‖
−→
δq‖(L2(Ω))2 , for k > 0

Proof.Let
−→
q
′
,
−→q ∈

−→
Qa are two vectors of controls of the WFs (10) respectively,

−→
y
′

and −→y be their corresponding vectors

of state solutions, subtracting the two obtained WFs, and Substituting
−→
δy =

−→
y
′
−−→y ,

−→
δq =

−→
q
′
−−→q in the above obtained

equation, with inserting v1 = δy1 and v2 = δy2 we obtain

E(δy,δy) = (δq1,δy1)+ (δq2,δy2) (19)

Taking the absolute value of (19) with using assumption (3.1(1-a)) and the Cauchy-Schwarz inequality (C-SI), we deduce
that

c0‖
−→
δy‖(H2

0 (Ω))2 ≤‖δq1‖‖δy1‖+‖δq2‖‖δq2‖ (20)

Since ‖δyi‖ ≤‖
−→
δy‖(L2(Ω))2 ≤‖

−→
δy‖(H2

0 (Ω))2 and ‖δqi‖ ≤‖
−→
δq‖(L2(Ω))2 ,∀i = 1,2, then (20) becomes

‖
−→
δy‖(H2

0 (Ω))2 ≤ k‖
−→
δq‖(L2(Ω))2 ,with(k =

2

c0

) (21)

Then the operator−→q 7→ −→y −→q is Lipschitz continuous on (L2(Ω))2

Lemma 2.The norm ‖.‖is weakly lower semicontinuous (WLSC).

Lemma 3.The norm ‖.‖ is strictly convex.

Theorem 3.Consider the CFn is given by (7), we assume Qi,∀i = 1,2 is convex. If J0(
−→q )is coercive, then there exists a

couple classical optimal control for the problem.
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Proof.since Qi, for each i = 1,2 is convex, hence
−→
Qa is convex. Since J0(

−→q )≥ 0 and J0(
−→q ) is coercive, then there exists

a minimizing sequence {−→qn}= {(q1n,q2n)} ∈
−→
Qa such that

limn−→∞ J0(
−→qn) = inf−→w∈

−→
Qa

J0(
−→w )

Therefore, there exists a constant C > 0 such that

‖−→qn‖(L2(Ω)2 ≤C,∀n, then‖−→q1n‖(L2(Ω)2 ≤C1,and‖−→q2n‖(L2(Ω)2 ≤C2,∀n (22)

From Alaoglu theorem, there exists a subsequence of {−→qn} (say again {−→qn}) such that −→qn ⇀
−→
q̄ in (L2(Ω))2

Since for each control vector −→qn = (−→q1n,
−→q1n), the state equation has a unique solution −→yn = −→y −→qn

(for each n by Theorem
1).

We need to prove −→yn is bounded in
−→
Sn By using assumptions (3.1 (1- a)) and (3.1 (2)), using the C-SI and the bounded of

the control vector, yields
c0‖

−→yn‖
2
(H2

0 (Ω))2 ≤ E(−→yn ,
−→yn )≤‖ f1‖‖y1n‖+‖q1n‖‖y1n‖+‖ f2‖‖y2n‖+‖q2n‖‖y2n‖

≤ l1‖y1n‖+C1‖y1n‖+ l2‖y2n‖+C2‖y2n‖
≤ (r1 + r2)‖

−→yn‖(H2
0 (Ω))2 = τ‖−→yn‖(H2

0 (Ω))2

where r1 = max{l1,C1} and r2 = max{l2,C2} and τ = max{r1,r2}, then
‖−→yn‖(H2

0 (Ω))2 ≤ K , where K = τ
c0

, k ≥ 0

Then there exists a subsequence of {−→yn} (say again {−→yn}) such that −→qn ⇀
−→
q̄ in

−→
S (by Alaoglu theorem)

Since for each n, −→yn = (−→y1n,
−→y1n)satisfies the WF (13) , we have

E(−→yn ,
−→v ) = ( f1,v1)+ (q1n,v1)+ ( f2,v2)+ (q2n,v2),∀(v1,v2) ∈

−→
S ,∀n (23)

To show that (23) converges to

E(
−→
ȳ ,

−→v ) = ( f1,v1)+ (q̄1,v1)+ ( f2,v2)+ (q̄2,v2),∀(v1,v2) ∈
−→
S (24)

First, since
yin ⇀ ȳi in H2

0 (Ω) , ∀i = 1,2, then yin ⇀ ȳi in L2(Ω),∇yin ⇀ ∇ȳi in L2(Ω), and ∆yin ⇀ ∆ ȳi in L2(Ω),
And a use of the C-SI, one gets
|(∆y1n,∆v1) + (∇y1n,∇v1) + (y1n,v1) − (y2n,v1) + (∆y2n,∆v2) + (∇y2n,∇v2) + (y2n,v2) + (y1n,v2) − (∆ ȳ1,∆v1) −
(∇ȳ1,∇v1)− (ȳ1,v1)+ (ȳ2,v1)− (∆ ȳ2,∆v2)− (∇ȳ2,∇v2)− (ȳ2,v2)− (ȳ1,v2)|
≤‖∆y1n −∆ ȳ1‖‖∆v1‖+‖∇y1n −∇ȳ1‖‖∇v1‖+‖y1n− ȳ1‖‖v1‖+‖y2n− ȳ2‖‖v1‖+‖∆y2n −∆ ȳ2‖‖∆v2‖+
‖∇y2n −∇ȳ2‖‖∇v2‖+‖y2n− ȳ2‖‖v2‖+‖y1n− ȳ1‖‖v2‖ −→ 0
Second, since q1n ⇀ q̄1 in L2(Ω) and q2n ⇀ q̄2 in L2(Ω)
then the R.H.S. of (23) converges to the R.H.S. of (24)

Since J0(
−→q ) is WLSC (from lemma 2), and since −→qn ⇀

−→
q̄ in (L2(Ω))2, we observe that

J0(
−→q )≤ limn−→∞ infJ0(

−→qn) = limn−→∞ J0(
−→qn) = inf−→w∈

−→
Qa

J0(
−→w ), then J0(

−→qn) = inf−→w∈
−→
Qa

Hence −→q is a couple classical optimal control
To prove −→q is unique
From strict convexity of J0(

−→q ) (by lemma 3), we conclude the uniqueness of −→q .

5 The NECs for optimality

In order to state the NECs for a couple classical optimal control, we drive the FrD of the Hamiltonian to establish the
NECs for optimality.

Theorem 4.Consider the CFn which is given by (7), and the adjoint (z1,z2) = (z1q1
,z2q1

) equations of the couple state

equations (1-6) are given by

∆ 2z1 −∆z1 + z1 + z2 = y1 − y1d,onΩ (25)

∆ 2z2 −∆z2 + z2 − z1 = y2 − y2d,onΩ (26)

z1 = 0,onΓ (27)

∂ z1

∂n
= 0,onΓ (28)
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z2 = 0,onΓ (29)

∂ z2

∂n
= 0,onΓ (30)

Then the FrD of J0 is given by

(J0
′(−→q ),

−→
δq) = (−→z +−→q ,

−→
δq)

Proof.Rewriting the couple of the adjoint equations (CPAEs) (25-30) by their WFs, we get

(∆z1,∆v1)+ (∇z1,∇v1)+ (z1,v1)+ (z2,v1) = (y1 − y1d,v1),∀v1 ∈ H2
0 (Ω) (31)

(∆z2,∆v2)+ (∇z2,∇v2)+ (z2,v2)− (z1,v2) = (y2 − y2d,v2),∀v2 ∈ H2
0 (Ω) (32)

By adding (31) and (32), we get for fixed couple classical control vector −→q = (q1,q2) ∈ (L2(Ω))2 the WF of the CPAEs

has a uniqueness and existence solution (z1,z2) = (z1q1
,z2q2

) ∈
−→
S (by applying the similar ways of the theorem (1) and

theorem (2)), we have

(∆z1,∆v1)+(∇z1,∇v1)+(z1,v1)+(z2,v1)+(∆z2,∆v2)+(∇z2,∇v2)+(z2,v2)− (z1,v2) = (y1 − y1d,v1)+(y2 − y2d,v2)
(33)

By substituting the solution y1 once and y1 + δy1 once again in (10), subtracting the obtained equations one from the
other, with substituting v1 = z1 , we obtain

(∆δy1,∆z1)+ (∇δy1,∇z1)+ (δy1,z1)− (δy2,z1) = (δq1,z1),∀z1 ∈ H2
0 (Ω) (34)

Also substituting v1 = δy1 in (31), then subtracting the obtained equation with (34), we get

(δy2,z1)+ (z2,δy1) =−(δq1,z1)+ (y1 − y1d,δy1) (35)

By substituting the solution y2 once and y2 + δy2 once again in (11), subtracting the obtained equations one from the
other, with substituting v2 = z2, we obtain

(∆δy2,∆z2)+ (∇δy2,∇z2)+ (δy2,z2)+ (δy1,z2) = (δq2,z2),∀z2 ∈ H2
0 (Ω) (36)

Also v2 = δy2 in (32), then subtracting the obtained equation with (36), we get

−(δy1,z2)− (z1,δy2) =−(δq2,z2)+ (y2 − y2d,δy2) (37)

Adding (35) and (37), we get

(δq1,z1)+ (δq2,z2) = (y1 − y1d,δy1)+ (y2 − y2d,δy2) (38)

Then for the CFn, we have

J0(
−→q +

−→
δq) = 1

2

∫∫
Ω (y1 + δy1 − y1d)

2dx1dx2 +
1
2

∫∫
Ω (y2 + δy2 − y2d)

2dx1dx2 +
1
2

∫∫
Ω (q1 + δq1)

2dx1dx2

+ 1
2

∫∫
Ω (q2 + δq2)

2dx1dx2

= 1
2

∫∫
Ω [(y1 − y1d)

2 + 2(y1 − y1d)δy1 + (δy1)
2]dx1dx2 + 1

2

∫∫
Ω [(y2 − y2d)

2 + 2(y2 − y2d)δy2 + (δy2)
2]dx1dx2 +

1
2

∫∫
Ω [(q1)

2 + 2q1δq1 +(δq1)
2]dx1dx2 +

1
2

∫∫
Ω [(q2)

2 + 2q1δq2 +(δq2)
2]dx1dx2

But by using (38), we have

J0(
−→q +

−→
δq)− J0(

−→q ) = (δq1,z1)+ (q1δq1)+ (δq2,z2)+ (q2δq2)+
1
2
‖
−→
δy‖2

(L2(Ω))2 +
1
2
‖
−→
δq‖2

(L2(Ω))2

= (−→z +−→q ,
−→
δq)+

1

2
‖
−→
δy‖2

(L2(Ω))2 +
1

2
‖
−→
δq‖2

(L2(Ω))2 (39)

From Lemma 1, we get that
1

2
‖
−→
δy‖2

(L2(Ω))2 ≤ 2‖
−→
δq‖2

(L2(Ω))2 = ε1(
−→
δq)‖

−→
δq‖(L2(Ω))2 (40)

where ε1(
−→
δq)−→ 0 as ‖

−→
δq‖(L2(Ω))2 −→ 0, and ε1(

−→
δq) = 2‖

−→
δq‖(L2(Ω))2

1

2
‖
−→
δq‖2

(L2(Ω))2 =
1

2
‖
−→
δq‖(L2(Ω))2‖

−→
δq‖(L2(Ω))2 = ε2(

−→
δq)‖

−→
δq‖(L2(Ω))2 (41)
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where ε2(
−→
δq)−→ 0 as ‖

−→
δq‖(L2(Ω))2 −→ 0, and ε2(

−→
δq) = 1

2
‖
−→
δq‖(L2(Ω))2

Hence the FrD of J0 is

J0(
−→q +

−→
δq)− J0(

−→q ) = (J
′

0(
−→q ),

−→
δq)+ ε(

−→
δq)‖

−→
δq‖(L2(Ω))2 (42)

where ε(
−→
δq)−→ 0 as ‖

−→
δq‖(L2(Ω))2 −→ 0 Finally, form (39) and (42), one gets

(J
′

0(
−→q ),

−→
δq) = (−→z +−→q ,

−→
δq).

Theorem 5.The CCCPOC of the considered problem is J
′

0(
−→q ) =−→z +−→q with −→y =−→y −→q and −→z =−→z −→q .

Proof.If −→q is an optimal control vector of the problem

J
′

0(
−→q ) = minJ

′

0(
−→w ),∀−→w ∈

−→
Qa, i.e.

J
′

0(
−→q ) = implies −→z +−→q = 0

q1 =−z1 and q2 =−z2 with
−→
δq =−→w −−→q

Hence the NEC of the optimality is (J
′

0(
−→q ),

−→
δq)≥ 0

Therefore (−→z +−→q ,
−→w )≥ (−→z +−→q ,

−→q ),∀−→w ∈ (L2(Ω))2.

Conclusion

The FEGM with PCH basis function is suitable to prove the existence and uniqueness of a couple state vector solution
for a coupled fourth order LEPDEs with DNBCs, when the CCCPCV is considered. Under appropriate conditions, the
existence theorem of a CCCPOCV associated with a couple fourth order LEPDEs is formulated and proved. The
existence and uniqueness of the solution of the couple adjoint equations which involves to the CPSV is discussed, when
the continuous classical couple optimal control vector is given. Finally, the derivation of the FrD for the CFn is
demonstrated and applied to establish the theorem of the NEC for optimality of the considered problem.
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