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Abstract: In this paper, the finite element Galerkin method (FEGM) with piecewise cubic Hermite basis function is applied to prove
the existence and uniqueness of a couple state vector solution for a system of fourth-order linear partial differential equations (PDEs) of
elliptic type with Dirichlet-Neumann boundary conditions (DNBCs), when the continuous classical couple control vector (CCCPCV)
is considered. An existence theorem for a coupled continuous classical optimal control vector associated with the fourth-order linear
PDE:s of elliptic type is formulated and proved under appropriate conditions. The paper also discusses the existence and uniqueness of
the solution to the coupled adjoint equations involving the couple state vector, when the classical couple optimal control vector is given.
Finally, the derivation of the Fréchet derivative (FrD) of the cost function (CFn) to establish the theorem of the necessary condition
(NEC) for optimality of the considered problem is demonstrated.
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1 Introduction

The continuous classical optimal control problems (CCOCPs) were developed in the beginning of this century, governing
by either partial differential equations (PDEs) [2][4] or ordinary differential equations (ODEs) [1]. The use of optimal
control problems (OCPs) has become widespread in many real-life such as economic [11], biology [10], electric
power[12], and aircraft [9], and many others field. In the last century, many researchers were interested in studying OCPs
governing by either ODEs [8] or linear PDEs [7]. In the resent years, the importance of OCPs has led to increased
attention from researchers, who are now studying and developing OCPs involving second-order nonlinear PDEs of
elliptic type [3], hyperbolic type [6] or parabolic type[S5]. the OCP considered in this work is governing by coupled
fourth-order linear elliptic PDEs with DNBCs, In this paper, the FEGM with piecewise cubic Hermite (PCH) basis
function is applied to prove the existence and uniqueness of a couple state vector (CPSV) solution for a systen of coupled
fourth-order linear elliptic PDEs (LEPDEs) with DNBCs, when the CCCPCV is considered. Under appropriate
assumptions, the paper develops and proves an existence theorem of a continuous classical couple optimal control vector
(CCCPOCYV) associated with the couple fourth-order linear PDEs of elliptic type. Additionally it discusses the existence
and uniqueness of the solution of the couple adjoint equations involving the CPSV, when the CCCPOCYV is given.
Furthermore, it derives the FrD of the cost function (CFn). Finally, the paper establishes the theorem of the NEC for
optimality of the considered problem.

2 Problem Statement

Let Q be an open and bounded domain with Lipschitz boundary I' = 9 in R%. Consider the CCOCP of a coupled fourth
order LEPDEs with DNBCs:

A%y — Ay +y1 —y2 = fi(X) +q1,0n2 (D
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A%yy — Ayr + Y2+ 31 = fo(X) + g2,0nQ (2)
y1 =0,onI" 3)
% =0,onl’ 4)
y2 =0,onI" 5)
% =0,0nl" (6)

where Y = (yi,72) = O1(x,x),0x1,%)) € (Hj(2))%s the CPSV corresponding to CCCPCV

(91,92) = (q1(x1,%2),q2(x1,%2)) € (L*(2))? and (f1, /) = (fi(X), /(X)) € (L*(2))? is a vector of a given function
defined on Q x Q for all X = (x1,x,) € Q.

Tje set of admissible CCCPCYV is

0. C L2(Q) X Lz(.Q)

={q = (q1.92) € (L2(2))*(q1,92) € Q1 x Q2 = a C R%a.e.inQ} with 6 C R? is convex and bounded

The CFn is given by

. 1 1 1 1 —
MinJo(q) = 3 v =y1a |12 +5 | v2—y2a |I? +5 a1 1 +5 a2 1% (q1,92) € Qa @)

where (y14,y24) = (V1a(*1,%2),¥24(x1,X2)) is the desired state and (y1,y2) = (¥14,,Y24,) is the solution of CPSV (1-6)
corresponding to the CCCPCV ¢ = (q1,¢2).

The continuous classical couple optimal control problem (CCCPOCP) is to minimize the CFn (7) subject to (¢1,42) € Qa
where the notations (u,u) and (i, i) (12())2 denote the inner productin L?(Q) and (L*(Q))? respectively, by || u || and

| @ lz2(@)2= Xiz1 | i l|;2(o) denote the norm in L2(£2) and (L*(£2))? respectively, by || u (@) and | u ()=
Y | w HH(%(Q) denote the norm in H3 () and (H3(£2))? respectively, , also the notations—and —will refer to the
weak convergence and strong convergence of a sequence respectively.

3 Solution of the CPSV Equations (CPSVEs)

In order to find the classical solution of problem (1-6), we shall first obtain their weak forms (WFs). Let

5 =) x B (@)

={V:V = (v1,v2) = 1 (x1,%2), v (x1,32)) € (HF(2))?,Y(x1,x2) € Q, withv; =v, =0and DL = %2 =0on T}
The WF of the CPSVEs (1-6), when y € (HZ())?* are obtained by multiplying both sides of equations (1) and (2) by
V] € Hg(.Q) and v, € Hg(.Q) respectively, integrating both sides of the obtained equations over Qand then using the

generalized Green’s theorem twice for the first term which have the fourth order derivatives and once for the second term
which have the second order derivatives, we obtain the WFs.

(Ay1,Av) + (Vy, Vo) + 1,v1) — (72,v1) = (F1(X),v1) + (q1,v1), Vw1 € HG(Q) (®)

and

(Ay2,Av2) + (Vy2,Vv2) + (y2,v2) + (1, v2) = (f2(X),v2) + (g2, 2), ¥v2 € H5(Q) ©))

By adding (8) and (9), we find VY € (H2(£2))?

E(Y, V) =1(V)YV =(,m)e S (10)

Where the symmetric BLF E(3, V) and the continuous linear form /() are defined when ¢ € (L*(£2)? is fixed by

E(Y, V) = (Ay1,Av) + (Y1, V1) + (01,v1) — (v2,v1) + (Ay2, Ava) + (Vy2, V) + (v2,v2) + (y1,v2) (1)
V) = (£i(X),91) + (@1,91) + (H(X),v2) + (g2,72), Vv, v2) € S (12)
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3.1 Assumptions

1.The bilinear form E(.,.) is satisfied the following properties:
a) E(y, V) is coercive, i.e. VY € S 3co > 0 such that EY,V)>cl|l ¥ ||?H2(Q))2.
0

b) E(Y,V)s continuous, i.e.3 ¢; > 0 such that | E(Y, V) [< ¢ | Y H(Hg(g))ZH v H(HS(Q))Z’ VY,V € K
2.1(V)is a bounded functional on S where 7 is bounded, i.e. 3¢, > 0 such that | [(V) [< ¢y | V H(HS(Q))z’ v es

"5) find the solution of the general classical problem (10), the GFEM is used by choosing an approximaticg subspace
Sp C ? (which has a finite dimension ») and the problem (10) reduce to the discrete Galerkin WF: find )7 € S, such that

EG,V)=1(V)VV €S, (13)

Theorem 1.For every fixed CCCPCV ¢ = (q1,q2) € (L*(R))? there exists a unique approximation solution
Yo = (Vin,Y2n) € Sy for problem (13).

%
Proof.For each n, S, be the set of continuous and PCH type polynomials functions in €2, Silﬁe continuity in (C!(Q))? is
required. We will define two Hermite basis functions namely @) and @, i.e. {a, @, e @, 1, P, ..., ¢y }be a finite basis

ofS,, Vn. We now express )7,,> = ﬁ(xl ,X2) as finite linear combination as

ﬁ:

™

J

o d o
(/@i +ci@) = (Y c1joj+e101,
&

n
C2jP2j+C2P2) (14)
1 Jj =1

]
- = ;
where ¢} ,¢jare unknown constant vector,Vj = 1,2,...,n.
By substituting the solution )7,,>1n equation (13) and v_} = a j =+ @ j, then can be rewriting in matrix notation

Ke=b (15)

G s =2 - =
where K = (k;j)nxn, kij ZE($j+ ¢j7$i+ @) b= (bi)ux1> bi=1(Fi+ @) and T = (cf,...,Ch, 15 oy )T

By using assumption (3.1(1- a)), then equation (15) has a unique solution.

%
RemarkNV € (HZ(£2))? there exists a sequence {an} with @, € S,,,Vnand @, — V in ?,problem (13) has a unique
solution y, ,hence corresponding to the sequence {y, };_;we have a sequence of approximation problem (13), for each

_)
n=1,2,...,1e., ?,1 € S, such that .
E(n, @) = 1(@0),YP; € Sy, ¥n (16)

which has a sequence of {,}%*_,

Theorem 2(Existence of solution of the CPSVEs). The sequence of solution{ﬁ)};":,(of the sequence of WF (16))
converges to 7( solution of (12)).

Proof.Since y_n> is a solution of (16), then using assumptions (3.1(1- a)) and (3.1-2), we find ||y_n>|\(H§(Q))2 <c¢p,00>0,Vn

From Alaoglu theorem [3], there exists a subsequence of {y; } (say again {Y, } such that y, — 3 in
We want to show that the sequence {)7,)}‘;:’:1 of the solutions of (16) converges to the solution 7 of (12)
First, to prove the L.H.S. of (16)—the L.H.S. of (12)

Since ﬁ — 7 in ? and @ — 7 in S, we obtain

<cil[ya H(Hg(g))ZH(Pn - 7”(113(9))2 +eillyn - 7”(113(9))2 ||7H(Hg(9))2 —0
then E(v,, @n) — E(¥, V).

Second, to prove the R.H.S. of (16) — the R.H.S. of (12).

since@ H?in?and@ A?in?, and for fixed V' G?

17($) = E(@,V)is linear with respect S (17)
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Then [(,) — (V)

This gives E(3, V) = [(V),VV € 5

Therefore y is a solution of (12)

Frogassimption (3.1(1- a% ani(17), it_f)ollows that . N
COH y 7)’"“(1—13([)))2 < E( 7ynv7*yn) :E(V*yna7) 7E(7*ynayn)
= 17(7 —Yn) __; 0

Therefore |y — ¥, ||(H§(Q))2

Hence {;, }converges strongly to Y with respect to ||.| (H(2))?

Uniqueness of the solution
Let )Tf, )72>be two solutions of (12), then

EGLV)=I(V),VVeS
EG,V)=U(V),vvVes
The a above two equation give

EG -9, V)=0vveS (18)

Now,E;/ inserting V= )Tf — y_2> in (18) and using assumption (I(1- a)), we find that
)7|> = yj.i.e. the solution is unique.

4 Existence of a couple optimal classical control

In this section, the following lemmas are important in the proof of the existence of a couple optimal classical control
theorem

Lemma 1.7he operator 7 — 77 from @) to (L*())?is Lipschitz continuous, i.e.
— —
1631l 2y < Kll04ll12(a))2 - for k>0

- — A
ProoflLet g ,7 € Q, are two vectors of controls of the WFs (10) respectively, y and Y be their corresponding vectors

. . . Lo = T . .
of state solutions, subtracting the two obtained WFs, and Substituting dy = y — 7 og=gq — 71n the above obtained

equation, with inserting v; = dy; and v, = 8y, we obtain
E(8y,8y) = (8q1,0y1) + (0q2,68y2) (19)

Taking the absolute value of (19) with using assumption (3.1(1-a)) and the Cauchy-Schwarz inequality (C-SI), we deduce
that

%
coll8¥ll k()2 <8111l 8y1[|+[18ll[| 542l (20)

, - - - ,
Since [|8yill <[16Y[[(12(0))2 §||5y|\(H§(Q))2 and [|6¢;[| <[|6¢[|(;2(0)y2, Vi = 1,2, then (20) becomes

= = . 2
163l 2 ()2 < Kll4ll(12(q))2: With(k = 5) (2D

Then the operator ¢ — 77 is Lipschitz continuous on (L?(£2))?
Lemma 2.The norm ||.||is weakly lower semicontinuous (WLSC).

Lemma 3.The norm ||.|| is strictly convex.

Theorem 3.Consider the CFn is given by (7), we assume Q;,¥i = 1,2 is convex. If Jo(7)is coercive, then there exists a
couple classical optimal control for the problem.
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Proof.since Q;, for each i = 1,2 is convex, hence Qﬁ is convex. Since 10(7) >0and 10(7) is coercive, then there exists
a minimizing sequence {g, } = {(q1n,q2n)} € @ such that

lim, e Jo(gq)) = inf; 52 Jo

Therefore, there exists a constant C > 0 such that

an|| 2@p <C,Vn theanl,,H 2@ < Cl,anquQnH 2ep < G, Vn (22)

From Alaoglu theorem, there ex1sts a subsequence of {g,} (say again {qn}) such that g, Gn, — ? in (L2(Q))?

Since for each control vector q,, = (ql nsq1 ,,) the state equation has a unique solution y, Yn = 7—>(f0r each n by Theorem
D).

We need to prove y,, is bounded in S By using assumptions (3.1 (1- a)) and (3.1 (2)), using the C-SI and the bounded of
the control vector, ylelds

CollanI(Hg ayp S EGR ) <Ayl gyl +1 721 y2al+ g2l 2]
< Lllyinll + Cil[yinll + L2lly2al| 4 Cally2nl|

< (i)l = Tyl @)2

Where ri =max{/;,C;} and r, = max{lz,Cz} and T = max{r,r, }, then
||y”||(H2 p <K, where K==, k>0

Then there exists a subsequence of {37} (say again {Y,}) such that g; — ? ins (by Alaoglu theorem)
Since for each n, yn = (yln,yln)satlsﬁes the WF (13) , we have

E(m, V) = (fi,v1) + (qua,v1) + (f2,2) + (20, v2), ¥ (v1,12) € ?,Vn (23)

To show that (23) converges to

E(77?) = (f1,v1) + (q1,v1) + (f2.v2) + (42,v2),V(v1,12) € K (24)

First, since

Yin = ¥ in HZ(Q) , Vi = 1,2, then y;, — ; in L2(2),Vyy, — V3; in L2(Q), and Ay;, — Ay; in L2(Q),
And a use of the C-SI, one gets

[(Ay1n,Av1) + (V10, VY1) + 1nsv1) = (V2 v1) + (Ayan, Av2) + (Vyzmvvz) + (v2nsv2) + (Vinsv2) — (A¥1,4vy) —
(V31, V1) = (31,v1) + (2,v1) — (A52,Av2) — (V32, V2) — (32,v2) — (71,

<[|Ay1n — AN [[|Avi[[+Vy1n = VIVl [0 = ulllva |+ ]y — szIIIV1H+|IAyzn A ||| Avall+
Vy2n = Voo [[[Vv2 ]|+ [[y20 = T2l [vall+]ly1n = F1 [ |v2]| — 0

Second, since ¢, — g1 in L*(2) and g3, — ¢» in L=(Q)

then the R.H.S. of (23) converges to the R.H.S. of (24)

Since Jo(q) is WLSC (from lemma 2), and since g, — q in (L2(Q))?, we observe that

Jo(7) < limy— o0 meo(q,,) = llmnﬂwlo(q,,) ll‘lfwe*: JO(W) hen Jo(q,,) iane@

Hence 7 is a couple classical optimal control

To prove ¢ is unique

From strict convexity of J0(7) (by lemma 3), we conclude the uniqueness of 7

5 The NECs for optimality

In order to state the NECs for a couple classical optimal control, we drive the FrD of the Hamiltonian to establish the
NECs for optimality.

Theorem 4.Consider the CFn which is given by (7), and the adjoint (z1,22) = (214,,22¢,) equations of the couple state
equations (1-6) are given by

A2Z1 —Az1+21+22 =y1 —Y1a,0nL2 (25)
A’ — Az +20— 21 = Y2 — yaa,0n€2 (26)
21 =0,0n 27)
0
P _ 0, onl (28)
on
©2025 YU
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70 =0,0onl" (29)
92 _ 0,0nl" (30)
on

Then the QD of Jo is give‘n_> by
(Jo'(9),8q) = (T +q,69)
Proof.Rewriting the couple of the adjoint equations (CPAEs) (25-30) by their WFs, we get

(Azy,Av) + (Vz1, Vvi) + (21,v1) + (22,v1) = (31 — Y14, v1), Vo1 € Hy (Q) (3D

(Az2,Av2) + (Vz2, VW2) + (22,v2) = (21,v2) = (y2 — Y24,v2), Vv2 € H{j () (32)
By adding (31) and (32), we get for fixed couple classical control vector ¢ = (q1,92) € (L*(R))? the WF of the CPAEs

has a uniqueness and existence solution (z1,22) = (z1¢,,22¢,) € S (by applying the similar ways of the theorem (1) and
theorem (2)), we have

(Az1,Av1) + (Vz1, Vvi) + (z1,v1) + (22, v1) + (A22,Av2) + (Vz2, Vv2) + (22,v2) — (21,v2) = (71 = Y1a,v1) + (02 = ¥245V2)

(33)
By substituting the solution y; once and y; + 8y; once again in (10), subtracting the obtained equations one from the
other, with substituting v; = z; , we obtain

(A8y1,Az1) + (Vy1,Vzr) + (8y1.21) — (8y2,21) = (8q1,21), V21 € Hy(Q) (34)
Also substituting v; = 8y; in (31), then subtracting the obtained equation with (34), we get

(8y2,21) + (z2,0y1) = —(8q1,21) + (1 — Y14, 0¥1) (35)

By substituting the solution y, once and y, + 8y, once again in (11), subtracting the obtained equations one from the
other, with substituting v, = z,, we obtain

(A6y27AZ2) + (V5y2; VZZ) + (5)}2;12) + (5)’1 ;ZQ) = (56]2722),sz S Hg(-Q) (36)
Also v, = 8y, in (32), then subtracting the obtained equation with (36), we get

—(6y1,22) — (z1,0y2) = —(8492,22) + (2 — Y24, 62) 37

Adding (35) and (37), we get

(8g1,21) + (6g2,22) = (V1 — Y14, 0y1) + (y2 — Y24, 0y2) (38)

Then for the CFn, we have
H
Jo(q +89) =5 [[oO1 + 8y1 —y1a)2dxidxa + 5 [ (2 + 8y2 — yoa)*dxidx + 5 [[o(q1 + 8q1)?dxidx;
+1 [fa(q2+ 842)*dxidx;
= 2 falon = y1a)* + 201 — y12)8y1 + (6y1)*)dxidxa + 1 [[o[(v2 — y20)* + 2(v2 — 24)8y2 + (8y2)*]dx1dxy +
3 [ol(@1)? +2q18q1 + (8q1) dxidxy + 5 [[[(g2)* + 241892 + (842)?]dx1dx;
But by using (38), we have

— -
I0( +84) (@) = (Bq1.21) + (91841) + (52,22) + (4282) + 518122 )+ 311841222

N — 1,52 1, =0
= (7 +775Q) + §||5)’||(L2(Q))2 + 5”5‘1”@2(9))2 (39)
From Lemma 1, we get that
1, = = ==
EHS)]H?LZ(_Q))Z < ZHSqH%LZ(_Q))Z = 81(6‘])”5‘1”(1}(9))2 (40

— — — —
where €, (8g) — 0 as [[84][(;2(q)2 — 0, and & (8q) = 2([864]|(12(q))

1, 1, <= = - =
EHSq”?LZ(_Q))Z = §||5‘1||(L2(Q))2||561||(L2(Q))2 = &(69)(164l (120 41)
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- - - -
where €(8¢g) — 0 as [|8¢][(;2(q)2 — 0, and &(8q) = %H5q||(L2(Q))2
Hence the FrD of Jj is

(G +89) (@) = Uy(F).50) +£(39) 154l 1202 “2)
where 8(%) — 0as H%H(Lz(m)z — 0 Finally, form (39) and (42), one gets
(o(7).84) = (2 +7.84).
Theorem 5.The CCCPOC of the considered problem is Jo(q) = 7 + ¢ with ¥ =¥ ¢ and 7 =7 4.

Proof.If 7 is an optimal cont_r)ol vector of the problem
Jy(q) = minJy (W), VW € Qu, ie.
Jy(q) = implies T +¢ =0

=
q1 = —121 andQQ:*ZZWIth(Sq:W*? -
Hence the NEC of the optimality is (Jé(?), 6gq) >0
Therefore (7 + ¢, W) > (7 + ¢, q),VW € (L2(R))2

Conclusion

The FEGM with PCH basis function is suitable to prove the existence and uniqueness of a couple state vector solution
for a coupled fourth order LEPDEs with DNBCs, when the CCCPCYV is considered. Under appropriate conditions, the
existence theorem of a CCCPOCV associated with a couple fourth order LEPDEs is formulated and proved. The
existence and uniqueness of the solution of the couple adjoint equations which involves to the CPSV is discussed, when
the continuous classical couple optimal control vector is given. Finally, the derivation of the FrD for the CFn is
demonstrated and applied to establish the theorem of the NEC for optimality of the considered problem.
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