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Abstract: This paper proposes non-parametric estimates for the two information measures extropy and entropy when a progressively

Type-I interval censored data is available. Different non-parametric approaches are used for deriving the estimates; namely Moments,

Linear, Kernel and differential Approximation methods. Some properties of the proposed estimates are studied. The performance

of the proposed estimates is studied under various censoring schemes via simulation studies considering the parent distributions of

the data; namely Uniform and Log-Normal distributions. The results indicate that Moments Approximation (J1 and H1) and Linear

Approximation (J2 and H2) estimates for the extropy and entropy have a smaller mean squared error than competing estimates. A real

data set is presented and analysed.
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1 Introduction

Shannon entropy (1948) of a random variable (r.v.) X whose probability density function (pdf) f (x) and cumulative
distribution function (cdf) F(x), is defined as:

H(X) =−
∫

f (x)log( f (x))dx. (1)

The differential extropy of X is defined by Lad et al.(2015) as:

J(X) =−1

2

∫

f 2(x)dx. (2)

The problem of deriving a sample estimate for Shannon entropy has been considered by several authors in the
literature, see for example Noughabi and Noughabi (2013). There have also been studies on the characterizations of
Shannon entropy based on ordered data by, see for example Tahmasebi and Eskandarzadeh (2017). Furthermore, the
estimation problem of certain entropy measures for a particular distribution have been discussed in literature, see for
example Alam and Nassar (2023).

Important properties of the extropy measures have been discussed in the literature, for example, Qiu (2017) and Qiu
and Jia (2018a) studied properties of the residual extropy and the extropy of ordered statistics. Raqab and Qiu (2019)
considered properties of the extropy measure under ranked set sampling. The problem of estimating the extropy based on
complete sample data has been considered by some authors, including: Qiu and Jia (2018b) and Noughabi and Jarrahiferiz
(2019).
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Recently Hazeb et al.(2021a and 2021b) introduced nonparametric estimates for extropy and entropy based on
progressively Type-II censored data. Our main objective in this paper is to develop different methods for estimating the
extropy and entropy measures based on progressively Type-I interval censored data.

Censoring schemes of statistical experiments arise naturally in survival and reliability, and medical studies. Cohen
(1963) introduced progressive Type-I censoring as an extension of Type-I censoring. Aggarwala (2001) initially discussed
progressive type-I interval censoring in literature and studied an exponential distribution using this censoring. Since then
this censoring scheme has attracted attention among researchers. Progressive type-I interval censoring can be briefly
described as follows: Suppose n identical items are placed simultaneously on life testing at time t0 = 0, where inspection
is at m pre-fixed censoring times t1 < t2 <.....< tm, where tm is the scheduled time to terminate the experiment and m is pre-
fixed number of stops. For i = 1,2, ...,m, let ki be the number of failures in the interval (ti−1,ti]. Let Si be the number of the
surviving items at ti and Ri be the number of removed items at ti. In this censoring scheme, ki and Si are random numbers
while Ri is the number of remaining items, which is also a random number. At the 1st inspection time t1, we observe k1

failures, then R1 surviving items are randomly withdrawn from the remaining (n− k1) items. One can see that after this
step, the number of remaining items is (n− k1 −R1). Now, after time t1 and at the 2nd inspection time t2, we observe
k2 failures where R2 are randomly removed from (n− k1 − k2 −R1) items. Lastly, at the mth inspection time (the last

inspection time), we observe km failures and all remaining (n−∑m
i=1 ki −∑m−1

i=1 Ri) items are immediately removed from
the experiment. The observed progressive Type-I interval censored data can be represented as: {(ki,Ri, ti) , i = 1,2, . . . ,m}.
The associated likelihood function of the parameter θ under the progressive type-I interval censoring is given by:

L(θ ) ∝
m

∏
i=1

[F(ti;θ )−F(ti−1;θ )]ki [1−F(ti;θ )]Ri . (3)

Note that Ri should not be greater than Si, where the values of Ri for i = 1,2, ...,m are determined based on pre-
specified removal proportions q1,q2, .....,qk−1 and qm = 1, such that Ri = [Siqi], for i = 1,2, . . . ,k− 1, where symbol [b]
is the greatest integer less than or equal to b. It can be easily seen that n = ∑m

i=1(Ri + ki). If Ri = 0, for i = 1,2, . . . ,m−1,
then Progressive type-I interval censoring reduces to the conventional type-I censoring.

Progressive type-I interval censoring approach has been considered by different authors in the literature including
Ng and Wang (2009), Lio et al.(2011), Singh and Tripathi (2016), Du et al.(2018), Alotaibi et al.(2021) and Qubbaj et
al.(2023).

The next theorem considers Type-I interval censoring using an underlying lifetime distribution, namely the uniform.

Theorem 1.Let Ui:m:n = F(ti), i = 1,2, ...,m denote a progressively Type-I interval censoring sample obtained from the

uniform (0,1) distribution, assuming the sample size is n with progressive Type-I interval censored data {(ki,Ri, ti) , i =
1,2, . . . ,m}. Let

Ui:m:n = 1−
m

∏
j=m−i+1

V j,

where,

V1 =
1−Um:m:n

1−Um−1:m:n

,V2 =
1−Um−1:m:n

1−Um−2:m:n

, ...,Vm = 1−U1:m:n, (4)

are all independent identically distributed (iid) r.v.’s. Then

Vi
d
= Beta

(

i+
m

∑
j=m−i+2

k j +
m

∑
j=m−i+1

R j,km−i+1 + 1

)

, i = 1,2, ...,m. (5)

Proof.For simplicity, we denote Ui:m:n by Ui.

Since Ui follows U (0,1). Then the pdf and cdf of Ui are fUi
(u) = 1 and FUi

(u) = u, for 0 ≤ u ≤ 1, respectively. So,
using Eq. (3), the joint pdf of U1 ≤U2 ≤ ...≤Um is obtained as follows:

fUl:m:n,U2:m:n,...,Um:m:n(u1,u2, ..,um) ∝
m

∏
i=1

(ui − ui−1)
ki (1− ui)

Ri . (6)

Since Ui = 1−∏m
j=m−i+1 V j, one can see that:
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U1 = 1−Vm (7)

U2 = 1−Vm−1Vm

U3 = 1−Vm−2Vm−1Vm

.

.

.

Um = 1−V1V2V3...Vm

Hence, assuming U0 = 0, we have:

U1 −U0 = 1−Vm (8)

U2 −U1 = Vm (1−Vm−1)

U3 −U2 = Vm−1Vm (1−Vm−2)

.

.

.

Um −Um−1 = V2V3...Vm (1−V1)

The Jacobian matrix of this transformation is given by the following lower triangular matrix:

J =
∂

∂V
U =









0 0 · · · 0 −1
0 0 · · · −Vm −Vm−1

...
...

. . .
...

−V2V3...Vm −V1V3...Vm · · · −V1V2...Vm−2Vm −V1V2...Vm−1









Therefore,

|J|=
∣

∣

∣

∣

∂

∂V
U

∣

∣

∣

∣

=
m

∏
j=2

V
j−1
j . (9)

Now, in order to derive the joint pdf of V1,V2, ...,Vm, we simplify the terms of Eq. (6) separately.
Using Eq. (8), the first term in Eq. (6) is simplified to:

m

∏
i=1

(Ui −Ui−1)
ki =

m

∏
i=1

(1−Vm−i+1)
ki

m

∏
i=1

V
∑m

j=i+1 k j

m−i+1 . (10)

Using Eq. (7), the second term in Eq. (6) is simplified to:

m

∏
i=1

(1−Ui)
Ri =

m

∏
i=1

V
∑m

j=i R j

m−i+1 . (11)

Accordingly, using Eqs. (9), (10) and (11), the joint pdf of V1, ...,Vm is obtained as follows:

fVl ,V2,...,Vm(v1,v2, ..,vm) ∝
m

∏
i=1

(1−Vi)
km+i−1

m

∏
i=2

V
∑m

j=m−i+2 k j

i

m

∏
i=1

V
∑m

j=m−i+1 R j

i

m

∏
i=2

V i−1
i . (12)

Since ∏m
j=2 V

j−1
j = ∏m

j=1 V
j−1
j and ∏m

i=2 V
∑m

j=m−i+2 k j

i = ∏m
i=1 V

∑m
j=m−i+2 k j

i ,

Eq. (12) can be simplified to:

fVl ,V2,...,Vm(v1,v2, ..,vm) ∝
m

∏
i=1

(1−Vi)
km+i−1

V
∑m

j=m−i+2 k j+∑m
j=m−i+1 R j+i−1

i (13)

where 0 <Vi < 1.
By factorization theorem, we see that V1,V2, ...,Vm are independent and

Vi
d
= Beta

(

i+
m

∑
j=m−i+2

k j +
m

∑
j=m−i+1

R j,km−i+1 + 1

)

, i = 1,2, ...,m.
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Corollary 1.As a result of Theorem 1, we find

E(Ui:m:n) = 1−
m

∏
j=m−i+1

γ j, (14)

where,

γi =
i+∑m

j=m−i+2 k j +∑m
j=m−i+1 R j

1+ i+∑m
j=m−i+1 k j +R j

,

such that γ j = γ1 if j ≤ 1 and γ j = γm if j ≥ m provided that
m

∑
j=m+1

k j = 0.

This paper is organized as follows: Non-parametric estimation for extropy and entropy measures based on progressive
Type-I interval censoring are developed in Section 2. Simulation experiments as are performed in Section 3. Analyses of
real life data are performed in Section 4. Finally, we end the the paper in Section 5 with a conclusion.

2 Non-parametric Extropy and Entropy Estimates

This section develops non-parametric estimates for the extropy and entropy measures based on progressively Type-I
interval censored samples. It is of importance here to mention that for a random variable (r.v.) T , extropy and entropy
measures J(T ) and H(T ) are expressed as:

J(T ) =−1

2

∫ 1

0

(

d

d p
F−1(p)

)−1

d p (15)

and

H(T ) =

∫ 1

0
log

(

d

d p
F−1(p)

)

d p (16)

In this section we will introduce four estimates for both extropy and entropy based on Kernel and Differential
Approximation methods. Recently, we introduced four estimates for the extropy and entropy (Qubbaj et al. 2023) based
on Moments Approximation Method (Ĵ1, Ĥ1) and Linear Approximation Method (Ĵ2, Ĥ2) under type-I interval
censoring, shown below:

Ĵ1 =− 1

2m

m

∑
i=1

∏m
j=m−(i−w)+1

γ j −∏m
j=m−(i+w)+1

γ j

Ti+w:m:n −Ti−w:m:n
, (17)

Ĥ1 =
1

m

m

∑
i=1

log

(

Ti+w:m:n −Ti−w:m:n

∏m
j=m−(i−w)+1

γ j −∏m
j=m−(i+w)+1

γ j

)

, (18)

Ĵ2 =− 1

2m

m

∑
i=1

∑i+w
j=i−w(Tj:m:n − T̄(i))(

∑
i+w
j=i−w ∏m

k=m− j+1 γk

2w+1
−∏m

k=m− j+1 γk)

∑i+w
j=i−w(Tj:m:n − T̄(i))2

, (19)

Ĥ2 =
1

m

m

∑
i=1

log





∑i+w
j=i−w(Tj:m:n − T̄(i))(

∑
i+w
j=i−w ∏m

k=m− j+1 γk

2w+1
−∏m

k=m− j+1 γk)

∑i+w
j=i−w(

∑
i+w
j=i−w ∏m

k=m− j+1 γk

2w+1
−∏m

k=m− j+1 γk)2



 . (20)

where w is the window size.
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2.1 Kernel-Based method

Here, the extropy J is represented as

J(T ) =−1

2

∫

f 2(t)dt =−1

2
E f ( f (t)) . (21)

Accordingly, a third estimate of J(T ) follows as

Ĵ3 =− 1

2m

m

∑
i=1

f̂ (ti:m:n), (22)

where f̂ (ti:m:n) is estimated by the kernel density estimate,

f̂ (ti:m:n) =
1

md

m

∑
j=1

K

(

ti:m:n − t j:m:n

d

)

, (23)

we used K(x) the kernel function that is non-negative, smooth and symmetric function which satisfies the conditions:
∫

K(x)dx = 1, and

∫

xK(x)dx = 0,

where d is the bandwidth such that d > 0, also d is called the smoothing parametr or windowwidth by some authors, (cf.
Dmitriew and Tarasenko (1973)).
This estimate is designed assuming the Kernel function is the standard normal density function; due its convenient
mathematical properties the normal Kernel is frequently used

K(t) =
1√
2π

e−
t2

2

There are several choices for the bandwidth d. Here the bandwidth d is decided to be 1.06Sm− 1
5 , (cf. Silverman (1986)),

where S is the sample standard deviation and m is the number of points.
Similarly, the entropy H(T ) can also be represented by the form −E f (log f (t)). Therefore, an estimate of H is

Ĥ3 =− 1

m

m

∑
i=1

log
(

f̂ (ti:m:n)
)

. (24)

Proposition 1.Let Y = aT + b, a > 0. Then Ĵ3
Y
= 1

a
Ĵ3

T
and Ĥ3

Y
= log(a)+ Ĥ3

T
.

Proof.Since

f (Yi) =
1

mdY
∑m

j=1 K(
Yi−Yj

dY
) = 1

madT
∑m

j=1 K(
aTi−aTj

adT
) = 1

a
f̂ (Ti)

And
dY = 1.06SmY

−1
5 = 1.06SamT

−1
5 = cdT

Thus,
H3

Y =− 1
m ∑m

i=1 log( f̂ (Yi)) =− 1
m ∑m

i=1 log( 1
a

f̂ (Ti)) = loga+H3
T

Also we get,
J3

Y =− 1
2m ∑m

i=1( f̂ (Yi)) =
−1
2m ∑m

i=1(
1
a

f̂ (Ti)) = J3
T/a

Proposition 2.Ĵ3 and Ĥ3 are consistent estimates for J and H, respectively, i.e.

Ĵ3
p−→ J , and Ĥ3

p−→ H, as m → n, n → ∞, w → ∞ and w/m → 0.

Proof.We have

Ĵ3 =− 1

2m

m

∑
i=1

f̂ (Ti:m:n) =−1

2
E( f̂ (T )).

By consistency of the Kernel pdf i.e.
f̂ (t)→ f (t),

Therefore;

Ĵ3 =−1

2
E( f̂ (T ))

p−→−1

2
E( f (T )) = J3.

However, consistency of Ĥ3 can be proved similarly, thus

Ĥ3 =−E(log( f̂ (T )))
p−→−E(log( f (T ))) = H3.
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2.2 Differential Approximation method

The fourth estimate can be derived based on the definition of the differentiation. In precise,

F(ti+w:m:n)−F(ti−w:m:n)≈
f (ti+w:m:n)+ f (ti−w:m:n)

2
(ti+w:m:n − ti−w:m:n) . (25)

Substituting Eq.(25) into the following equation

J(T )≈− 1

2m

m

∑
i=1

F(Ti+w:m:n)−F(Ti−w:m:n)

Ti+w:m:n −Ti−w:m:n
. (26)

We get

Ĵ4 =− 1

4m

m

∑
i=1

(

f̂ (ti+w:m:n)+ f̂ (ti−w:m:n)
)

, (27)

where w is the window size and f̂ (ti:m:n) is estimated by the Kernel function proposed in the previous section. Another
estimate for H(T ) is obtained by applying similar arguments

Ĥ4 =
1

m

m

∑
i=1

log

(

2

f̂ (ti+w:m:n)+ f̂ (ti−w:m:n)

)

. (28)

Proposition 3.Let Y = aT + b, a > 0. Then Ĵ4
Y
= 1

a
Ĵ4

T
and Ĥ4

Y
= log(a)+ Ĥ4

T

Proof.: The proof of this proposition is similar to Proposition 2.1 and therefore it is omitted.

Proposition 4.Ĵ4 and Ĥ4 are consistent estimates for J and H, respectively, i.e.

Ĵ4
p−→ J , and Ĥ4

p−→ H, as m → n, n → ∞, w → ∞ and w/m → 0.

Proof.Since

1

n

n

∑
i=1

(Ti)→ E(T ),

We have,

J4−→− 1

2
E

f̂ (Ti+w)+ f̂ (Ti−w)

2
=−1

2
E

F(Ti+w)−F(Ti−w)

Ti+w −Ti−w

Here Ti−w and Ti+w belong to an interval in which f (T ) is positive and continuous, then there exist a value T ′
i ∈ (Ti−w,Ti+w)

such that

(
F(Ti+w)−F(Ti−w)

Ti+w −Ti−w

) = f̂ (T ′
i )

Therefore,

J4
p−→ J,

Now, by continuity of log function we have

log( f̂ (t)))−→ log( f (t)))

Then, by law of large numbers

H4 =−E(log( f̂ (T )))
p−→−E(log( f (T ))) = H.

and so the consistency of H4 is proved.
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3 Simulation study

In this section, we carry out a Monte Carlo simulation to analyse the behavior of our proposed estimates of extropy and
entropy. In order to perform the simulation process, we consider different sample sizes, i.e. n = 10,20,30 and 50 with
five different inspection times, i.e. m = 5. Next, we generate 1000 progressive type-I interval censoring data sets in each
experimentation case. Also, we work with different withdrawal (removal) schemes as detailed in Table 1. We consider the
uniform distribution U(0,θ ) with θ = 1 and the Log-Normal Distribution (µ ,σ) with µ = 0,σ = 1, which are commonly
used.

Table 1: Progressive interval censoring schemes used in the Monte Carlo simulation study

Scheme No. m (t1, ..., tm) (q1, ...,qm)
1 5 0.1,0.3,0.5,0.7,0.9 0.25,0,0,0,1
2 5 0.1,0.3,0.5,0.7,0.9 0,0,0,0,1
3 5 0.1,0.3,0.5,0.7,0.9 0.25,0.25,0,0,1
4 5 0.1,0.3,0.5,0.7,0.9 0.1,0.1,0.2,0.2,1

Table 2: MSEs of the Estimates of extropy J(Y ) and H(Y ) for U(0,1), assuming m = 5

Scheme Number n J1 J2 J3 J4 H1 H2 H3 H4

1 10 0.0039 0.0038 0.0673 0.0575 0.0145 0.0158 0.0958 0.1025

20 0.0038 0.0031 0.0228 0.0216 0.0136 0.0142 0.0373 0.0443

30 0.0037 0.0025 0.0122 0.0119 0.0123 0.0123 0.0233 0.0263

50 0.0030 0.0014 0.0047 0.0046 0.0063 0.0056 0.0109 0.0114

2 10 0.0038 0.0038 0.0343 0.0298 0.0155 0.0163 0.0589 0.0677

20 0.0030 0.0025 0.0172 0.0165 0.0101 0.0104 0.0293 0.0347

30 0.0028 0.0018 0.0099 0.0097 0.0075 0.0075 0.0184 0.0208

50 0.0023 0.0009 0.0076 0.0075 0.0035 0.0030 0.0145 0.0156

3 10 0.0045 0.0048 0.0712 0.0607 0.0178 0.0201 0.1096 0.1137

20 0.0042 0.0035 0.0195 0.0179 0.0155 0.0162 0.0364 0.0411

30 0.0040 0.0030 0.0141 0.0137 0.0145 0.0143 0.0264 0.0299

50 0.0036 0.0021 0.0074 0.0073 0.0107 0.0096 0.0142 0.0157

4 10 0.0043 0.0045 0.0567 0.0491 0.0183 0.0199 0.0799 0.0871

20 0.0036 0.0039 0.0211 0.0197 0.0175 0.0184 0.0351 0.0417

30 0.0029 0.0031 0.0165 0.0160 0.0134 0.0138 0.0263 0.0311

50 0.0024 0.0025 0.0104 0.0103 0.0118 0.0117 0.0166 0.0190

Table 3: MSEs of the Estimates of J(Y ) and H(Y ) for Log-Normal Distribution (0,1), assuming m = 5

Scheme Number n J1 J2 J3 J4 H1 H2 H3 H4

1 10 0.0020 0.0030 0.0198 0.0187 0.0465 0.0436 0.8745 0.4858

20 0.0018 0.0028 0.0084 0.0080 0.0412 0.0407 0.8387 0.3528

30 0.0015 0.0025 0.0064 0.0061 0.0366 0.0341 0.8287 0.3301

50 0.0014 0.0024 0.0034 0.0033 0.0336 0.0299 0.8273 0.3013

2 10 0.0020 0.0029 0.0123 0.0114 0.0385 0.0410 0.8608 0.4420

20 0.0015 0.0024 0.0054 0.0052 0.0377 0.0375 0.8364 0.3032

30 0.0013 0.0024 0.0035 0.0034 0.0319 0.0299 0.8216 0.2866

50 0.0012 0.0022 0.0027 0.0027 0.0290 0.0240 0.8112 0.2659
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Scheme Number n J1 J2 J3 J4 H1 H2 H3 H4

3 10 0.0020 0.0030 0.0349 0.0296 0.0344 0.0347 0.9067 0.5024

20 0.0018 0.0028 0.0124 0.0118 0.0333 0.0303 0.8592 0.3656

30 0.0015 0.0024 0.0039 0.0038 0.0327 0.0273 0.8295 0.3338

50 0.0014 0.0023 0.0028 0.0027 0.0313 0.0255 0.7652 0.2663

4 10 0.0024 0.0035 0.0190 0.0171 0.0377 0.0399 0.9721 0.4914

20 0.0022 0.0032 0.0117 0.0114 0.0376 0.0357 0.9679 0.4130

30 0.0021 0.0032 0.0071 0.0069 0.0306 0.0285 0.9452 0.3415

50 0.0020 0.0031 0.0030 0.0028 0.0264 0.0225 0.8861 0.3125

For each generated data set, we compute the average estimate and the corresponding mean squared error (MSE) of the
proposed extropy and entropy estimates over 1000 simulations. Simulation results are shown in Tables (2-3), where the
bold type in these tables indicates the estimate achieving the minimal MSE.

Now, for Table (2), we observe that for scheme 1, estimate J2 dominates other estimates for all sample sizes; while
for scheme 2 we see that the MSEs of estimate J2 are always smaller than those of other estimates except when n = 10,
where J1 and J2 are equal. As for scheme 3, we see that MSEs of estimate J2 are always smaller than those of other
estimates except when n = 10. On the other hand, in scheme 4, we see that MSEs of estimate J1 are always smaller than
those of other estimates. Also from Table (2), we observe that for schemes 1 and 2, estimates of H1 and H2 perform
satisfactorily and we also see that MSEs of estimate H1 are always smaller than those of other estimates except for n = 50
and they are equal when n = 30. As for scheme 3, we see that MSEs of estimate H2 are always smaller than those of other
estimates except when n = 10 and n = 20. On the other hand, in scheme 4 we see that MSE’s of estimate H1 are always
smaller than those of other estimates except for n = 50. Accordingly, the reader can observe that if the data comes from
uniform distribution, then estimates J1, J2, H1 and H2 mostly perform better than other estimates for estimating extropy
and entropy.

As shown in Table (3), estimate J1 dominates other estimates under all censoring schemes for all sample sizes. Also
from Table (3), we observe that for scheme 1, estimate H2 dominates other estimates under all censoring schemes for
all sample sizes. As for schemes 2, 3 and 4 in same table, MSEs of estimate H2 are always smaller than those of other
estimates except when n = 10 MSEs of estimate H1 are the smallest. Accordingly, for estimating the extropy and the
entropy, one might recommend estimates J1, H1 and H2.

Generally, choosing the best extropy and entropy estimate depends on the sample size, censoring schemes and the
type of distribution of data. And as expected, MSE decreases as the sample size n increases.

It is worth mentioning that, Moments Approximation estimates (J1 and H1) and Linear Approximation estimates (J2

and H2) for extropy and entropy perform better than the other estimates in most considered cases.

4 Real Data Analysis

In this section, we present an example to show the behaviour of the proposed extropy and entropy estimates in real case.
Example : The following data, represents smiling times of an eight-week old baby measured in seconds, which can be
treated as independent observations of the random variable X :

0.7 1.3 2.1 2.6 3.3 3.4 3.7 4.5 4.9

5.8 5.8 5.9 6.3 6.7 6.9 7.3 7.6 7.8

8.9 8.9 9.4 9.4 9.8 10.0 10.4 10.7 10.9

11.1 11.6 11.8 11.9 12.5 12.8 13.4 13.8 13.9

14.5 14.8 15.9 16.3 16.8 17.1 17.8 17.9 17.9

18.6 18.8 19.0 19.2 19.6 20.0 21.6 21.7 22.8 22.8

This data was given in Illowsky and Dean(2018) and it was shown that it follows a U(0,23) distribution. Using the integral
transformation, we consider the transformed data Y = X/23 which follows a U(0,1) distribution, the transformed data is
as follows:

0.030 0.056 0.091 0.113 0.143 0.148 0.161 0.196 0.213

0.252 0.252 0.257 0.274 0.291 0.030 0.317 0.330 0.339

0.387 0.387 0.409 0.409 0.426 0.435 0.452 0.465 0.474

0.483 0.504 0.513 0.517 0.543 0.556 0.583 0.600 0.604

0.630 0.643 0.691 0.709 0.730 0.743 0.774 0.778 0.778

0.809 0.817 0.826 0.835 0.852 0.870 0.939 0.943 0.991 0.991
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The MLE of θ based on the complete sample is equal to θ̂ which is considered to be 1. The extropy and entropy of X in
this case are obtained to be

J(X) =− 1

2θ
, and H(X) = log θ ,

respectively.
Upon using the MLE of θ , we can compute the MLEs of the entropy and extropy measures as J(X) = −0.5 and

H(X) = 0, respectively. Now we shall study the behaviour of the proposed estimates based on the following progressive
Type-I Interval censoring schemes in the following table and associated censoring samples, notice that m = 3 and w = 1
are considered fixed for all suggested censoring schemes:

Table 4: Progressive censoring schemes used in this real data example

Censoring scheme No. (t1, t2, t3) (q1,q2,q3)
1 0.1,0.5,1 0.25,0,1
2 0.3,0.5,0.95 0,0,1
3 0.01,0.4,1.2 0,0.25,1
4 0.7,0.8,0.9 0.3,0.3,1
5 0.05,0.3,0.7 0.25,0.25,1

Continuing with the exploration of progressive Type-I Interval censoring under this lifetime model, the following censored
data is observed according to the applied censoring scheme on the insulation data. The generated censored data are
summarized in the Tables (5-9).

Table 5: The observed censored data from scheme 1

Inspection times Number of failures Number of removals

(0,0.1] 3 13

(0.1,0.5] 18 0

(0.5,1] 21 0

Table 6: The observed censored data from scheme 2

Inspection times Number of failures Number of removals

(0,0.3] 15 0

(0.3,0.5] 13 0

(0.5,0.95] 25 2

Table 7: The observed censored data from scheme 3

Inspection times Number of failures Number of removals

(0,0.01] 0 0

(0.01,0.4] 20 9

(0.4,1.2] 26 0
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Table 8: The observed censored data from scheme 4

Inspection times Number of failures Number of removals

(0,0.15] 6 5

(0.15,0.45] 17 3

(0.45,0.95] 23 1

Table 9: The observed censored data from scheme 5

Inspection times Number of failures Number of removals

(0,0.05] 1 14

(0.05,0.3] 10 8

(0.3,0.7] 15 7

Tables (10) and (11) show that the results are in agreement with what have been concluded from the simulation studies.
Precisely, the extropy and entropy estimates J1, J2, H1 and H2 provide closer estimation results to those are obtained using
the complete sample based on the MLEs J(X) =−0.5 and H(X) = 0, respectively.

Table 10: Extropy Estimates for the example

Scheme Number J1 J2 J3 J4

1 -0.5015 -0.5013 -0.6872 -0.6872

2 -0.5237 -0.5117 -0.6690 -0.6690

3 -0.4203 -0.4153 -0.6044 -0.6044

4 -0.5241 -0.5195 -0.6363 -0.6363

5 -0.6086 -0.5794 -0.9427 -0.9427

Table 11: Entropy Estimates for the example

Scheme Number H1 H2 H3 H4

1 -0.0029 -0.0045 0.2462 -0.2626

2 -0.0454 -0.0281 0.2743 -0.2751

3 0.1763 0.1874 0.1814 -0.1817

4 -0.0466 -0.0420 0.1835 -0.1881

5 -0.1714 -0.1564 0.5679 -0.5999

5 Conclusions

In this paper, we have studied the estimation problem of the extropy and entropy measures based on progressive Type-I
interval censoring. Non-parametric based methods involving moments approximation, linear approximation, Kernel-based
and differential principal have been discussed. It is obvious that choosing the best estimates of the extropy and entropy
measures depend on the parent model of the data, sample size and censoring scheme. As expected, MSE decreases as the
sample size n increases. It has been noticed that, the Moments Approximation (J1 and H1) and Linear Approximation (J2

and H2) estimates for the extropy and entropy compete the other estimates in most considered cases.
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