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1 Introduction

In this article, we study the following three-dimensional incompressible Hall- magnetohydrodynamic system:

da—vAa+(a-V)a+Vp=(V xb) xb, t>0,xeR?,
b — ppAb+puV x ((Vxb) xb)=V x (axb),t >0, x € R |
V.a=V-b=0, t>0,xeR3, M
(a,b)|,_o = (ao,bo), x€R3.

In this context, the variables a, b, and p correspond to the velocity, magnetic, and scalar pressure fields, respectively.
Additionally, we use pg > 0 and v > 0 to represent the Hall coefficient and kinematic viscosity, respectively. The
diffusive coefficient pp = #, where the constants p > 0 refer to the electrical conductivity and u > O refer to magnetic
permeability. The given initial data ag signify the initial velocity and bg represent the initial magnetic field. The
incompressible Hall-magnetohydrodynamic system finds applications in various fields, particularly in plasma physics:
investigating the dynamics of plasmas in space, including the interaction between the solar wind and planetary
magneto-spheres; astrophysics: studying the behavior of magneto-spheres of planets, such as Earth, where Hall effects
become significant due to the presence of charged particles and magnetic fields; and engineering: developing propulsion
systems for spacecraft utilizing magnetohydrodynamic principles, where Hall effects can influence the efficiency and
control of propulsion.

Numerous studies have explored the global and local-in-time well-posedness and stability of equation (1) across
various functional settings. Acheritogary et al. [2] obtained the global well-posedness of weak solutions for the system
(1). Ferreira and Benvenutti [5] established the local-in-time well-posedness of strong solutions in the H 2 space. In [6],
the authors have demonstrated the existence of locally smooth solutions for large data and globally smooth solutions for
small data in the context of the incompressible viscous or inviscid Hall-MHD model. Recently, Raphael and Jin [8] delved
into the existence and uniqueness issues of the three-dimensional incompressible Hall-magnetohydrodynamic equations
within critical regularity spaces. In [18], Renhui Wan and Yong Zhou obtained two Fujita-Kato type results applicable to
the 3D Hall-magnetohydrodynamic equations. In 2021, Nakasato [1] proved the existence of a local-in-time solution in
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the framework of Fourier-Besov spaces. Inspired by [1], the main purpose of this work is to show that the problem (1)
is locally well-posed in Fourier-Besov-Morrey spaces ( larger than Fourier-Besov spaces) by using the Fourier analysis,
Littelwood-Paley theory and Banach fixed point theorem. It is noteworthy that when py = 0, the problem (1) simplifies
to the well-known incompressible magnetohydrodynamic system,

da—vAa+(a-V)a+Vp=(Vxb)xb,t>0,xeR3,
ob—ppAb =V x (a x b), t>0, x€R3, )
V.a=V-b=0, t>0,xeR3,
(a7b)|[:():(a05b0)a x€R3.
Li and Zheng [11] established the well-posedness of the mild solution for the problem (2) in Fourier-Herz space, involving

highly oscillating functions. In a different direction, the authors in [15] proved the global existence and a singular limit of
the problem (2) in Fourier-Sobolev spaces. Examining the Cauchy problem (2), Mlao and Yuan [13] obtained the global

existence for small data and local existence for large data in the Besov space %’If g (R”) with 1 < p<oand 1 < g < oo,
They also estabhshed the concept of weak-strong uniqueness of solutions with initial data in %ﬁ g (R”) NL?(R") for cases
where 5> + > 1. Moreover, we focus on a solution for the magnetic field that is close to a constant equilibrium % at

spatial mﬁmty, where Z € R represents a constant magnetic field. To reformulate the problem (1) under the assumption
that Z # 0, we introduce a new vector-valued function B := b — 4, leading to the following initial-value problem:

a,a—vAa+v(p+@)—(VxB)x%:h, >0, x€R?,
B —ppAB+puV x (VXxB)x B)—Vx(axB)=Vxg t>0 xcR3 3)
V.a=V-B=0, t>0,xER3,
(a’B)|t=0: (aOaBO)v XERS,

where i and g are the nonlinear terms, defined respectively by:
h:=—(a-V)a+(B-V)B, g:=axB—pu(VxB)xB.

Numerous researchers have explored the global well-posedness result for the problem (3) (see references [7,10,17]). So
as to determine the appropriate function class for a solution (a, p,b) to the problem (3), we examine the following linear
system:

B —ppAB+puV x (VxB)x B)=f,t>0, xR @
B|f:0:BOa XGR37

where pp,py > 0, B = (%1, %>, %’3)T € IR3. Notice that ¢’ By is the solution of the linear problem (4) and we have,

1| &
e[HB ~ el‘-ﬂ‘lAelpDAB

2
e’HBo‘ ~ ¢~ oD![¢]

ﬂw\zm%‘ ‘ePDlABo

Let us present the scaling property of the system (1). If (a, b, p) solves (1) with initial data (ag,bo, po) then (ay, by, py)
also solves (1) with the initial data (aq,y, bo,y, po,y), Where

( ) ya(v't,y),
py(t,x) Vzp(Vzt ), v>0
by(t,x) = yb (Y1, yx) .
The critical space for the system (1) is naturally defined as a result of this scaling invariant characteristic.
To facilitate clarity in our description, for 1 < p < e, we use L? = L? (R") to denote the Lebesgue space and LP (R") =
L? to denote the Fourier-Lebesgue space defined by

I’ ={fe.7

i <o}, where ||l = If,

where p’ is the conjugate of p satisfying % + % = 1. We denote by & (R") the set of polynomials.

The work is organized as follows. In Section 2, we recall the fundamental setting, defining the functional spaces
concerned. In Section 3, we present some technical lemmas and in Section 4, we state our main results on local well-
posedness and we also prove it within critical Fourier-Besov-Morrey spaces.

In the following section, we will present the Littlewood-Paley theory and Fourier-Besov-Morrey spaces.
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2 Preliminaries

Consider the Littlewood-Paley dyadic decomposition of unity denoted by {6;}cz, where 6 is a positive radially
symmetric function belonging to the space .’ such that

N 1
supp(0) C {§ eR": 3 <|&| gZ},
and . . _ .
0;(6)=06(277¢), ) 0;(6)=1.
JEZL
First, we define the homogeneous Besov spaces.

Definition 1./4] Let 1 < p,q < +ocand s € R, the homogeneous Besov space is defined as
1/q
/ — 1 _ j q
By, =€ S fel,,, Hfllﬁg,;’q(w) = {Zizqu ||9j*f||m} < oo b
j€
with appropriate modifications made when q = oo.

Next, we define the homogeneous Fourier-Besov spaces.

Definition 2./4] Let 1 < p,q < +ocand s € R, the homogeneous Fourier-Besov space is defined as

1/q

7 - _ jgs || 4. 7119

y%p’q =< fe B fe L., ||f|‘j%;q(Rn) = {Zzzqu ijHLl"} < oo 3,
j€

with appropriate modifications made when q = oo.

Now, we present the Morrey spaces ., [f (R").
Definition 3.([16]) Let 1 < p < o, 0 < A < n, the Morrey space ///13L = ///3“ (R") is given by
A} R = {f €L, (R):|\f] 3 < oo}, where

loc
_A
1Az = sup supr=? [ fllo(sig.m)-
xo€R" r>0

Remark.[9]
1) The space ., 3“ equipped with the norm || - ||, is a Banach space.
p

A

2) If 1 < py,p2,p3 <o, 0< A1, 42,43 < n with L= %—i—p—lz and Dy

MM . " . .
> = o T o then we obtain the Holder inequality

n < A )
1715 < 171 Dl

3) Forl<p<eand0 <A <n,
1+ £z < I0les 171z )
forall ¢ € L! andfe//lﬁ“.

Lemma 1./9] Let 1 < p; < p; < 0,0 < 41,4 <n, ";% < ";—jz and let y be a multi-index. Ifsupp(f) C {|§| §A2j},
then the following inequality holds for any constant C > 0 independent of f and j.

. .(n=dp n=M -
H(i‘:)ny//a < (A >||f|\///;]. (6)
’p) 1
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Now, we define the function spaces .7 .4 ;’ 1q(R").

Definition 4./6] Let s c R,0 < A < n,1 < p < +oo, and 1 < g < +oo. The space ,?JV';’;L,, (R™) denotes the set of all
feS"RxR")/P(R") such that

1/q
1l iy = {22”‘||éjf //,} <o o
" P

JEZ
with appropriate modifications made when q = oo.

Now, we define the Chemin-Lerner of Fourier-Besov-Morrey spaces.

Definition 5./6] Let s e R,1 < p < o0,1 < g,p <o00,0< A <nandT € (0,|. The Chemin-Lerner norm is defined on

f(t,x) by
1/q
q
P (0,T;Mﬁ,) } ’

where £P (0, T;.F N ) is the set of distributions in ./ (R x R") /| 2 (R") with finite || - HEP(O TN, ) 0T,
TP N pig

||f(t7x)ng(oyr;,gz_/y';’l?q) = { ;qus 16,/
j

P

As a consequence of the Minkowski inequality, we can establish the following continuous embedding connecting the
Chemin-Lerner spaces with the Bochner spaces and the Fourier-Besov-Morrey spaces,

f’(o,T;yaV';M) cr (0,T;y‘</1/';M q<r,
L (0T 7N 0y) CLOTFN ay) 7 <a

In the following section, let us summarize key lemmas that will be used repeatedly.

3 A priory estimates

Let us proceed to illustrate the different types of product estimations within the Chemin-Lerner spaces of Fourier-Besov-
Morrey spaces. The classical bilinear estimates are provided in the following lemma.

Lemma 2.(Bilinear estimates) Let s > 0,0 < A, A, L, <n, 1 <ry, rp < oo, and 1 < p, p1, p2, g < oo, such that % =

% + % = );—11 + it_lz Then there exists a positive constant C such that the following estimate holds:

2 < 2
172l 505, < (11 Lt

A HngJV;Z.ZQ-q *lis]

Proof.We put, f; = 0; x f. Thanks to Bony’s para-product formula, We break down the product of f and g in the following

manner:
fe=Y Neoifge+ Y, fiNee1g+ Y, fdk
keZ keZ keZ
= Il + 12 + I3a

with N f = <§7| f1. We first determine the estimation of /;, we note that 6; x (Nj/_lij/* g)=0(j—j|>4), then we

have
TIH < H/Q\ﬁ Ni_1fgy ‘
H 4y \j—JZ/\SS i W /)%;1/
<C Y [[FWNp-ifei)ll
=713 ,
o ®)
<c Y |FWnl 6]
j-71<3 o ),
<Clfll o ¥ 1168] -
T R
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Similarly, we obtain the estimation for /, in the following manner:
IBll3 <CIEx X 18771 o ©)
’1 \J J1<3 "
Whereas, we observe that 6; x (f&;) = 0(j' < j—4). Then we obtain

Hlsl\///z < Y 167 (f,/g,)ll//x
j'>j-3

<cy) ||9/f>f<9/g|\//ﬂ
j'>j-3

<c ¥ o], ; |\e/g|| (10)

j'>j-3

<alfl, HngH

M A
!’ j/> ‘///p’z

Combining (8)-(10), we have

[ozuol,, <cirl, < o5
P li—J'11<3

il

PRPNLE
Py J 2]73

L)

+CH§H

\/ J H<3

By Minkowski’s inequality, we get

1

)

. C||f|\. ( 2w< He/g
1\3

+CII§1|/ (Zf”( )y ||9/f|| ))
% \Je 7

+Clfll <Z zsjq< 658 , ) )
Py \JEZ J—i'<3

o~ |
<clfl ¥ <Z 2% ej_lgH/J
»;

P [1|<3 \JEZ

1

+Clgl u ¥ <Z 2% @_lﬂ\q/ﬁ)
_ v

/ [11<3 \j€Z
1
Il X (26 ng
1 1<3 \j€eZ
=J1+h+ 5.

For J; and J,, we obtain
1

q
n+n=c|fl, Zz“<22”“f|e, A, )
2

P [11<3 JEZL

1

q

+Clgl X 2”(22” 16,111, )
2

"ol<3 JEZ
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<C (171 gy el o, + el gl )

As for J3, we get
!
w=Clfl X | L2002 lgH
, Py 1<3 \jez
< N o5 .
<CIfl g lel vy, .,
Thus, we complete the proof of Lemma 2.

Moreover, it is essential to demonstrate the smoothing properties within the Chemin-Lerner spaces. First, we examine
the inhomogeneous heat equation, which features a diffusive coefficient (v > 0) :

da—vAa=f,t>0,x€R3,
(11)

ali—o = ag, x€R3.

Lemma 3.(Smoothing estimates for (11)) Let s € R,0 < A <3 and 1 < p,q < oo. The inhomogeneous heat equation for
(11) admits a unique solution u and there exists a positive constant C = C(r) > 0, such that

1 < —1+4+
villall o Clllaollzps, ,+v A 212
( 0.1;7 A/M q> Zn <O,T;J/V K )

pAq
Proof. Suppose that u satisfies (11), then for any j € Z, we have
1
a;j(t) =e"v20;xap+ / e =IVA £(5)ds. (12)
0

In order to evaluate the initial component on the right-hand side of equation (12), we obtain by using
supp6; C {& e R"; 2771 < |&| <2/} that

9.0 VIEPS e /°° — 202y ?H(;.A ‘
H s Ol orsar) = \ o © °) IOl
P P
NP 13)
<c(w¥)r ejao‘%l. (
M
Using Young’s inequality, we obtain
1
- VERG T T [ s2ie9 ||g )
/e 8;7(s)ds < / /e 3 leij ds| e
0 Lr(07T;=///pll> 0 0 ‘/// o
< 122, H “' (14)
He L9(0 0if (o7

<C(V22J —1- T r]

7]

where é =1+ % — % Combining (13) with (14) and multiplying by 2%/, we get

L’l orzfﬂ)

pio(+3)i | —l+

Bl h) )

rr(orsap) S 27|16+ aOH,@ +Cv (o7 a})

Therefore, we take the £9(Z)-norm and we get the result.
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Furthermore, we show the following estimate for the system (4).
Lemma 4.(Smoothing estimates for (4)) Let s e R,1 < p,g< oo, 1 <r| <r<oo, T € R+ and 0 < A < 3. Suppose that

. 52+ 2
By € fe/i/i,y;w and f € £ (0, T;f/; g ). Then, the problem (4) admits a unique solution B and there exists some

constant C = C(r) > 0 such that

1
Py |1Bll o2

OTFAN )

—1+L
<C | IBoll5ss,, P IS i)
A o, 7N

Proof. Initially, we derive the integral forms of the solution to the linear equations described in (4) and the Fourier
transform of (4) concerning & = (§1,&,&;) € R3, if f =0, yields
8,1§+ leg |2§—|— pH.Qé.Qgg.Qégz 0,

where Q¢ , Q4 are defined by

0 & & 0 —% %
Q=& 0 =& |, Q= % 0 -% |,
& & 0 —-%, % 0
respectively. Put H(&) := —pp|&|2T — PR Q5Q¢, As can be observed, the characteristic polynomial associated with
H (&) is determined by
(A +pplEI%) (A*+2pp|E > + ppl&[* + pulEIIE - 2P) (15)
Pp PD Pb PH .

The following expressions are present in the above equation (15)

A0(§) := —ppl&[* and A+ (§) := —pp|&|* +ipul&& - A|.
We have for any v € .7 (R3),

—

)y = MR (E )y + M O P (E)y+ ™ EP_(E)y,
where the Hermitian matrices P,(&)(i = 0,+) are defined as follows:

_ L[ & &6 i

PO(&)ZZW &i1& 522 &6
Ei1& && &
1

P8 = e ap

R3+R3 —RiRy +i|E||E - B|Rs —R1R3 —i|&||& - BIR,
—R1Ry —i|E||€ - B|R; RI+R3 —RyR3 +i|E||E- ZIR; |,
—Ri\R3+il&||E - B|R, —RoR3s —i|E||E - BIR, Ri+R;

P—(é) = P+(§)T7
with R; = R;(&) := &E - B(i = 1,2,3). Then, ¢'" By defined by .7 ! [eﬂ:f(é)fg\o} is the solution to the problem (4) with
f =0. Using the Duhamel principle, we get the following integral equation,

!
B(r) =By +/ eI £ (5)ds.
0
Using the definition of e we can prove that

H(;je,ﬁ@)q’/ﬂ < CHe—pmé\%(;ﬁH L (16)
4 T
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for all j € Z. Similarly to the proof of Lemma 3, and by using (16), we have

B

r ((),T;///;/L)

< He’HBj*BQ

P

t
(t—s)H ¢.
u(o,T;/ﬂ)JrH/o e fi(s)ds v (0r.27)

v(oria) +C </OT (/0‘ He«s)puézgjﬂ’%; ds>r dt) ,
17

< CHe*Pu\é\zfé\jEO

1 1
~ o~ __+_
7] .B()H TN

<C(pp2¥) 7 +C (pp2¥) !

L1 (0.T:%) '

Then, the proof of Lemma 4 is completed.

4 Main result

We now proceed to state our main result which establishes the local existence.

Theorem 1.(Local existence in critical Fourier-Besov-Morrey spaces) Let 1 < p < o, 0 < A < 3 and
(@0,B0) € FN T @) x (4 Pz at ) (®)
ap,bo <7 pal p,ALl <7 p,Al

where V -ay =V - By = 0. There exists a positive constant &y < 1 such that if

HBO” 3 < &,
FNP
Al

then there exists T > 0 such that the problem (3) admits a unique solution (a, B) satisfying
. 1 Py
aeC [O,T),,?t/i/p,l’l NL O,T,,?t/i/p,)hl
1+

143 L3 143 ,2+§)
BeC ([o, T TN ) mﬁ/t/;,l’l) NL! (o, TN, ﬂfﬂp,aﬂl) .

For the proof, we introduce the complete metric spaces .7 and 27, along with the pair of mappings
(¢[(a,B)](t), w[(a,B)](t)), defined as follows:

yr!

3
CZEL2 (0 T;yt/yp );|a|5/» = ||a|| 3 3\ <&
’ phil ! 2 <gzﬂ )m; (gw”ﬁ) ’
3
1);

pA,l Pl
Py = {B eL” ((),T;f/;,l

1B

2 =B 3 , 3 13\ .
o ar a a ar
i\ FA L, | FA D TN Sk F

HIpN
9
S

~

N.g

¢[(a,B)](r) := e ag + [ e"IAP,F (s)ds,

a7
v[(a,B)](t) := "By + [5e""HV x k(s)ds,
with
F:=(VxB)x%—(a-V)a+ (B-V)B,
k:=ax%+axB—pu(VxB)XB,
©2025 YU
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where M > 0 is an arbitrary number to be determined later and P, is the Helmholtz projection given by Id 4+ (—A)~ 'V div.
We will divide the proof into three steeps. Initially, we prove that (¢[(a,B)](), w[(a,B)](t)) is the map from .77 x 27 to
itself.

Let T > 0 be sufficiently small, then we have

T

m.|g>

2

A ao‘

(18)

<
3 3
3 A+3\ =
2 g o7 14 7
LT(j‘/VPJ»J)mLT<j‘/VPJ»J)

We use the embedding frz(ﬁﬂ/’;yl’l) — L2 (j\/;ﬂ,l)v Lemma 3 and (18), we obtain

p
Ly Pl

|mwmwwﬁs%+CWAvwnm%!< )
Wz

+C||IPPV~(a®a)||
L1T<

3

1+

T P
‘/Jyp,l,l )

1 o
Y E Y

+C|[P,V-(BRB)|| ( .71+%)-

143 .3
Since P, is bounded from ﬂt/i/pl;]” to itself, by using Lemma 3 and the fact that y‘/’/;.l | < //ZZL, we can conclude
that h h

2 2
<7 pAsl Ly ’gZ.'/Vp,l.l

& 1
191(a,B))(1) ]| = 5 +CT2|B]| 3\ TClal 5o\ +ClB|? 5
L%(wa’m> L2<f/VP ) < )
e (19)
< %+CMT%80+Ce§ +CM€R,

for all (a,B) € S x Z7. Now, we provide an estimate for y[(a,B)](¢). Similar to (18), we choose T > 0 to be
sufficiently small, we get

¢ Bo| 3 L < . (20)
13 <ﬁﬂ o 1) nL} (ﬁjﬂf’l)
Applying Lemma 4 to y[(a,B)](t) and using (20), we can show that

IIW[(a,B)](t)HB( ;

3 143
A P 1 T
bt

t
/ Y o k(s)ds
0

H
< ||e™Bo| 3 3\t 3 3
2z, ok za" 0 gzt oo Fza7
T T pAd T T pALd T\ <" pA1l T\ <" pA1

§60+C|VX(aX(«%”+B))II1< ,Hs)+CIV><((V><B)><B)II< ,,H;)-
LL| Z. L P

¢ P 73
A i \ 7N pan

Applying Lemma 2, we obtain

WI@BOI 3\ gy Satclal 4y ClaxBl,
LT <'?'/Vp,l.l> ﬁLT <eg-/1/p ) LT <'?'/Vp,l.l> <LT'?'/V1) l,l)

Al

+C||(V xB) x B|| 3
uT(W )

pA,l
1
<& +CT2|ld] 3\ TCldl 3 1Bl 3 (€25
L%(ﬁ/:LJ L%(ﬁ/;LJ L%(%A/';M)
+IVB[ s (1Bl 32
L}fﬁ/ﬁ,) L‘;(ﬁﬂﬁ,)

< &)+ CT2 ey + CMe2 + CM>€2.
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In a similar way, we show by using Lemmas 2 and 4 that

IWi@BIOI Ny oy SIBl s Cllall .
Lw(“”,,ﬁ)“% (ﬁﬂpr)mLT(J A/P“) FN LT(‘?JVP,LI>
+CllaxB| ¢\ +CI(VXB)xB| .,
LT<jL/VpM> LT<yﬂp,l,|>
2
< Cey+C| B ey HCllall o IBL
cg% (ﬁﬂp,lﬂ) Ly (JJV[MM) LT (Jﬂp,L')

BN oy lal s B N IBL
() (k) P () P (5,

< &+ CMel +CM?€§.

Thanks to (21) and (22), we conclude that

[wl(a,B)](t)] 2

(1+C)80+CT28()+CM(1+M)£0 (23)

Put M =2C+1 and T, & as small enough, by using (19) and (23) we conclude that (¢[(a,B)], ¥[(a,B)]) is map from
ST x 27 toitself.

Secondly, we show that the map (¢[(a,B)](¢), w[(a,B)](¢)) is a contraction mapping from .7 x Z7 to itself. First, we
present the norm || - |7 of .77 x 27 as follows:

[(a1 —a2,B1 — Ba)|r :==K|la1 — az2|| 5, + || B1 — B2

Ed for a,ax € yT;B];BZ € D@pTv

where K is a positive constant that we will specify later. For simplicity, we denote (8a,0B) := (a;j— ay,B; — B») and
(a1-V)a;—(a2-V)ay =V (a1 ®6a)+ V- (da®a).

Using Lemmas 2 and 3, we show that

ol BN PO, (s Yo (012)

SCHPP(VX6B)X‘%)HI A—1+% +C||PPV'(a1®6a)H 143
() (757)

7 psl

+C||PpV- (Sa®a)|| %( .7.+%> +C|[PpV - (B2 5B)| 1(9&7/1%)
(24)

1 7
L\ AN pan

+C|[PpV- (B2 By)| ( .H;,>SCT5||6B||%

+C (llanll + lazll s, ) I8all o, +C (1Bl + B2 )

< 2Cg||8als, +C <2M£0+T7) |
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From Lemmas 2 and 4, we get the following estimate for y :

W [(a1,B1)] (1) = y{(az,B2)] (1) < 3 ) ,H;>
L\ FA o0 |y TN 50

SCHVX((SCIX%)H ( ‘]+/39>+C|VX(6aXB1)HL1<9;/V]+3)

1 7 p
Ly ‘g.'/Vp.l,l Pl

+C||V x (az x 0B)| 3
uT(,gw p)

Pl

(25)
+C||IVx ((Vx8B)xBy)| 3
a(zh)
+C||Vx ((VxBy)x 6B)|| 3
a(zh)
< (T4 +Me ) 18a]7, +C (e +2Me0) | 3B ;.
Similarly, Lemmas 2 and 4, show that
v [(a1,B1)] (1) — w[(az2,B2)] (1) 3 gl T
Ly (&7.4/;" 2 1) ngFAN, lﬁ) nLL <B,2?./Vp]fl
< C|#|| éa|l 143y TCl8d] 3o 1Bl P
L (3?.4/1”1 ﬁ L2 (&7.4/;" . 1) L2 (&7.4/% l{l)

+Clldall o B 3

Lk (‘%/Vp, lﬁ) LY (*g'/’/p.x, 1>
+Cllaz|| 3\ |68 ‘ 3\ +Cllaz|] 3\ [[6B]] 3

2 (3?/1{‘ " 1) L} (9’4/ pﬂf*”) Lk (ﬂ,/V;;i) L (3?/1{‘ " 1)

) 143
HCISBIL (FA 7 VB g+ CIBL s N ISBI
L2 <3?.A/PM> e (%A/MJ) L (3?.4/17711])
+C||IVx ((Vx8B) xBy)| .3
LL (&7.4/%“” >
+CHVX((VXBZ)X6B)H ! .—I+§ (26)
L\ 74 5000

gcQ%+M@Nwﬂu%+cww4M&nw3

27
Analogously, by using Lemmas 4 and 2, we get

Iyl B0l ()~ vl@B)l O]
L ( FAP M) N2 (%A/Mﬁ)mlr (7 i p,zﬂ)

<Clidal ey +ClSall o s NIBIl s
Ly (@-/Vp&]) L7 (‘gf.'/‘/p,l,l) Ly (tgz./’/p,l,]

+C||6al| L2 181 5
LL <,2?.va1{’1) LY (%M}fml)

+Cllaz|| 3\ |I16B]| 1e2\ TClazl L. 8B 3
L2 (%A/]/)" 2 1> L2 <32”/p./1{71> LL <’gz‘”p./1,]1> Ly (%A/ ; . 1>
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TP

+C||8B| 5/ . B s\ +C|Bill. ./ .» \|OB ;
s ) T P )

C|B ; 6B C||6B B
Ol 3 ) e, ) P ) @

|7 pan L\ TN paa |7

< Ci|éa|.7, +CMey||6all 7, + Ceo(1+2M)||6B]| ;.

Combining (26) with (27), we obtain

I l@,B)) () = W@z, B2)] (1), <C1l18all.77+C (T4 +2Me ) 1 3all,

+2Ceg(1+2M)||6B

(28)

27

Put E :=4C; + 1 and taking E x (25)+ (28), we have

116 (a1,B0)] 0) = 0l(a2,B2)] (1), w (a1, B0)] ()= Wl(@2,B)] (1)) |l
< 5 M(8a.5B)] I

: 1 1 11 . 1 1 ) : :
where & < min (m, SC(T-F2M) * T6C” W) ,T < min (W’ 640—2E2)' Then, by Banach’s contraction mapping theorem,

we get the fixed point (a,B) € 1 x Z7.
Finally, we prove the uniqueness of the solution to complete the proof of Theorem 1. Let (a1,B;) and (ay,B>) be two
solutions of (3) for the same initial data, we have that

t t
Salr) = / IS f(s)ds,  SB(1) = / Y 5 §h(s)ds,
0 0

where (0a,0B) := (ap — aj,B, — By) and

SF = (V x 8B) x B— (a1 -V)a— (8a-V)ar+ (B, - V) 5B+ (8B-V)By,
5]{:5aX¢@+5aXB|+a2X5B*[)H(VX5B)XBlpr(VXBQ)XéB.

By Lemmas 3 and 4 , we get for I = (0,T),

[|6all 13 3\ <Cllof] 13
L> (1;,%/1/‘ p ) NL! (1;,@.4/;‘“ > L! (1;,%/1/‘ Hf’) ’

Pl A1 Pl
1(8B,VéB)| 143 13 SCl 8K VK| 3
L> (1;3?.4/ Al > NL! (1;,%/1/ A”l) L! (1,,92.4/ L 1>
A, P, P,
Notice that ”fH?ZA/;x <A 1;2475’1‘, ¥l 1;247”11 g by using Lemma 2 and Young’s inequality we can prove that for any

>0,

1
1871l 143 <CT2[|8B 3\ Tell(8a,8B)| 14l
L (ﬁw ”) L3 (%A/}ﬁf 2 1) Lk (JA/ > )

7 AL p.l:l
. (29)
sce! [P 5 (6asB) . dr
0 TNy FN i
Similarly, we obtain that for any € > 0,
18K s\ <CT?|8d] s\ +¢](8a,8B,V8B)|
L}(ﬁ/:LJ L%(ﬁ/[f’l?]) T
T (30)
+Cs-1/ l(a2,B1.B2,VB)IE 5 (8a,6B,V8B)| s dr.
0 fﬁ*iw J@VM,P
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On the other hand, using ||Bo|| 3 < &, we get ||Bo| 3 < Cg. Noting this smallness for B and using similar
FNP L (TN

pALl T (JJV‘,,J‘I)
way we obtain that for any € > 0,

1641 () < Kl () *C““")“(‘S“’V‘SB)”L;( )

LT ALl LT T Pl fa/Vl).l,ﬁl
" 292 (3D
+Ce ||(a2,V(12,VB|,VBQ)H 3 +H \% B||| 3 ||(5a,V5B)|| 143 dr.
0 fﬂ/;l?] FL/VPPJ':] ﬂIA/P‘L]p

Thanks to (E 4+ 1) x (29) + (30) + (31), we get

[[8al 143 3\ +[(6B,V3B)| 143 3
I (em/ o ) nLL (gm/” » ) L (7// o > ALl (97@*/1)

Pl Pl pALl

T
<c/ <||<a1,az,Bl,Bz7VB1,v32>| 3 @,V .H;J)n(éa,savw)n

pALl T pALL

3 dr.
143
pA,l

Z

By Gronwall’s inequality, we conclude that

N —143 , 143
ai=ayinL I;yf/i/p,l’l NL I;yf/i/p,l’l ,

_poinr (1.7 =143 7 .2 (1 o 43 7 243
BlszmL I, e/prhl N t/VpJ”1 NL ], t/prlylﬂ t/VpJL71 .

Therefore, we finish the proof of Theorem 1.
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