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1 Introduction

Convexity is a fundamental concept in geometry, although it is also frequently employed in other branches of
mathematics. Convexity is also useful in fields other than mathematics, such as chemistry, physics, biology and other
sciences. The research related to convex functions has received a rapid progress. This is because utilization of convex
functions in modern analysis and a large number of significant inequalities are results of convex functions (see [22]).
Divergences have been proposed in order to assess the differences between probability distributions. Divergences of
several kinds exist, for instance the f -divergence and Rényi divergence etc. (see [18,30, 15, 14,26]). In 1948, American
mathematician, Shannon founded information theory with a well-known paper, “A Mathematical Theory of
Communication”. The entropy of a variable means “amount of information” for the variable.

Suppose that X is a continuous random variable with density u. Consider the set ® = [b;,b,] with b; < b and the set of
all probability densities is defined by

S = {l|l:9—>R,l(19)>0,/l(ﬁ)dﬁzl}. (1)
(]
The differential entropy of X can be defined on ® by

1
he(X) .:/@u(ﬂ)logmdﬂ, ues. @)

The aim of the mathematical theory related to time scales is to merge discrete and continuous analysis presented by S.
Hilger in 1988 (see [4,5]). This theory is developed very rapidly in last three decades. Several authors have established
time scale versions of inequalities. Ansari et al. [1] have presented few inequalities containing Csiszar divergence for
delta integrals on time scales. Bilal er al. [11] have extended Jensen’s inequality for multiple integrals via diamond
integrals. They have used obtained extensions to construct Hardy—type inequalities on time scales for the function of
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several variables via diamond—integral formalism. In [12], author have utilized Hermite interpolation, to extend Jensen’s
functional on time scales for n—convex functions using diamond integrals. Recently, Smoljak Kalamir [17] have extended
certain Steffensen-type inequalities by utilizing diamond-« integrals. In [28], authors have introduced the quantum
analogue of the dual Simpson type integral inequalities for the class of g-differentiable convex functions through a new
identity. In [29], authors have extended Ostrowski type inequalities for the function whose first derivatives’ absolute
value are s—type p—convex. In [6], Bohner ez. al. provided Montgomery identity using delta integrals and discussed it for
some fixed time scales. In [27], Sarikaya et. al. have established weighted Montgomery identity on time scales.

The main motivation behind this work is to generalize the results involving different divergences by using approximate
symmetric integrals (called diamond integrals) via Montgomery identity and Green function. These results extend the
results of [15,1,20]. For this purpose, Shannon entropy and different divergence measures are reformulated by diamond
integrals and their bounds are derived with the help of Montgomery identity and Green function involving
diamond—integral formalism. By choosing set of real numbers as time scale in the obtained results, we get improvements
of classical results already proved in literature [1,20]. Moreover, by choosing set of natural numbers including zero as
time scale in the proved results, improvements of existing discrete classical results are obtained [15].

The structure of the manuscript is as follows: In Section 2, first of all some basics of time scales calculus are given. After
that Montgomery identity and some of its related findings are recalled. Section 3 contains results containing Csiszar
divergence via diamond integrals for n—convex functions. In Section 4, bounds of different divergence measures are
estimated. Lastly, manuscript is concluded in Section 5.

2 Preliminaries

The present section contains some fundamental definitions and findings related to the mathematical theory of time scales.
The time scale, indicated by T, is a nonempty closed subset of real numbers. Its examples include N, R and Z. Let r € T,
forward and backward jump operators ¢,p : T — T are given as

o(r):=inf{veT:v>r},

and
p(r):==sup{veT:v<r},

respectively.

The development of time scales theory start with the ideas, the forward (delta) calculus and the backward (nabla) calculus.
The A (delta) derivative of a mapping / is denoted by /4 and A integral is represented by [/(n)Am. Likely, V (nabla)
derivative of a mapping [ is denoted by /¥ and V integral is denoted by Jr1(n)Vn. For more information related to time
scales see [4].

In the paper [25] from 2006, Sheng, Fadag, Henderson and Davis have provided diamond-alpha integral given as follows:
Consider £ : [c1,¢p]T — R is a continuous mapping and ¢1,¢; € T(c; < ¢3). The diamond alpha integral of & is given as

[ nmoan = [“abman+ [“(1-ammyvn, 0<a<t,

1 C1

if yhis A and (1 —7y)h is V integrable on [cy,cs]T -
In case o = 0, we have nabla-integral and for o = 1, we have delta-integral.

In [7], the function ¥ given as follows:

o o(v)+2v—2t—p(v)’

Clearly,

————_ if vis not dense

%, if v is dense;
Y(v) =14 “om-v
o(v)—p(v)

and 0 < y(v) < 1.
Now we recall diamond integral which was proposed to provide a genuine symmetric integral on time scales. This integral

provides better approximation than delta, nabla and diamond- alpha integrals. In [8], an “approximate” symmetric integral
on time scales which is called diamond integral defined as follows:
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Diamond Integral
Suppose i : T — R is a continuous mapping and dy,d, € T(d; < dy). The diamond integral of 4 from d; to d; is given as

/ §)0E = /, A€+/ (1—y(ENR(E)VE, 0<y<I,

with the condition that yh is A and (1 — y)h is V integrable on [d},d>|T

For more information related to o-integral see [8].

In literature, the Montgomery identity is well known. It has been studied extensively since it was established. Montgomery
is used to get a number of subversive inequalities like Ostrowski type inequality, trapezoid inequality and Griiss type
inequality.

In [19], Mitrinovié et. al. provided that if ¢ : [p, ¢] — R be differentiable on [p, ¢] and ¢’ : [p, ] — R be integrable on
[p, ¢] then Montgomery identity is given as follows:

1 'S V2
— Odt+ )¢’ ()dt, 3
ip4¢m AIW’W(’ 3)
where
yp<t<m
s—p
Brt) = {gp,r<t<g “4)

The following Montgomery identity is presented in [2,3] and utilized to prove main results.

Theorem 1. Suppose that U is an open interval in R and p, ¢ € U s.t. p < G. Assume a function ¢ : U — R, s.t., ¢
is absolutely continuous for n € N, then

1 G (p) (r—p)***
0(r) = p/’ T

s—pJ =3'G+2) ¢c—p
n=2 4(3+1) 32 °
987 (g) (r—g) 1 / (n)
- + Ru(rt tdt, (5)
=03G6+2) c—p (n—U% (9970
where by |
—(r— TP (. (\n—
Ru(r,t) =4 "€P) tep (-9 pstsy )
nih —(r—t" | r—¢ n—1
n(g—p) +gip(r7t) ,r<t§g

For n = 1, sums in (5) are empty, therefore (5) is reduced to Montgomery identity (3). In this paper we assumed that:
Al: 0 = [b] ,bz]T, with by ,by € T and by < bs.

A2: The set of all probability densities is denoted by E =: {I|[: ©@ — R, () > 0, [o I(¥)O0 = 1}.

Consider the Green function G : [p, ¢] X [p, ¢] — R defined as

(u=g)(r—p)
s, pSrlu
Gmﬂ:{(éﬁ)7< e (7
s—p - -
It is understood that (see [21,31,24,16]) any mapping ¢ € C?([p,¢],R) can be expressed by
c—u u—p /g "
u) = + + G(u,r r)dr, (8
¢ (u) gip¢@) g7p¢@) : (,r)9" (r)

where G is given in (7).

Theorem 2. Assume that the mapping ¢ : [0,00) — (—o0,00) is convex on [p, ] C [0,0) and p <1 <¢. Ifl|,l, € E and

Lh(v)
p=< L) <g, VvVeT,
0" L))" = e p PP )
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Proof.  Since ¢ is convex on [p, G|, therefore

¢ (up+(1—u)g) <ud(p)+(1—u)(c), (10)
forevery u € [0,1]. Putu = gg:;;’ l—u=1- g:; = gv:/; in (10) to obtain
o) < s:;mp) Z:'Zcb(g)- (1
Usev= %,in (11) to obtain
h(£) h(&)
lz(C)) 5T g —P 12

¢(g). (13)

Multiply (12) by /; () to obtain
lz(C)> < shi(§) —h(9)

noe(ig) <5 N

Integrate (13) over @ and since l,,l; € A, therefore

[0 (5E ot < £ oo+ Lo

which is the desired result.

3 Main Results

If suppositions of Theorem 2 remain valid, then it is possible to define the following functional f ;(¢) involving Csiszar
divergence for diamond integrals:

st 1=P 4oy L(®)
P10 = 2000+ =200 - [ n)o (15 oo, (14)

where ¢ is defined on [p, ¢].

Remark. 1f suppositions of Theorem 2 remain valid, then F 1(¢) > 0.

Motivated by (9), we start with the next theorem.

Theorem 3. Let the assumptions of Theorem 2 remain valid and ¢ € C*([p,¢],R), then

/@lz(ﬁ)G(ZEg;,r)Oﬁg %G(p,r)—l—;:—gG(g,r), (15)

and (9) are equivalent for each r € [p,g|, where G is defined as in (7).

Proof.  Suppose that (9) is valid. Since, the function G(-,r) is convex and continuous for each r € [p, ¢], consequently
(15) holds.
Conversely, assume that (15) is valid and ¢ € C([p,¢],R). Then, use of (8) gives

n /QG(ll(ﬁ),r)¢//(r)dr:| <>19 (16)
p
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If we apply Fubini’s theorem and choose /1,1, € E, then (16) takes the form

—p 11 (9)
S0+ =20(0) - [ n(oe( 15 )00

_s-L s "
p— /p G(p, )" (r)dr

I_P/gGg, //
p

) [/@Gd;&«}%’”ol’%"vﬂr

Since ¢ (r) > 0 for each r € [p, g], therefore (9) is valid.

By using Montgomery identity and (9), following new result is established.

Theorem 4. Let the suppositions of Theorem 3 are valid, (n € N,n > 2) and the function ¢ : [p,¢] — R with ¢~V i
absolutely continuous then

P 1 g
Fi(¢)= / Fi(G dr+g—/p F1(G(-,r))dr

—_— : () (p )R T, T,
ot om0 [P riGtmRia )as an

where

(18)

o, r )
Gl 4 halen) [ ()6 ghr) oo, a9

rl(¢) d)l(p)sl(g) s

1 9
" iatr ))dr+ﬁ/ F (G, r))dr

n—1 4(3) 3-1 r— )31
X(Z¢ (P)(r—p) o (c)(r—9) )dr

320 G-3)!G—-1)

1 s 3
+— / ¢<">(r)< / FI(G(-,r))an(r,t)>dt, (20)
(n=3)tJp P
where ,
—(r—t)"" P (V"3 g <t <
Rya(rt) = (”(f)fnf’ﬁi P )H’p_ =" @1)
i H =" <t <

Proof. From (5), second derivative of the function ¢ can be written as
p)—¢'(s) v
d)// r +
)= s—p Z G- 1

L S Sl [t ek W S SAROH
< c—p >+(n—3)!p/R"2(”‘)4’ (hdt. 22)
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Utilize (22) in Theorem 3 and rearrange the indices to get (17).
Use (5) on the function ¢” with n replace by n —2 (n > 3) and rearrange the indices to obtain

vy 9P)—9'(c) " 1
)= o +Z<(za—3)!(3—l))

0 (p)(r—p)' = 9B(g)(r—g)3! 1
X( S—p )+(

©
' / Roa(r,)9™ (t)dt. (23)
P

Use (23) in Theorem 3 to obtain (20).

Remark. Choose set of real numbers as time scale in Theorem 4, to obtain the same result we can get from [13, (2.1)]
by using (8) and (5).

The following result provides a sublime generalization of inequality containing Csiszar divergence via diamond integrals.

Theorem 5. Let the suppositions of Theorem 4 remain valid. Consider n € Nand G : [p, g] X [p, ¢] — R be specified
in (7).

/gF1(G(u,r))I?,,_2(r7 t)dr>0, telp, gl (24)
P

Lo (5090 —p) = 08 () (r— )]
+ /pFl(G(,r)) <322 G—1)! a2

/ F1(G R, >(rn,t)dr>0, for all t€]p, gl (26)

L o (5 29 —p) W) =)
+(g7p)/p F1(G(-,r)) (; TESI dr. (27)

Proof. Since ¢ : [p, g] — R is n—convex, which implies ¢"(v) > 0, Vv € [p, ¢]; this fact together with (24) gives

/ (G _2(nt)dre"(t) >0, for all te|p, ¢]. (28)

n—3 / 0" ( (/ F1(G R, (r, t)dr> dt>0. (29)

Using (29) in (17), we get

9'(p) —¢'(s
713/; FI(G('ar))dr

Fi(9)— P

— -1 -1
Gt (Z r—p)’ ¢I<é><g><rg>3 }>dr20. 30)
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Linearity of F 1(+) yields

Fi(9)—Fi <%/§G(-,r)dr

dr) >0. 3D
Which is desired inequality.

Similarly by utilizing (20), one can get (27).

Theorem 6. Assume that the suppositions of Theorem 4 are valid and

(i) If n > 4 (n be even), then (25) and (27) hold.

(ii) If (25) holds then, Vr € [p, ¢]

n—1 1

9'(P) = 9"+ X -y, (69(p)(r—py" = 9D (e)(r— ) ") 2 0. (32)
5=2 )
Or
(27) is satisfied then Vr € [p, ¢]
: oy 5 8 () (r=p) ™ — 91 (g)(r—g)*”!
In both situations, we have
F1(9(-)) > 0. (34)

Proof.  Since F 1(G(-,r)) > 0 by means of Remark 3.

(i) As R,_2(r,t),R,_2(r,t) > 0 for for even n (n > 4),therefore (24) and (26) hold. Also ¢ is n-convex, consequently,
utilizing Theorem 5, one obtains (25) and (27).

(i1) Use (32) in (25) and (33) in (27), to get (34).

4 Estimation of divergence measures

In this section, bound of different divergence measures are estimated. In [9] authors have introduced differential entropy
ho(Z) via diamond integral formalism.

Definition 1. The differential entropy of continuous random variable Z for diamond integral can be defined as follows:

' 1
he(Z) .:/@lz(z)log mOz, (35)

where Iy € E and the base of ‘log’ is ¢ for some fixed ¢ > 1.

In the following results, the generalization obtained in Theorem 5 by Montgomery identity is utilized to provide the
following new bounds of the divergence measures via diamond integrals:

Theorem 7. Assume that suppositions of Theorem 5 are true. If n = 4,6, ... and ¢ > 1, then

he(2) = S 10g(p) + =2 log(c)
g 1 £ 1 9
f/ezz(zs)mg (11(19))<>19+E/p FI(G(-,r))errﬁ/p F1(G(.r)
e =Y
(B g Jan oo
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- [ poe ()08~ [*r1(GLr)ar+ == [*ri(6en)

x (rlzl(l)?’_l(uz) { (rlfu)u_l + (r;‘)u_l])dr, 37)

3=3

where hz(Z) and F 1 (G(-,r)) are defined in (35) and (19) respectively.

Proof.  Since the function ¢(z) = —logz is n-convex for even n. Use ¢(z) = —logz in Theorem 5, then we obtain (36)
and (37) from (25) and (27) respectively.

Definition 2. In [10] authors have introduced KL divergence via diamond integrals given as follows:

D(ll,lz)::/@ll(ﬁ)ln(zgg;)O& (38)

Theorem 8. Assume that suppositions of Theorem 5 are true. If n = 4,6,...), then

g1 1—p

D(l1,1) < HPIH(P)‘F ﬁgln(g)
—é/pg,fl(G(-,r))dr—f F(G(.r))
n—1 (_l)ufzu (r—p)ufl_(r—g)“fl i
X(uzz u—1 [ p* ¢! Dd’ &
and
D(l,b) < s_;lpln(p) + ;%Zgln@)
oz [Tt —= [ri(c6n)
y n—1 (71)u—2(u72) 7(1’*[))“_1 (rfg)u_l i
<u§3 u—1 [ v Dd’ @0

where D(11,1,) and I (Gn(~, r)) are defined in (38) and (19) respectively.

Proof.  Since the function ¢(z) = zInz is n-convex for even n. Use ¢(z) = zInz in Theorem 5, then (25) and (27) become
(39) and (40) respectively.

Definition 3. In [10] authors have introduced the Jeffrey’s distance via diamond integral can be defined as follows:

Dy(l1,1) := /@ (1(9) = () In {Zggﬂoﬁ. (41)

Theorem 9. Assume that suppositions of Theorem 5 are true. If n = 4,6, ..., then
g1 1-p
Dy(li,b) < =—(p—1)In(p) + ﬁ(g —1)In(g)

M*L : T rfL ; -r
( c—p P€>/p FI(G(v ))d c—plp FI(G(, ))

T e |

[TaY
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and

1
)+ p( ¢—1)In(g)

n(p
< lng 1 )/pgfl(G(gr))er gf](G(~,r))
£

Di(li.h) < *—(p— 1)1
ps s—pJp

S
( Uy — m[<tw1+pjI)U_pyhl_<u¢1+5%7)0_gwfﬂ>dn 43)

where Dy(l1,b) and F 4 (Gn(~, r)) are defined in (41) and (19) respectively.

Proof.  Since the function ¢(z) = (z— 1)Inz is n-convex for even n. Use ¢(z) = (z— 1)Inz in Theorem 5, then (25) and
(27) become (42) and (43) respectively.

Definition 4. In [10] authors have introduced Triangular discrimination via diamond integral can be defined as follows:

(b(9) ()’
Da(l,! ::/ — =00, 44
a(l1,h) o L) +0L(D) ¢ (44)
Theorem 10. Assume that suppositions of Theorem 5 are true. If n = 4,6, ..., then

s—1(p—1)? 1-p(c—1)

s—p p+1 s—p ¢+l

L (=D(c+3) w—wxp+a>/€
— — F1(G(.,r))dr
g—p< (c+1)? pror ), 11O00)

4 g9 n—1 " (r7p>u—1 (rfg)u_l
) F1(G(,r)) x <u§2(—1) ”2[(1+p)u+n — (Hg)uHDdr, (45)

Da(l1,h) <

and

g—lw—lf+1—p@—lf
s—p p+l c-p ¢+1
1 ((g—=1(c+3) (p-1(p+3)\ /¢
(e ) [ et
4 S

(ST (r=p)* "' (r=g*!
A F1(G(-,r) x (1‘23(1) u(uZ){(Hp)u+1 - (Hg)uHDdr, (46)

where D (11,1y) and F (Gn(-7 r)) are defined in (44) and (19) respectively.

Da(l, k) <

(z=1)?
z+1

—1)2 .
is n-convex for even n. Use ¢(z) = @ in Theorem 5, then (25) and (27)

Proof.  Since the function ¢(z) = —

become (45) and (46) respectively.

4.1 Bounds of Divergence Measures in classical calculus

Now, we estimate different divergence measures in classical calculus.
If one chooses set of real numbers as time scale in Theorem 5, then (25) and (27) provide new inequalities containing
Csiszdr divergence in classical calculus:

g:;¢@)+;:g¢@)
' 1(9) ¢'(p)—9'(c) (¢
_/@zzwm(lzw))dﬁz — /pFl(G(,r))dr
1 s o™ (p)(r—p)t T =W () (r—g)" "]
+_(gfp>p FGL.n) o (u—1)! dr,

©2025 YU
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and
s-1 1-p
gip¢(p)+gip¢(g)
—/ lz@)d’(ilggi)dﬁ > 9 (gg)_z () ngl(G( ,1))dr
L N ) Gy et A (Gt I O
+(€*P) p[I(G(7))<2; (u=3)(u—-1) dr.
where
I P P - [uwee(i®),
A6k = a4 =6l [ @6( L5 )av. @

If one chooses set of real numbers as time scale in Theorem 7—-10 then (36), (37), (39), (40), (42), (43), (45) and (46)
provide new bounds in classical calculus for differential entropy, KL divergence, Jeffrey distance and Triangular
discrimination:

1 c—1 l—p
L(¥)lo dd > lo +——1o
2908 o5 > = tos(p) + L 10s(s)

f/@lz(ﬁ)log (ll(ﬁ))d19+i/:ﬂ(G(~,r))dr+ﬁ/ng|(G(.7r))

1-p

—/@zzw)log(zlw))dﬁ—é/:m(a(-,r))dwLp/pgfl(c;(-,r))

' 1 c—1
L(Y)1 dd > 1 1
| p(®)log essd0 > = log(p) + =L 10s(s)

9 1 9
- fl(G(wr))dr*ﬁ/p Fi(G(r))

(B e g

) <ZI (—1)*2(u—2) [ (r=p)*" (=9 ] >dr,

u=3 u—1 p* ¢t
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L(9) c—1 P
/@(11(19)12(19))111{[2(0) a8 < QT(Pfl)ln(PH—(gfl)ln(g)
Inp—Ing 11 /¢ g L[ g
< c—p Pg)/p PG n)dr=—=5 | 11(G(n)

(B ()t g oo

1(9) g—1 l-p
(a0~ (o) n [ {655 o < S o)+ 2B - )

Inp—Ing 11} r¢ Ny 2 [* Ly
< c—p pg)/pr'(c(’))d cpJ, 11661

X (Zg: (—liuful— 2) [(up—ul + pul_l)(r_p)u—l _ (ug—ul +%)(r—g)“_1Ddr,

[ () ~1(®)° o c=l(p—1)? 1-p(g—1)

~

L(¥)+1(D) s—p ptl Gg—p ¢+1
i - p <(g (glJ)r(lg)j o (pli(?)j3)> /pgr' (G n)dr
gl e (Lo - g
and
[ (112;(1199)); z;ﬁ)))zdﬁ <52l (,; L = (gg =L
i - p ((g zgll(f)j - Epli(ll))f)) /ngl (66 )dr
s e (B a2 -5

where £ | (G (-, 7)) is defined in (47).

4.2 Bounds of Divergence Measures in h-discrete calculus

Now, bounds of different divergence measures in i-discrete calculus are estimated in this section. Moreover, bounds of
some divergence measures in discrete calculus are estimated.

If one selects set hZ as time scale, where i > 0, in Theorem 5, then ¥ = hy € hZ for some y € Z. Therefore, (25) and (27)
take the form:

s 1 P h[& L (hd)
= 00)+ E0(s) ZLZb_]’Q(hI’)"’(zz(hm)
e & oon(ifi )| 2 SE=5 [ et

L o) -0~ e - )" ]
‘Tl F“G("r”@ | ar,
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and
c—1 1-p _h %-1 L (1)
T0p)+ =590 3 L:b_llz(hﬂ)q) (12(h19))
sz ll(/’lﬁ) ¢/(g)_¢/(p) c ) )
+ﬂ%+llz(h0)¢(lz(w)ﬂ > s /,, F1(G(,r))d
1 L, n—1 ¢(u)(p)(r_p)u—1_(P(u)(g)(r_g)u_l )
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If one chooses set h7Z as time scale in Theorem 7-10 then (36), (37), (39), (40), (42), (43), (45) and (46) provide following
new bounds in i-discrete calculus for differential entropy, KL divergence, Jeffrey distance and Triangular discrimination:
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where f 1 (G(-,r)) is defined in (49).

Remark. Useh=1,b1 =0,by=p, [;(®) = (I1)y and [,(¥) = (1) y, in (39) and (40) to obtain following new bounds
for discrete Kullback-Leibler divergence:
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where /1 (G(-,r)) is defined in (49).

Remark. Useh=1,b; =0,b, =p, 1;(¥) = (I1)s and ,(¥) = (), in (42) and (43) to obtain following new bounds
for discrete Jeffrey distance:
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where £ | (G(-,r)) is defined in (49).

Remark. Useh=1,b1=0,by,=p, 1(¥) = (I1)y and () = (), in (45) and (46) to obtain new bounds for discrete
triangular discrimination:
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where £ | (G(-,r)) is defined in (49).

4.3 Bounds of Divergence Measures in q-calculus

Now, we estimate bounds of different divergence measures in g-calculus.
If one chooses set ¢, ¢ > 1 as time scale, in Theorem 5, then ¥ = ¢ € ¢™° for some y € Ny. Further if b; = ¢ and
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by = ¢”, then (25) and (27) take the form:
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If one chooses set qNO, q > 1 as time scale in Theorem 7-10 then (36), (37), (39), (40), (42), (43), (45) and (46) provide
new bounds in g-calculus for differential entropy, KL divergence, Jeffrey distance and Triangular discrimination
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where f 1(G(-,r)) is defined in (50).

5 Conclusion

In the present work, Montgomery identity and Green function are utilized to prove some inequalities containing divergence
measures for diamond integrals. Bounds of different divergence measures are obtained by utilizing particular convex
functions. The obtained new findings also provide new bounds of divergence measures for fixed time scales. The new
demonstrated bounds are the improvements of bounds given in [1,15,20]. If one chooses ¥ = 1 then above all proved
results give improvements of results given in [1]. Furthermore, one can fix time scale, to get continuous and discrete
bounds different divergence measures which are already given in [15,20]. Possible future work includes study of Rényi
entropy using diamond—integral formalism. Which may be included in future tasks.
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