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Abstract: The finest performable systems are needed everywhere. The present paper deals with system performance

assessment consisting of two subsystems in a series arrangement. The first subsystem follows the k-out-of-n: G work

policy, and the second subsystem consists of three units and operates under the 2-out-of-4: G scheme. The failure rates

are considered constants and obey negative exponential distribution. Two types of repair, general repair, and copula, are

employed for repairing the models partial failure and complete breakdown states. Supplementary variable and Laplace

transformation methods were used to study the traditional reliability measures for different values of system parameters.

The probabilistic estimates, like system availability and reliability analysis, MTTF, and profit analysis, have been

computed with Maple software
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1 INTRODUCTION

Modeling is intricate, but predicting is even more difficult due to the unknown factors of the system and
sworking environment. Because of the vast number of complex systems and applications in everyday safety
and economic welfare, reliability computing, which entails extensive modeling and prediction, has recently
sparked a lot of attention. Any system where the majority of the units are designed to be repairable has to
have its transient availability modeled in order to assess and enhance its efficacy. One popular technique that
helps increase the systems availability and dependability is redundancy. A wide range of designs, including
those for motor vehicles, streetlight systems, parking systems, aircraft, nuclear power plants, and many
more, have been found to use redundancy. Moreover, the most prevalent kinds of redundancy are cold
standby, worm, and active. Functional redundancy is prepared to act at all times. A k-out-of-n: G
redundancy requires that k of n units remain active at all times. In terms of system reliability, failure is a
natural phenomenon. The nature of the failure rate is constant, even it may follow various distribution
patterns; in contrast, the repair rate is both constant and changeable. Whenever the system failure rates are
consistent and repair rates are variable, the system performance is studied using the Markova method with
the supplementary variable approach. A wide range of literature has been studied using Markova methods
and Laplace transforms implications.
In the literature concerning the system performance assessment in the nineteenth century, the researchers
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assessed the repairable system with the idea of a particular restoration, which was unsuitable when the
system was utterly broken downstage. In numerous real-world scenarios, it is imperative to promptly restore
the entire damaged state; in the unfortunate circumstance that such a scenario is identified; the system state
must be restored by utilizing a copula, Nelson R. B. [8]. To cite a few works of literature with k-out-of-n:
G/F operational scheme Chao[2], Singh and Rawal [21], Singh[17] [18] Monika[3] amp;[4], Poonia [11],
[12] and others studied the system performance under different types of failure and multi-repair tactic. Alka
Munjal and S. B. Singh [7] analyzed a complex system composed of two 2-out-of-3: G subsystems in the
parallel configuration using a supplementary variable approach with the general repair. A deliberation on
reliability evaluation and optimization of a series-parallel system with k-out-of-n: G subsystems and mixed
redundancy have been presented by Boddu and Xing [1].
Reliability computations for systems with outsourced components have been studied by Yangquan Sun[22].
Singh and Ram [17] investigated a three-state system with two subsystems in series under distinctive types
of failure and two types of restoration. A new method for analytically estimating the reliability of
consecutive k-out-of-n: F systems were devised by G. Gokhan[5]. Considering the assumption of cost-free
repair across warranty policy, authors Ram Niwas and Harish Garg [10] have examined the industrial
systems efficiency and dependability using the Markov method and supplemental variable methodology.
Singh analysis [15] used supplementary variables and the Laplace transform to examine a complex system
in a degraded state. The traditional reliability measures were computed for different failures and copula
repair approaches. Singh[19] employed a copula linguistics repair approach to study a computer-based test
(CBT) model system by forecasting performance for various system parameter values. Niaki and Yaghoubi
[9] estimated the mean time to failures (MTTF) and reliability of a 1-out-of-n: G cold standby system with
imperfect switching using a precise approach and a closed form. Copula repair was applied by Praveen
Poonia [11] to analyze the performance of multistate computer networks in series configuration. The
operational reliability metrics of linear sequential 2-out-of-4 systems coupled to a 2-out-of-4 supporting
device was studied by Ibrahim Yusuf[23]. Reliability metrics of the complex system in combinations of two
subsystems in a series configuration and copula repair scheme were investigated by Dhruv Raghav [13],
[14]. Recently a specific type of k –out –of –n: G; type of configuration in the system with three subsystems
with k degraded working states have been addressed by authors H. I. Ayagi [6]

1.1 Description of the model

There is widespread literature on system presentation evaluations through the traditional measures for
repairable systems presented in which most five units are taken to the studies. Treating the above discussion
in view, in this paper, the authors have examined the performance of a complex system having two
subsystems in a series arrangement. The first subsystem consists of n units and employs the k-out-of-n G
policy; however, the second subsystem comprises four vague units and operates on a 2-out-of-4 G scheme.
The switching device regulates the operation of the subsystem units, and a switching failure is regarded as a
total failure. A human operator is supposed to operate the system, and any human error or fault is treated as
a complete shutdown state.Here are four different states for the system: completely failed, minor degraded,
major degraded, and perfect. In order to restore failed states, two distinct two distinct repair types are
utilized: copula repair and general repair.

By the probability influences, the following states are possible as; S0,S1,S2,S3, ......,S10, presented in the
state transition diagram can be categorized as the set of states A, B, C, D denoted as;

A= Set of perfect state= S0

B= Set of minor degraded states= S1,S2,S5,

C= Set of major degraded states=S3,S6,

D= complete failed states= S4,S7,S8,S9,S10.
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Fig. 1: State Transition Diagram of Model

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



92 Umesh Chand: Stochastic Analysis with k-out-of-n System

Table 1: State Description in detail

State

No

Description State

No.

Description

S0 Perfect state S5 Minor degraded state due to 1 unit

fail in subsystem 2

S1 Minor degraded 1 unit fail in

subsystem 1

S6 Major degraded state due to 2 unit

fail in subsystem 2

S2 Minor degraded two unit fail in

subsystem 1

S7 Complete failed state due to 3 unit

fail in subsystem 2

S3 Major degraded k unit fail in

subsystem 1

S8 Complete failed state due to

switch failure in subsystem1

S4 Complete fail state due to (k+1)

failing in subsystem 1

S9 Complete failed state due to

switch failure in subsystem 2

S10 Complete failed state due to human failure

1.2 Expectations secondhand for the study of the model:

While studying the model, the formerly mentioned assumption is prepared.

1.The system is first in the state S0, in which all subsystems and switching devices are pristine,with
probability P0 (0) =1.

2.When the partial failure surpasses operating policy k-out-of-n: G, the system ceases to perform functions,
and its ability to perform is reduced.

3.A total failure circumstance renders the system inaccessible.

4.General distribution repairs partially failed states, but copula distribution improves complete failure.

5.All failure rates are constant and follow an exponential distribution.

6.At least k units are prerequisite to be operative to keep subsystem 1 properly functioning.

7.Repaired system components work resembling new ones, and fixing does not loss anything.

1.3 Notations used for the study of the model

Table 2: Terminology of system variables and representations

t The variable t represents time variable for all expressions.

s Laplace transform variable.

µ1 /µ2 Failure rates for both subsystem units respectively.

µs1
/

µs2
/µh

The failure rates of the switch for both subsystems 1&2 and human failure.

β1(x)/β2

(x)

Repair rates of units of subsystem 1/ subsystem 2.

α0(x) Repair rate for all complete failed states of the system, i.e., S4, S7, S8, S9, and S10.

P0(t) This represent the state transition probability of S0 state.

P(s) It is the notation of Laplace transformation of state transition P (t).

Pi(x, t) The probability that a system is in state Si, undergoing repair, with an elapsed repair time

of x, t, for i = 1 to 10.

Ep(t) Represents the predictable profit through the interval [0, t).

K1 /K2 K1/K2 stands revenue/service cost per unit time.in the time interval [0, t) respectively.

α0(x) =
Cθ (u1(x),
u2(x))

The joint probability function (from failed state S j to good state S0) is defined as

follows using the Gumbel-Hougaard family copula: for 1 ≤ θ ≤ ∞, Cθ (u1,u2(x)) =

exp
[

xθ +{log β (x)}θ
]

1
θ , u1 = β (x), and u2 = eβx
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2 Mathematical Modelling of the System

The system cannot move to any other state if it is in the state S0 at time t and will remain there until the
time interval [t, t + ∆ t]. If it is in another failed state, it must return to S0 after being restored. Assuming the
condition of transition of the preexisting mathematical model a combination of probability constraints, the
following mentioned state equations can be develop from figure 1.

S0 :

(

∂

∂ t
+ nµ1+µs1

+µs2
+4µ2+µh

)

Po(t)=

∫ ∞

0
β1 (x)P1 (x, t)dx+

∫ ∞

0
β2 (x)P5 (x, t)dx+

∫ ∞

o
α0 (x)P4 (x, t)dx

+

∫ ∞

o
α0 (x)P7 (x, t)dx+

∫ ∞

o
α0 (x)P8 (x, t)dx+

∫ ∞

o
α0 (x)P9 (x, t)dx+

∫ ∞

o
α0 (x)P10 (x, t)dx (1)

S1 :

(

∂

∂ t
+

∂

∂x
+(n− 1)µ1 + µs1

+β1 (x)

)

P1 (x, t) = 0 (2)

S2 :

(

∂

∂ t
+

∂

∂x
+(n− k)µ1 + µs1

+β1 (x)

)

P2 (x, t) = 0 (3)

S3 :

(

∂

∂ t
+

∂

∂x
+(n− (k+ 1))µ1 + µs1

+β1 (x)

)

P3 (x, t) = 0 (4)

S4 :

(

∂

∂ t
+

∂

∂x
+α0 (x)

)

P4 (x, t) = 0 (5)

S5 :

(

∂

∂ t
+

∂

∂x
+ 3µ2 + µs2

+β2 (x)

)

P5 (x, t) = 0 (6)

S6 :

(

∂

∂ t
+

∂

∂x
+ 2µ2 + µs2

+β2 (x)

)

P6 (x, t) = 0 (7)

S7 :

(

∂

∂ t
+

∂

∂x
+α0 (x)

)

P7 (x, t) = 0 (8)

S8 :

(

∂

∂ t
+

∂

∂x
+α0 (x)

)

P8 (x, t) = 0 (9)

S9 :

(

∂

∂ t
+

∂

∂x
+α0 (x)

)

P9 (x, t) = 0 (10)

S10 :

(

∂

∂ t
+

∂

∂x
+α0 (x)

)

P10 (x, t) = 0 (11)

Equations for the Boundary Conditions

P1 (0, t) = nµ1P0 (t) , P2 (0, t) = n(n− 1)µ2
1 P0(t) , P3 (0, t) = n(n− 1)(n− k)µ3

1 P0 (t) ,

P4 (0, t)= n(n− 1)(n− k)(n− 1− k)µ4
1 P0 (t) , P5 (0, t)= 4µ2P0 (t) , P6 (0, t)= 12µ2

2 P0 (t) , P7 (0, t)= 24µ3
2 P0(t),

P8 (0, t)=µs1
[1+ nµ1 + n(n− 1)µ2

1 +(n− k)µ3
1 ] P0(t),

P9 (0, t) = µ s2

(

1+ 4µ1+ 12µ2
1

)

P
0
(t) ,P10 (0, t)=µh P0(t) (12)

Initial condition

P0 (0) = 1, Pj (x,0) = 0 f or j = 1,2, 3, 4 . . . . . . ..10 (13)
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3 Solution of the Model

Through using the Laplace transform of equations (1) - (11) and the initial condition, namely, P0 (0) = 1 and
other state transition probability at t=0 are zero, one can derive the equations in the following manner:

[L [P0(t)] = P0 (s)] [L
[

Ṕ0(t)
]

= sP0 (s)−P0(0)].

(s+nµ1+ µs1
+µs2

+4 µ2+µh ) P0(s) = 1+

∫ ∞

0
β1 (x)P1 (x,s)dx+

∫ ∞

0
β2 (x)P5 (x,s)dx+

∫ ∞

0
α0 (x)P4 (x,s)dx

+
∫ ∞

0
α0 (x)P8 (x,s)dx+

∫ ∞

0
α0 (x)P7 (x,s)dx+

∫ ∞

0
α0 (x)P9(x,s)dx+

∫ ∞

0
α0 (x)P10(x,s)dx (14)

(

s+
∂

∂x
+(n− 1)µ1 + µs1

+β1 (x)

)

P1 (x,s) = 0 (15)

(

s+
∂

∂x
+(n− 1)µ1 + µs1

+β1 (x)

)

P2 (x,s) = 0 (16)

(

s+
∂

∂x
+(n− k)µ1 + µs1

+β1 (x)

)

P3 (x,s) = 0 (17)

(

s+
∂

∂x
+α0(x)

)

P4 (x,s) = 0 (18)

(

s+
∂

∂x
+ 4µ2 + µs2

+β2 (x)

)

P5 (x,s) = 0 (19)

(

s+
∂

∂x
+ 3µ2 + µs2

+β2 (x)

)

P6 (x,s) = 0 (20)

(

s+
∂

∂x
+α0(x)

)

P7 (x,s) = 0 (21)

(

s+
∂

∂x
+α0(x)

)

P8 (x,s) = 0 (22)

(

s+
∂

∂x
+α0(x)

)

P9 (x,s) = 0 (23)

(

s+
∂

∂x
+α0(x)

)

P10 (x,s) = 0 (24)

Laplace Transform of the Boundary Conditions

P1 (0,s) = nµ1P0 (s) , P2 (0,s) = n(n− 1)µ2
1 P0(s) ,P3 (0,s) = n(n− 1)(n− k)µ3

1 P0(s)

P4 (0,s) = n(n− 1)(n− k)(n− 1− k)µ4
1P0 (s) , P5 (0,s) = 4µ2P0 (s)

P6 (0,s) = 12µ2
2 P0 (s) , P7 (0,s) = 24µ3

2 P0 (s) .P8 (0,s)=µs1
[1+ nµ1 + n(n− 1)µ2

1 +(n− k)µ3
1 ] P0(s)

P9 (0,s) = µ s2

(

1+ 4µ1+ 12µ2
1

)

P
0
(s) ,P10 (0,s)=µh P0(s) (25)

Solving equation (11)- (24) with consequence of equation (25) and representations

Sβ (x) = β (x)e−
∫ ∞

0 β (x) ,Sβ (s) =

∫ ∞

0
e−sxSβ (x)dx,Sβ (s) =

∫ ∞

0
(e−sxβ (x)e

∫ ∞
0 β (x)dx)dx
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P0 (s) =
1

D(s)
(26)

P1 (s) =
nµ1

D(s)

[

1− Sβ 1(s+(n− 1)µ1 + µs1
)

(s+(n− 1)µ1 + µs1
)

]

(27)

P2 (s) =
n(n− 1)µ2

1

D(s)

[

1− Sβ 1 (s+(n− k)µ1 + µs1
)

(s+(n− k)µ1 + µs1
)

]

(28)

P3 (s) =
n(n− 1)(n− k)µ3

1

D(s)

[

1− Sβ 1 (s+(n− 1− k)µ1 + µs1
)

(s+(n− 1− k)µ1 + µs1
)

]

(29)

P4 (s) =
n(n− 1k)(n− k)(n− 1− k)

D(s)

(

1− Sα0(s)

s

)

(30)

P5 (s) =
4µ2

D(s)

(

1− Sβ1
(s+ 3µ2 + µs2

)

(s+ 3µ2 + µs2
)

)

(31)

P6 (s) =
12µ2

2

D(s)

(

1− Sβ1
(s+ 2µ2 + µs2

)

(s+ 2λ2 +λs2
)

)

(32)

P7 (s) =
24µ3

2

D(s)

(

1− Sα0(s)

s

)

(33)

P8 (s) =
A

D(s)

(

1− Sα0(s)

s

)

(34)

P9 (s) =
B

D(s)

(

1− Sα0(s)

s

)

(35)

P10 (s) =
µh

D(s)

(

1− Sα0(s)

s

)

(36)

Where; A=µs1 [1+nµ1 + n(n− 1)µ2
1 +(n− k)µ3

1 ], B=µs2

(

1+ 4µ1+ 12µ2
1

)

Pup (s) = ∑Pi (s) ,

Sum of Laplace transform of state transition probabilities of operational states, i.e.,

S0, S1, S2,S3,S4, S5, S6

Pdown (s) = 1−Pup (s)

Pup (s) =
1

D(s)





1+ n µ1

(s+(n−1)µ1+µs1+β1)
+

n(n−1)µ2
1

(s+(n−1)µ1+µs1+β1)
+

n(n−1)(n−k)µ3
1

(s+(n−k)µ1+µs1
+β1)

+
4µ2

(s+3µ2+µs2
+β2)

+
12µ2

(s+3µ2+µs2+
β2)



 (37)
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4 Analytical Study of the Model for the Particular Cases;

4.1 Availability analysis:

When the repairs follow a copula distribution. Setting: Sα0
(s) = exp[ xθ +{logβ1 (x)}θ ]1/θ

s+exp[ xθ +{logβ1 (x)}θ ]1/θ
, Sβi

(s) = βi

s+βi
,

i= 1, 2 and using the following values for failure and repair rates; µ1 = 0.01, µ2 = 0.02,µs1
= 0.03, µ s2

=

0.03, µh = 0.025, β 1 = 1, β 2 = 1, α0 = 2.7183 in equation (37) one can obtain the different expressions
of system performance of a repairable system by using inverse Laplace transform.
Availability analysis of the system via copula repair for different failures:
A =Case1.
µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1

= 0.03, µ s2
= 0.03, β 1 = 1, β 2 = 1, α0 = 2.7183, n=50, k=30

A :=0.032974e−2.8333t − 0.11167e−1.8469t − 0.14283e−1.0379t

+1.2212e−0.27523t + 0.0020373e−1.0700t− 0.0016654e−1.2300t − 0.00001679e−1.2200t (38a)

B =Case1.
µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1

= 0.03, µ s2
= 0, β 1 = 1, β 2 = 1, α0 = 2.7183, n=50, k=30)

B :=0.0019771e−1.0400t + 0.032102e−2.88316t − 0.11205e−1.8425t − 0.15073e−1.0054t

+1.2304e−0.25382t − 0.0017057e−1.2300t− 0.000017287e−1.2200t (38b)

C =Case1.
µ1 = 0.01, µ2 = 0.02,µ3 = 0.03, µh = 0.025, µs1

= 0, µ s2
= 0, β 1 = 1, β 2 = 1, α0 =

2.7183, n=50, k=30

C := − 0.000017171e−1.1900t − 0.0017032e−1.2000t + 0.0019892e−1.0400t + 0.011314e−2.7563t

−0.10724e−1.8426t − 0.16317e−1.0057t + 1.2488e−0.26874t (38c)

D =Case1.
µ1 = 0.01, µ2 = 0.02,µs1

= 0, µs2
= 0, µh = 0, β 1 = 1 β 2 = 1, α0 = 2.7183, n=50, k=30)

D := − 0.000017287e−1.1900t − 0.0017147e−1.2000t + 0.00008895e−2.7186t

−0.10514e−1.8536t − 0.15609e−1.0051t + 1.2609e−0.27101t + 0.0019765e−1.0400t (38d)

Applying the following equations 38a, 38b, 38c, and 38d, respectively, we obtain different values of
availability for different values of time variable, as shown Figure 2a.

Fig. 2: (2a) Availability variation for copula repair
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4.2 Availability for the general repair

When all repair trails general distribution keeping all failure rates the same for copula repair, one can obtain
the subsequent expressions presented in (39a, 39b, 39c & 39d) for general repair distribution;
A =Case1.
µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1

= 0.03, µs2
= 0.03, β 1 = β 2 = 1, α0 = 2.7183,n = 50,k = 30

A = 0.001336e−1.0700t − 0.000020124e−1.2200t − 0.089531e−1.9159t − 0.016063e−0.053739t

−0.016063e−1.0497t + 1.1223e−0.25983t − 0.00198e−1.2300t (39a)

B= Case 2.
µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1

= 0.03, µ s2
= 0, β 1 = β2 = 1, α0 = 2.7183, n=50, k=30)

B := 8.47380∗10−9e−1.04900t+0.0014628e−1.040000t+0.00000763e−1.050000t−0.0511981e−1.100494t

−0.026778e−1.0497t−0.0267779e−1.0497t−1.10328377e−0.152219t (39b)

C =Case 3.
µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1

= 0, µ s2
= 0, β 1 = 1, β 2 = 1, α0 =

2.7183, n=50, k=30) B:=−0.99615e−1.8657t−0.056608e−1.01290t−0.056608e−1.01290t

+1.2131e−0.26356t−0.0015566e−1.0400t−0.0018086e−1.2000t−0.00001828e−1.1900t (39c)

D =Case4.
µ1= 0.01, µ2= 0.02, µh= 0, µs1

= 0, µ s2
= 0, β 1= 1, β 2= 1, α0=2.7183,n = 50,k = 30)

D = −0.000017287e−1.1900t + 0.0017147e−1.2000t + 0.000088949e−2.7186t − 0.105147e−1.8536t

−0.15609e−1.0051t + 1.2609e−0.2710t + 0.0019765e−1.0400t (39d)

Fig. 3: (2b) Availability variation corresponds to General repair

4.3 Reliability

The system performance is affirmed to be reliability metric when all repairs have been deemed to be zero.
Applying zero to each repair in equation (36) of Pup (s)expression. , i.e., β1 = β2 = 0 and α0 (x) = 0 and for
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some values of failure rates as µ1 = 0.01, µ2 = 0.02, µh = 0.025, µ s1
= 0.03, µs2

= 0.03.
The following four case have studied for the same values of failure and repair rates keeping n=50 & k=30.

Case A : µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1
= 0.03, µs2

= 0.03,n = 50,k = 30

Case B : µ1 = 0.01, µ2 = 0.02, µh = 0.025, µs1
= 0.03, µs2

= 0, n = 50,k = 30

Case C : µ1 = 0.01, µ2 = 0.02, µh = 0.025, µ s1
= 0, µs2

= 0, n = 50,k = 30

CaseD : µ1 = 0.01, µ2 = 0.02, µh = 0.025, µ s1
= 0, µs2

= 0, n = 50,k = 30

Fig. 4: (2c) Reliability variation of the non-repairable system

5 Profit Analysis/Cost Analysis:

Formulation (40) can be utilized in order to determine the expected profit Ep (t) , if revenue generation K1

and service expenses K2 are both per unit time in the interval [0, t]. Concerning the acquisition of parametric
failures and repaired rates metrics, µ1 = 0.01, µ2 = 0.02,µh = 0.025, µs1

= 0.03, µs2
= 0.03, β 1,=

1, β 2 = 1, α0 = 2.7183. Employing equation (36), one is able to obtain the expression for an expected
profit Ep (t) , from system operation in the interval [0,T), as specified in equation (41) using Maple software
output, assuming that the maintenance facility is always easily accessible.

Ep (t) = K1

∫ t

0
Pup (t)−K2t (40)

5.1 Cost Analysis for copula repair

Presume for the sake of argument all the repair satisfies the general and Gumbel Hougaard family copula
distributions. As a consequence, we get the following expression employing equation (36) in the equation
used in the cost function.
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Ep(t).Ep(t) = K1[0.18216x10−3e−1.1050t + 0.19294x10−5e1.1450t − 0.013276e−2.8314t+ 0.032900e−1.6345t}

+K1[−0.10870x10−3e−1.1291t − 17.444e−0.058264t+ 0.88994x10−4e−1.1550 t + 17.423]−K2t (41)

Table 3 is obtained by setting K1= 1 and K2 = 0.6, 0.4, 0.2, and 0 and varying time t. The profit variation
concerning time t is depicted in Figure 3 and table 2.

Table 3: : Expected profit for copula repair

Time t Expected Profit for K1=1& K2

K2=0.6 K2=0.4 K2=0.2 K2=0

0 0 0 0 0

1 0.357 0.572 0.756 0.957

2 0.609 1.009 1.409 1.809

3 0.756 1.356 1.956 2.556

4 0.807 1.607 2.407 3.207

5 0.775 1.775 2.775 3.775

6 0.670 1.869 3.070 4.270

7 0.500 1.900 3.301 4.701

8 0.276 1.876 3.476 5.076

9 0.004 1.804 3.603 5.403

10 -0.31 1.689 3.689 5.700

Fig. 5: (3) Expected profit graph for copula repair

5.2 Cost Analysis for General Repair

While the repair exclusively follows a general distribution, one may utilize expression (36) in our computation
for the cost function Ep (t)and obtain the following expression for fixed values of failure rates when they are
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Table 4: Expected profit in [0,t), t = 0,1,2,3, · · · ,10

Time t Expected Profit K1=1, and K2

K2=0.6 K2=0.4 K2=0.2 K2=0

0 0 0 0 0

1 0.348 0.548 0.748 0.948

2 0.580 0.980 1.380 1.780

3 0.705 1.305 1.905 2.505

4 0.739 1.539 2.339 3.138

5 0.693 1.693 2.693 3.693

6 0.579 1.779 2.979 4.179

7 0.405 1.805 3.204 4.605

8 0.178 1.778 3.378 4.978

9 -0.095 1.705 3.504 5.305

10 -0.490 1.591 3.591 5.591

in the availability analysis section.

EP(t) = K1[0.010637e−1.7884t − 0.0030391e−1.1402t − 0.026476e−1.0251t− 12.167e− 0.081279t

+0.79927x10−4e−1.2550t + 0.16203x10−5e−1.2450t + 0.37118x10−3e− 1.1050t + 12.186] −K1t (42)

Using different values of time t in equation (42) as; t = 0, 1, 2, 3. . . .10, one can obtain the values of expected
profit presented in table 3b and the corresponding table 3 and figure 6..

Fig. 6: Expected profit graph for General repair

5.3 Mean Time to failure (MTTF)Analysis

The (MTTF) is an extremely significant indicator in system operation that reveals which subsystem or unit
requires considerably greater attention. The system’s average failure time is determined by the rates of
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failure of its subsystems. An expression of MTTF corresponding to malfunction rates can be obtained
mathematically by setting the limit of s tend to zero and taking all repair rates, i.e., β1, β2 & α0 to zero in
equation (42). Essentially., MT T F = Pup (s), with all repair zero.

MT T F =
1

(nµ1 + 4µ2 + µh + µs1
+ µs2

)

[

1+ nµ1

(n−1)µ1+µs1
+

n(n−1)µ2
1

(n+1−k)µ1+µs1
+

n(n−1)(n+1−k)µ3
1

(n+1−k)µ1+µs1

]

+ 4µ2
3µ2+µs2

+
12µ2

2
2µ2+µs2

(43)

We can find the values of the MTTF corresponding to the failure rate µ1 by setting
µ1= 0.01, µ2 = 0.02,µh = 0.025,µs1

= 0.03, µ s2
= 0.03 and varying the failure rates µ j from 0.01 to 0.1

with an incremental variation of 0.01 in each next value, in equation (43) the interpretation of MTTF with
respective failure rate have computed in the table.

Table 5: Variation of MTTF with failure rates.

Failure

Rates

MTTF

µ1

MTTF

µ2

MTTF

µh

MTTF

µs1

MTTF

µs2

0.01 4.421 4.277 4.523 4.621 4.995

0.02 2.569 4.421 4.454 4.520 4.676

0.03 1.818 4.401 4.388 4.421 4.421

0.04 1.413 4.327 4.323 4.327 4.211

0.05 1.158 4.235 4.261 4.238 4.034

0.06 0.985 4.137 4.200 4.142 3.881

0.07 0.858 4.041 4.141 4.069 3.747

0.08 0.762 3.950 4.083 4.00 3.628

0.09 0.687 3.858 4.027 3.912 3.521

0.1 0.626 3.773 3.973 3.838 3.424

Fig. 7: MTTF variation conceiving to failure rates
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5.4 Result Discussion and Conclusions

When failure rates are fixed at different levels, as µ1 = 0.01, µ2 = 0.02,µh = 0.03,µs1
= 0.03, µ s2

=

0.025, β 1,= 1, β 2 = 1, α0 = 2.7183, n = 50, k = 30 the Figure.2 demonstrates the availability variation
of the system for copula repair four different cases, however, the figure 3 give information of system
performance for availability analysis concern to the single repair facility. From the adjacent graph in Figures
2& 3, the availability of case A is lower, and case B’s is higher, but for a general repair, it is lower than
copula repair. The variation for patients C& D is almost similar for both restorations. The system’s
availability drops for the precise predicted failure rate values and, provided sufficient time, subsequently
settles at zero. As a result, one can accurately predict the system’s future behavior at any time for any given
set of parametric values, exhibited by the graphical reflection of the model. It observed from keeping the
fixed value of n=50 and varying k =30 that the availability decreases in both the cases of copula repair and
general repair. It also noticed that system performance is better when the repair follows two types of
distribution. The vacillation in the reliability of a non-repairable system is shown in Figure 4, and the
system performance is relatively low compared to a repairable system. In the reliability study, we observed
that the system reliability for case A is the lowest, and for case D it is the highest. It is a prediction that
when failure effects are ignored, the system reliability improves. When failure rates are fixed at different
levels, as µ1 = 0.01, µ2 = 0.02,µh = 0.03,µs1

= 0.03,µs2
= 0.025, β 1,= 1, β 2 = 1, α0 = 2.7183, n =

50, k = 30 the Figure.2 demonstrates the availability variation of the system for copula repair four different
cases, however, the figure 3 give information of system performance for availability analysis concern to the
single repair facility. Tables 3a and 3b show the predicted profit from the system’s operation using the same
set of system variables. It demonstrates how the anticipated profit increases over time. Furthermore, it’s
important to remember that profit reduces as service costs rise. Generally, when low service costs are
compared to high service costs, the predicted profit is significant. The system’s mean-time-to-failure
(MTTF) for variations in µ1, µ2,µh,µs1

, and µ s2
is shown in figure 4. The rest of the parameters are kept

constant. The failure rate linked to µ1 is the one in which the variation in MTTF is lowest and decreases at a
rapid rate. For µh, µ2,µs1, and µs2 the MTTF is higher but shows a decline in trend.
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