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Abstract: We try to adapt the framework of Mikusiński’s operational calculus in order to apply it to differential equations involving

the fractional Laplacian. We find a fundamental theorem of calculus which connects the fractional Laplacian with its inverse in general,

even when no decay conditions are imposed. Ultimately, we discover that no suitable function space exists satisfying all the required

conditions, and so the method of Mikusiński, in the sense that it has previously been used for fractional operators, cannot be applied to

the fractional Laplacian.
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1 Introduction

Operational calculus, in a non-rigorous form involving the algebraic manipulation of integro-differential operators to solve
equations correctly, dates back to Heaviside [31]. The rigorous formulation of an operational calculus method for solving
integro-differential equations was done by the Polish mathematician Jan Mikusiński in the 1950s, and this method is now
called Mikusiński’s operational calculus. It has been used to solve ordinary differential equations [28], partial differential
equations [18], integral equations [17], and fractional differential equations using assorted fractional-order operators:
Riemann–Liouville [19], Caputo [26], Erdélyi–Kober [24], Hilfer [20], with respect to functions [13], Prabhakar [15], and
Sonine kernels [25].

In pure mathematical analysis, one of the most important fractional-order operators is considered to be the fractional
Laplacian, due to its global nature and easy extension to arbitrary dimensions, as well as its natural relationship with
the Fourier transform [21,23]. This operator has been studied by many authors and used in fractional partial differential
equations [23] which have been solved by methods such as Caffarelli–Silvestre extension [7], weak solutions [12,36],
perturbation methods [2], eigenvalue methods [11], etc. Note that this is unrelated to the fractional p-Laplacian, which is
a different operator [34].

In the 1960s, first in a doctoral thesis [29] and then in a published paper [30], Norris considered the issue of defining a
topology on the Mikusiński field. In the process of his work, he used a function space consisting of continuous functions
f : R→C whose support is bounded below, i.e. such that there exists X ∈R with f (x) = 0 for all t < X . This is the closest
attempt, in the literature so far, to obtain a Mikusiński-style operational calculus for functions defined on the whole real
line. However, given the condition imposed on this function space, Norris’s work essentially deals with functions defined
on a half-line [X ,∞). This is not the same as the half-line [0,∞) of Mikusiński, but recent work has shown [14] that
conjugation relations allow Mikusiński’s operational calculus to be easily extended to any half-line [X ,∞) in the same
way as the original [0,∞).

So far, it seems that the abstract algebraic structure of Mikusiński’s operational calculus has not been applied to
global fractional-order operators such as the fractional Laplacian, acting on the whole line (−∞,∞). We seek to
investigate whether these two topics can be combined, applying Mikusiński’s algebraic methodology to differential
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128 Saleh & Fernandez : Mikusiński’s operational calculus for the fractional Laplacian

equations involving the fractional Laplacian. Our approach will be to examine the structure of Mikusiński’s method and
the conditions that must be satisfied in order for it to be usable, and then either to construct the necessary mathematical
framework or to prove that it cannot exist.

The structure of our manuscript is as follows. In Section 2, we provide the theoretical basics for both Mikusiński’s
operational calculus (in Subsection 2.1) and the fractional Laplacian operator (in Subsection 2.2). The main results are
contained in Section 3, where we first prove a suitable inversion relation for the fractional Laplacian (in Subsection 3.1)
and then consider what function space requirements will be necessary for applying the usual Mikusiński’s operational
calculus (in Subsection 3.2), before finally proving that such requirements are impossible to fulfil (in Subsection 3.3). The
work concludes in Section 4 with some discussion of the impact and significance of our work.

2 Preliminaries

2.1 Mikusiński’s Operational Calculus

In general, the methodology of Mikusiński’s operational calculus is along the following lines.

1.Choose a suitable function space C which forms a commutative ring or rng (ring without identity), under pointwise
addition and some type of convolution operator for multiplication.

2.Choose a suitable integration operator I which can be identified with multiplication by some element in C, namely
I ( f ) = f ∗ h for all f ∈C and for some fixed h ∈C.

3.Find a suitable inversion relation between I and a suitable differentiation operator D , a sort of second fundamental
theorem of calculus connecting these two operators.

4.Construct the field of fractions M from the rng C, and use the inversion relation from step 3 to interpret the
differentiation operator D algebraically in terms of the inverse h−1 ∈ M of the element h ∈C ⊂ M.

After following these steps, where in step 4 embedding C into a field M requires that the ring or rng C has no zero
divisors, we have an abstract field M in which algebraic manipulations can be performed, and an algebraic interpretation
via h−1 of the differentiation operator D . This enables differential equations involving D to be interpreted and solved
purely algebraically. Note that M is not a function space: its elements are, in general, algebraic abstractions which cannot
necessarily be interpreted as functions. The elements of M are a sort of “generalised functions” (called “operators” by
Mikusiński [28]), although not the same sort as those used in distribution theory. For example, the identity element in M

can be thought of as a sort of Dirac delta, since it has the property that its convolution with any function f ∈ H is again f .
In cases where C has zero divisors, such as the space of continuous functions on a finite interval [10, §1.1.1], Mikusiński’s
operational calculus may also be performed but the construction and properties are necessarily slightly different, since a
ring or rng with zero divisors cannot be embedded into a field.

We now briefly describe how the above methodology has been applied in some particular settings.
In the classical theory of Mikusiński for ordinary differential equations [28], the space C is taken to be simply the

space C[0,∞) of continuous functions on the closed half-line. By a theorem of Titchmarsh, this forms a commutative rng
without zero divisors under the operations of pointwise addition and the following convolution:

( f ⋆ g)(t) =

∫ t

0
f (t − τ)g(τ)dτ. (1)

The “integration element” h is then the constant function ℓ = 1, since (ℓ ∗ f )(t) =
∫ t

0 f (τ)dτ for all f ∈ C[0,∞). The

algebraic inverse element s = ℓ−1 is then related to differentiation by the relation

s∗ f = f ′+ f (0), (2)

which follows immediately from the fundamental theorem of calculus. Thus, ordinary differential equations can be solved
by using (2) to transform them to algebraic equations in the field M and solving those equations algebraically.

In the theory developed by Luchko and his collaborators for fractional differential equations of Riemann–Liouville,
Caputo, and Hilfer types, the space C is taken to be the space C−1 defined by Dimovski [9] as follows:

C−1 =
{

functions f (t), t > 0, s.t. ∃ p >−1 and f1 ∈C[0,∞) with f (t) = t p f1(t)
}

.

This forms a commutative rng without zero divisors under the operations of pointwise addition and the convolution
defined in (1). The “integration element” h ∈ C−1 corresponding to the Riemann–Liouville fractional integral is the
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function hα(t) =
tα−1

Γ (α) , where α > 0 is the fractional order. The algebraic inverse element Sα = h−1
α is then related to

fractional differentiation by relations analogous to (2), essentially fractional fundamental theorems of calculus. Thus,
many fractional differential equations can be solved by transforming them to algebraic equations in the field M and
solving those equations algebraically.

The ideas of Mikusiński have also been applied in other, more general, settings: for example, by Luchko for operators
with Sonine kernels [25] and for 1st-level fractional derivatives [1], and by the second author for fractional derivatives
with respect to functions [13] and for Prabhakar fractional derivatives [15].

2.2 Fractional Laplacian

The fractional Laplacian is a global operator which is frequently used in the study of partial differential equations due to
its natural relationship with the Fourier transform. It has an advantage over other fractional operators (Riemann–Liouville,
Caputo, etc.) in that it can be easily extended to arbitrary dimensions. There are multiple ways to define the fractional
Laplacian operator in the entire n-dimensional space R

n, for any n ∈ N, and when dealing with an open subset Ω 6= R
n,

different versions of the fractional Laplacian can be defined, taking into account information from both the boundary and
the exterior of the domain.

An excellent review of Kwaśnicki [21] details ten different definitions of the fractional Laplacian operator, which are
all established to be equivalent. To gain a deeper understanding of research on fractional Laplacian operators, the reader
is referred to [22,5,6] for further study. These publications provide fundamental estimates and some regularity results for
solutions to problems governed by (−∆)s

. Additionally, the reference [8] presents a characterisation of the realisation of
the fractional Laplacian operator in L2(Ω) using different exterior conditions, employing the theory of semigroups.

However, in this research, we restrict ourselves to considering the fractional Laplacian in one dimension, for
functions defined everywhere in R. This will be enough to draw conclusions about the applicability of Mikusiński’s
operational calculus to fractional Laplacian operators, and it simplifies the work by not requiring the consideration of
higher dimensions.

Definition 1.Let 0 < α < 2 and let ∆ = ∂ 2

∂x2 denote the classical Laplacian operator in one dimension. The fractional

Laplacian of a function u : R−→R with sufficient regularity is given as:

(−∆)
α
2 u(x) =C1, α

2
P.V.

∫

R

u(x)− u(y)

|x− y|1+α
dy, (3)

where P.V. denotes the Cauchy principal value and C1, α
2

is a normalisation constant given by

C1, α
2
= α

2α−1

√
π

Γ
(

1+α
2

)

Γ
(

2−α
2

) .

Equivalently, letting α = 2s, we can rewrite (3) as follows:

(−∆)s
u(x) =C1,s

∫

R

u(x)− u(y)

|x− y|1+2s
dy, (4)

where 0 < s < 1 and C1,s is a normalization constant given by:

C1,s =
4s

√
π

Γ
(

1+2s
2

)

|Γ (−s)| .

The motivation behind this definition, and behind the odd choice of normalisation constant, lies in the Fourier
transform. It is well known that the Fourier transform of the Laplacian is given by

F [∆u] (k) =−k2
F [u] (k) =−|k|2F [u] (k),

and the latter formula also extends to higher dimensions. The fractional Laplacian is notated by writing a fractional power
of (−∆), and this makes sense when we discover that its Fourier transform is given by

F [(−∆)su](k) = |k|2s
F [u] .

In this sense, the fractional Laplacian (3)–(4) is the only natural way to define a fractional power of the Laplacian operator.
Considering Fourier transforms and multipliers is of course the genesis of the theory of pseudo-differential operators [33],
of which the fractional Laplacian is a special case.
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Definition 2.Let 0 < s < 1
2

and ∆ = ∂ 2

∂x2 as before. The inverse fractional Laplacian (−∆)−s of a function u : R −→ R

with sufficient regularity is given as:

(−∆)−su(x) =
Γ
(

1−2s
2

)

4s
√

πΓ (s)

∫

R

u(y)

|x− y|1−2s
dy. (5)

The meaning of “inverse Laplacian” can be justified by the fact [37] that the operators in the above two definitions are
inverse to each other on certain function spaces, assuming conditions such as decay at infinity for the function u. However,
in the work below, we will find a different kind of inversion relation which is valid under weaker assumptions on u.

3 Main Results

Recalling the outline of Mikusiński’s operational calculus given in Subsection 2.1, we see that there are several choices
that must be fixed in order to construct an operational calculus for a particular operator. We must choose a function space,
a suitable convolution operation, an integration operator, and a differentiation operator, in such a way that the function
space is closed under convolution, the integration operator is given by convolution with some fixed function, and the
differentiation and integration operators obey a fundamental theorem of calculus together.

Here, the differentiation operator should be the fractional Laplacian (4), so it makes sense for the integration operator to
be the inverse fractional Laplacian (5), as long as we can construct a suitable fundamental theorem of calculus connecting
these two operators.

Since we are working on the line R rather than the half-line [0,∞), the convolution operation (1) is no longer the right
one to use: we use instead the Fourier-type convolution, defined by

( f ⋆ g)(x) =

∫

R

f (x− y)g(y)dy. (6)

With this type of convolution, we can interpret the inverse fractional Laplacian (5) as follows:

(−∆)−su(x) = u(x)⋆

(

K

|x|1−2s

)

=
Γ
(

1−2s
2

)

4s
√

πΓ (s)

∫

R

u(y)

|x− y|1−2s
dy,

where 0 < s < 1
2

and K =
Γ ( 1−2s

2 )
4s
√

πΓ (s)
and u has sufficient regularity.

Now we have operators of convolution, integration, and differentiation, where integration is given by convolution with
a fixed function. It remains to establish a fundamental theorem of calculus and to find a suitable function space.

3.1 Inversion Relation

The inversion relation, or fundamental theorem of calculus property, connecting the fractional Laplacian (4) and the
inverse fractional Laplacian (5), is given in general by the following result.

Theorem 1.Let u ∈C1(R) and 0 < s < 1
2
. Then,

(−∆)−s (−∆)s
u(x) = u(x)− u(−∞)+ u(∞)

2
,

for all x ∈R, where u(±∞) denotes limx→±∞ u(x) respectively.

Proof.Directly from the definitions (4)–(5), we have:

(−∆)−s (−∆)s
u(x) =

sΓ
(

1−2s
2

)

Γ
(

1+2s
2

)

πΓ (s)Γ (1− s)

∫ ∞

−∞

∫ ∞

−∞

u(y)− u(z)

|x− y|1−2s|y− z|1+2s
dydz

=
s

π
tan(sπ)

∫ ∞

−∞

∫ ∞

−∞

∫ y

z
u′(w)|x− y|2s−1|y− z|−2s−1 dwdydz, (7)
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where the fundamental theorem of calculus has been used to obtain the third (innermost) integral, and the constant outside
the integrals has been manipulated using the reflection formula for the gamma function:

Γ
(

1−2s
2

)

Γ
(

1+2s
2

)

Γ (s)Γ (1− s)
=

sin(πs)

sin
(

π
2
(1− 2s)

) =
sinπs

cosπs
.

The outer two integrals in (7) are over (y,z) ∈ R2, which we split into four subsets as follows:

z < y < x =⇒ |x− y|= x− y, |y− z|= y− z;

y < z < x,y < x < z =⇒ |x− y|= x− y, |y− z|= z− y;

z < x < y,x < z < y =⇒ |x− y|= y− x, |y− z|= y− z;

x < y < z =⇒ |x− y|= y− x, |y− z|= z− y.

These four subsets give rise to four separate triple integrals, which we now evaluate one by one. Note that we ignore the
outer factor of s

π tan(sπ) in (7), which will be reintroduced later.

First case: zzz <<< yyy <<< xxx. Here, we have z < w < y < x. We put the z-integral inside and the w-integral outside:

∫ ∫ ∫

=
∫ x

−∞
u′(w)

∫ x

w
(x− y)2s−1

∫ w

−∞
(y− z)−2s−1 dzdydw

=

∫ x

−∞

1

2s
u′(w)

∫ x

w
(x− y)2s−1(y−w)−2s dydw

=

∫ x

−∞

1

2s
u′(w)

∫ 1

0
(1− v)2s−1v−2s(x−w)2s−1−2s+1 dvdw

=

∫ x

−∞

1

2s
u′(w)B(2s,1− 2s)dw

=
Γ (2s)Γ (1− 2s)

2s

∫ x

−∞
u′(w)dw

=
π

2ssin 2πs

(

u(x)− lim
w→−∞

u(w)

)

, (8)

where in the third line we used the substitution v = y−w
x−w

.

Second case: yyy <<< zzz <<< xxx or yyy <<< xxx <<< zzz. Here, we have both y < x and also y < w < z, meaning it makes more sense to
consider u(y)− u(z) =

∫ z
y −u′(w)dw rather than

∫ y
z u′(w)dw as written in (7). Thus, in this case,

∫ ∫ ∫

=
∫ ∞

−∞
−u′(w)

∫ min(w,x)

−∞
(x− y)2s−1

∫ ∞

w
(z− y)−2s−1 dzdydw

=

∫ ∞

−∞

−1

2s
u′(w)

∫ min(w,x)

−∞
(x− y)2s−1(w− y)−2s dydw. (9)

Third case: zzz <<< xxx <<< yyy or xxx <<< zzz <<< yyy. Here, we have both x < y and also z < w < y, meaning that we start from (7) in an
unaltered form:

∫ ∫ ∫

=

∫ ∞

−∞
u′(w)

∫ ∞

max(w,x)
(y− x)2s−1

∫ w

−∞
(y− z)−2s−1 dzdydw

=

∫ ∞

−∞

1

2s
u′(w)

∫ ∞

max(w,x)
(y− x)2s−1(y−w)−2s dydw

=

∫ ∞

−∞

1

2s
u′(w)

∫ min(w,x)

−∞
(w− y′)2s−1(x− y′)−2s dy′ dw, (10)

where in the last step we have substituted y′ = x+w− y in order to make this expression look more similar to (9).
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Second and third cases together: yyy <<< zzz <<< xxx or yyy <<< xxx <<< zzz or zzz <<< xxx <<< yyy or xxx <<< zzz <<< yyy. Combining the expressions (9) and
(10) together, we obtain an expression that converges:

∫ ∫ ∫

=

∫ ∞

−∞

1

2s
u′(w)

∫ min(w,x)

−∞

(

(w− y)2s−1(x− y)−2s− (x− y)2s−1(w− y)−2s
)

dydw

=

∫ x

−∞

1

2s
u′(w)

∫ w

−∞

(

(w− y)2s−1(x− y)−2s− (x− y)2s−1(w− y)−2s
)

dydw

+

∫ ∞

x

1

2s
u′(w)

∫ x

−∞

(

(w− y)2s−1(x− y)−2s− (x− y)2s−1(w− y)−2s
)

dydw,

where we have split the double integral into the two cases w < x and w > x in order to resolve the min(w,x) more simply.

Then, substituting v = x−y
x−w

in the first one and v = w−y
w−x

in the second one, we get:

∫ ∫ ∫

=
∫ x

−∞

1

2s
u′(w)

∫ 1

∞

[

(v− 1)2s−1v−2s − v2s−1(v− 1)−2s
]

(x−w)2s−1−2s(−(x−w))dvdw

+

∫ ∞

x

1

2s
u′(w)

∫ 1

∞

[

(v− 1)−2sv2s−1 − v−2s(v− 1)2s−1
]

(w− x)2s−1−2s(−(w− x))dvdw

=

∫ x

−∞

1

2s
u′(w)

∫ ∞

1

[

(v− 1)2s−1v−2s− v2s−1(v− 1)−2s
]

dvdw

+
∫ ∞

x

1

2s
u′(w)

∫ ∞

1

[

(v− 1)−2sv2s−1 − v−2s(v− 1)2s−1
]

dvdw. (11)

At this point, it is enough to find one of the inner integrals (which are both the same upon replacing s by 1
2
−s). Writing

I=
∫ ∞

1

[

(v− 1)−2sv2s−1 − v−2s(v− 1)2s−1
]

dv, and substituting t = 1− 1
v
, we have:

I=

∫ ∞

1

(

1− 1
v

)−2s −
(

1− 1
v

)2s−1

v
dv

=

∫ 1

0

t−2s − t2s−1

1
1−t

· dt

(1− t)2

=
∫ 1

0

t−2s − t1−2s

1− t
dt

=

∫ 1

0

t−2s − 1+ 1− t1−2s

1− t
dt

=

∫ 1

0

1− t1−2s

1− t
dt −

∫ 1

0

1− t−2s

1− t
dt

=Ψ (2s)+ γ − [Ψ(1− 2s)+ γ] =Ψ (2s)−Ψ(1− 2s),

where Ψ is the digamma function and we have used the well-known fact that Ψ(z)+ γ =
∫ 1

0
1−xz−1

1−x
dx.

Substituting the above evaluation of I into (11), we have:

∫ ∫ ∫

=

∫ x

−∞

1

2s
u′(w) [Ψ(1− 2s)−Ψ(2s)] dw+

∫ ∞

x

1

2s
u′(w) [Ψ(2s)−Ψ(1− 2s)] dw

=
Ψ(1− 2s)−Ψ(2s)

2s

[

u(x)− lim
w→−∞

u(w)

]

+
Ψ(2s)−Ψ(1− 2s)

2s

[

lim
w→∞

u(w)− u(x)
]

=
Ψ(1− 2s)−Ψ(2s)

2s

[

2u(x)− lim
w→−∞

u(w)− lim
w→∞

u(w)

]

. (12)
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Fourth case: xxx <<< yyy <<< zzz. Here, we have x < y < w < z and, as in the second case, u(y)− u(z) =
∫ z

y −u′(w)dw rather than
∫ y

z u′(w)dw as written in (7). Thus,

∫ ∫ ∫

=
∫ ∞

x
−u′(w)

∫ w

x
(y− x)2s−1

∫ ∞

w
(z− y)−2s−1 dzdydw

=

∫ ∞

x

−1

2s
u′(w)

∫ w

x
(y− x)2s−1(w− y)−2s dydw

=

∫ ∞

x

−1

2s
u′(w)

∫ 1

0
v2s−1(1− v)−2s(w− x)2s−1−2s+1 dvdw

=
∫ ∞

x

−1

2s
u′(w)B(2s,1− 2s)dw

=
Γ (2s)Γ (1− 2s)

−2s

∫ ∞

x
u′(w)dw

=
π

2ssin2πs

(

u(x)− lim
w→∞

u(w)
)

, (13)

where in the third line we used the substitution v = y−w
x−w

.

Combining all cases together. Summing the expressions for the triple integrals from (8) and (12) and (13), we have the
overall result as:

(−∆)−s (−∆)s
u(x) =

( s

π
tansπ

)

(

π

2ssin2πs
+

Ψ(1− 2s)−Ψ(2s)

2s

)

× [2u(x)− u(−∞)− u(∞)]

=
tanπs

π
[Γ (2s)Γ (1− 2s)+Ψ(1− 2s)−Ψ(2s)]

×
(

u(x)− u(−∞)+ u(∞)

2

)

= u(x)− u(−∞)+ u(∞)

2
,

using some further well-known facts on the gamma and digamma functions.

3.2 Function Space

As discussed above, to be able to apply Mikusiński’s method for the fractional Laplacian, we need to find a suitable
function space which is closed under the operations of pointwise addition and Fourier-type convolution (6) and which
consists of functions defined on the whole real line (−∞,∞).

The function space Cα defined in Subsection 2.1, which is usually applicable in the study of Mikusiński’s operational
calculus for fractional operators, cannot be suitable for us now, as it consists of functions defined only on the positive
half-line [0,∞).

Fractional Laplacians are usually studied on Lp spaces, but would such spaces have suitable properties under Fourier
convolution? The key fact here is Young’s convolution inequality [16], which states that, if p,q,r ∈ [1,∞) satisfy 1+ 1

r
=

1
p
+ 1

q
and f ∈ Lp(R) and g ∈ Lq(R), then the convolution f ⋆ g ∈ Lr(R) satisfies

‖ f ⋆ g‖r ≤ ‖ f‖p · ‖g‖q.

By this fact, the study of Fourier convolutions in Lp spaces, where 1 ≤ p ≤ ∞, is well established. In particular, the
space L1(R) is closed under convolution. For a more comprehensive coverage of Lp spaces, convolution operators, and
the behaviour of these operators on functions in the Lp spaces, including Lp for various endpoint cases, we recommend
referring to [16,38,32].

However, it is important to note that Lp spaces do not necessarily contain all power functions. This is important
because the inverse fractional Laplacian is defined by convolution with the function K

|x|1−2s for some constant K.

Mikusiński’s method requires the integration operator to correspond to multiplication (convolution) with an element in
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the same function space that we have given a rng structure. Here, our integration operator is given by convolution with
K

|x|1−2s , so this function must be contained in our chosen function space.

Power functions K
|x|1−α are not contained in L1(R), nor in any Lp(R) for any value of p. Hence, these spaces are not a

suitable setting for Mikusiński’s operational calculus for the fractional Laplacian.

The space of continuous functions bounded at ±∞ cannot be used either, as this space is not closed under convolution.

So, what properties do we need our function space to satisfy?

Assumption 1. Suppose there exists a function space, say C⋆, such that:

–Functions in C⋆ are defined almost everywhere on R.

–C⋆ contains the function Kα

|x|1−α for at least one α with 0 < α < 1, where Kα ∈ R is a non-zero constant.

–C⋆ is closed under the operations of pointwise addition and Fourier-type convolution of functions.

If a function space C⋆ exists satisfying Assumption 1, then this, together with the operations of addition and
Fourier-type convolution, will form a commutative rng (C⋆,+,⋆) without multiplicative identity. The function

kα(x) =
Kα

|x|1−α , which is the kernel function for the inverse fractional Laplacian operator (−∆)−
α
2 , will play a similar role

as the functions ℓ(x) = 1 in the classical Mikusiński setting or hα(x) =
xα−1

Γ (α)
in the fractional Mikusiński setting. The

conditions in Assumption 1 are necessary in order to be able to apply Mikusiński’s method to the fractional Laplacian
operator, because we need a space that can form a rng (hence it must be closed under the two operations) and in which
the inverse fractional Laplacian can be interpreted as multiplication (hence the kernel functions must be contained in the
rng).

Being a rng, C⋆ will embed naturally into its own field of fractions, say M⋆, as long as we can prove that the rng has no

zero divisors. Also, the algebraic inverse of the inverse fractional Laplacian operator (−∆)−
α
2 will be the multiplicative

inverse in the field M⋆ of the previously defined element kα , namely:

Sα =
I

kα
,

where I = kα
kα

denotes the multiplicative identity element in the field M⋆. Then, using the fundamental theorem of calculus

constructed in Theorem 1, we can interpret the fractional Laplacian operator in terms of the algebraic element Sα , as
follows:

=⇒(−∆)−s (−∆)s
u(x) = u(x)− u(−∞)+ u(∞)

2

=⇒ kα ⋆
(

(−∆)s
u
)

= u−
(

u(−∞)+ u(∞)

2

)

ℓ

=⇒ (−∆)s
u = Sα ⋆ u−

(

u(−∞)+ u(∞)

2

)

ℓ ∗ Sα ,

thus giving a direct description of the fractional Laplacian in terms of Sα . After this, differential equations involving the
fractional Laplacian can be solved in the same way as was done in [19,26] for fractional differential equations involving
Riemann–Liouville and Caputo operators.

All of this can be done under the conditions of Assumption 1. If such a function space can be found, we can construct a
Mikusiński’s operational calculus for the fractional Laplacian and the associated differential equations. On the other hand,
if such a function space does not exist, then Mikusiński’s method cannot be applied to fractional Laplacian operators.

3.3 Proof of Impossibility

We will now show that it is impossible for a function space C⋆ to satisfy all of the required conditions listed in Assumption
1.

To justify our claim, we need to consider first the convolution of the functions Kα

|x|1−α with each other. If all finite

convolution-products of such functions exist, then the set of all finite linear combinations of finite convolution-products
of such functions (the algebra generated by them) would be a minimal possibility for the space C⋆.
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Theorem 2.Let f (x) = K1

|x|1−α and g(x) = K2

|x|1−β , where K1,K2 ∈R are nonzero constants. If α,β ∈R satisfy α,β > 0 and

α +β < 1, then

( f ⋆ g)(x) =
Kα ,β

|x|1−(α+β )
,

where Kα ,β is another nonzero constant depending only on α and β .

Proof.We simplify the convolution integral by substituting y = xt:

( f ⋆ g)(x) =

∫ ∞

−∞

K1

|x− y|1−α
· K2

|y|1−β
dy

= K1,K2

∫ ∞

−∞
|x− y|α−1|y|β−1 dy

=
K1K2

|x|1−(α+β )

∫ ∞

−∞
|1− t|α−1|t|β−1 dt

=
Kα ,β

|x|1−(α+β )
,

provided that the last integral converges. Note that this integral depends only on α and β , and it is clearly non-zero, so
finding convergence conditions for the integral will be enough to complete the proof.

For which conditions on α and β does this integral converge? The integrand is continuous almost everywhere, with
just four possible “problem points” (singularities or points at infinity) that might lead to divergence, namely −∞,0,1,∞.

So we split the integral as follows:

∫ ∞

−∞
|1− t|α−1|t|β−1 dt

=
∫ 0

−∞
|1− t|α−1|t|β−1 dt +

∫ 1

0
|1− t|α−1|t|β−1 dt +

∫ ∞

1
|1− t|α−1|t|β−1 dt

=

∫ 0

−∞
(1− t)α−1tβ−1 dt +

∫ 1

0
(1− t)α−1tβ−1 dt +

∫ ∞

1
(1− t)α−1tβ−1 dt.

Now we just need to check for convergence at each of the possible problem points, the two endpoints of each of the three
integrals. Since the integrands are all powers of t and 1− t, we only need to check what overall power is obtained near
each endpoint, and check the requirements on its sign.

–As t →−∞, we have (1− t)α−1(−t)β−1 ∼ (−t)α+β−2, so
∫

∼ c|t|α+β−1 and we need α +β − 1 < 0.

–As t → 0−, we have (1− t)α−1(−t)β−1 ∼ (−t)β−1, so
∫

∼ c|t|β and we need β > 0.

–As t → 0+, we have (1− t)α−1tβ−1 ∼ tβ−1, so
∫

∼ c|t|β and we need β > 0.

–As t → 1−, we have (1− t)α−1(−t)β−1 ∼ (1− t)α−1, so
∫

∼ c|t − 1|α and we need α > 0.

–As t → 1+, we have (t − 1)α−1(−t)β−1 ∼ (t − 1)α−1, so
∫ ∼ c|t − 1|α and we need α > 0.

–As t → ∞, we have (t − 1)α−1tβ−1 ∼ tα+β−2, so
∫ ∼ ctα+β−1 and we need α +β − 1 < 0.

So the convolution converges iff α > 0 and β > 0 and α +β < 1, which were the conditions stated in the theorem.
The result is now proved.

From the conditions on α and β in Theorem 2, we begin to see a problem arising. The conditions α > 0 and β > 0 will
still be true no matter how many times we add together the numbers α and β , but the same cannot be said for the condition
α +β < 1. If we keep combining functions kα and kβ , which is equivalent to adding the numbers α and β , eventually we
will reach a point where the sum of two parameters is no longer less than 1. In order to show that this problem is reached
even from the most minimal of starting points, we consider convolution of a single function K

|x|1−α with itself arbitrarily

many times, which is required to remain in the space C⋆ if such a space exists according to Assumption 1.

Theorem 3.Let f (x) = K
|x|1−α where 0 < α < 1 and K ∈ R is a nonzero constant. Then, for N large enough, the finite

convolution-product of f with itself N times must diverge.
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Proof.Based on Theorem 2, it follows that:

(

K

|x|1−α

)

⋆

(

K

|x|1−α

)

=
K
(2)
α

|x|1−2α

(

K

|x|1−α

)

⋆

(

K

|x|1−α

)

⋆

(

K

|x|1−α

)

=
K
(3)
α

|x|1−3α

.

.

.
(

K

|x|1−α

)

⋆

(

K

|x|1−α

)

⋆ ... ⋆

(

K

|x|1−α

)

=
K
(N)
α

|x|1−Nα
, N ∈ N.

The problem is that, when Nα > 1, this is a positive power of |x|, and the convolution of two positive powers of |x| will
definitely diverge:

(

K
(N)
α

|x|1−Nα

)

⋆

(

K
(N)
α

|x|1−Nα

)

=
(

K
(N)
α

)2
∫ ∞

−∞
|x− y|Nα−1|y|Nα−1 dy = ∞,

since the integrand is positive and continuous everywhere and tends to infinity at both ends of the interval.

Finally, we are now in a position to prove the main result of this paper, as follows.

Theorem 4.There is no function space C⋆ satisfying Assumption 1.

Proof.If there exists a function space C⋆ that contains a single function Kα

|x|1−α and is closed under convolution, then

it would also contain all conceivable functions resulting from convolving the aforementioned function with itself. But
Theorem 3 established that, upon repeated convolutions of said function with itself a considerable number of times, we
would ultimately encounter a divergent convolution integral. Consequently, there does not exist a conceivable function
space that includes such a function and remains closed under convolution. Hence, we can deduce that the existence of C⋆

is negated.

4 Conclusions

Our work above has resulted in two major outcomes. Firstly, our Theorem 1 is a fundamental theorem of calculus for the
fractional Laplacian which we could not find (at this level of generality) elsewhere in the literature. Of course, inversion
relations between the fractional Laplacian and inverse fractional Laplacian are well known in the existing literature [37],
but they usually take place on spaces such as Lp(R) which require decay of all functions at infinity. We find it interesting
that we were able to prove a fundamental theorem of calculus in a space which does not require decay at infinity, and
which takes account of possible boundary terms u(∞) and u(−∞).

Such a result also ties into the deeper philosophy of Mikusiński’s operational calculus, which solves differential
equations in larger spaces than would otherwise be possible. For example, the results of Mikusiński’s method for ordinary
differential equations [28] look formally identical to the results of applying the Laplace transform to the same equations,

but the advantage of Mikusiński’s method is that it applies on larger function spaces: functions such as ex2
have no Laplace

transform but can still be studied within the space C[0,∞) that Mikusiński used. So, even though we have failed to produce
a full operational calculus for the fractional Laplacian, we have at least succeeded in extending some results (inversion
relations) beyond the usual function spaces to larger ones. Many problems concerning the fractional Laplacian can be
solved using Fourier transforms, but what happens if we need to extend to a larger space of functions whose Fourier
transforms do not necessarily exist? Perhaps our work will be helpful in answering questions like this.

The other major strand of research here has culminated in a negative result, Theorem 4, showing that it is impossible
to extend the same Mikusiński’s operational calculus used in other types of fractional calculus to the one-dimensional
fractional Laplacian. To contextualise and discuss this result, we must consider a number of different points of view.

There are different ways to do operational calculus. The approach of Bengochea [3] constructs a different sort of
algebraic formalism from Mikusiński’s, which can still be used to rigorously solve differential equations, including
fractional ones [4]. Some variants of Mikusiński’s operational calculus have used different types of convolution operators
[39]. Perhaps another operational calculus approach can be successfully applied to the fractional Laplacian operator; our
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result concerns only the specific approach of Mikusiński which has been so successfully applied to many other
fractional-order operators.

Finally, we note that there are also variants of the fractional Laplacian operator which may be considered separately.
One of these is the Riesz–Feller derivative, a generalisation of the fractional Laplacian which also has a useful connection
with the Fourier transform and which is used in the study of Lévy processes and probability density functions [27] and
space-time fractional differential equations of various types [35]. The positivity of the inverse fractional Laplacian’s kernel
led to its convolutions ultimately diverging, but perhaps an operator like the Riesz–Feller derivative, involving kernels that
are not always positive, may be more amenable to operational calculus techniques. This remains as the subject of a future
investigation.
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138 Saleh & Fernandez : Mikusiński’s operational calculus for the fractional Laplacian

[22] T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimate for solutions of a class of nonlocal elliptic and parabolic equations, Discrete

Contin. Dyn. Syst., 35(12) (2015), 6031–6068.

[23] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth, G.E. Karniadakis,

What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404 (2020), 109009.

[24] Y. Luchko, Operational method in fractional calculus, Fract. Calc. Appl. Anal., 2(4) (1999), 463–488.

[25] Y. Luchko, Operational calculus for the general fractional derivative and its applications, Fract. Calc. Appl. Anal., 24(2) (2021),

338–375.

[26] Y. F. Luchko, R. Gorenflo, An operational method for solving differential equations with the Caputo derivatives, Acta Math.

Vietnamica, 24 (1999), 207–234.

[27] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl.

Anal., 4(2) (2001), 153–192.

[28] J. Mikusinski, Operational Calculus, Pergamon Press, Oxford, (1959).

[29] D. O. Norris, A topology for Mikusinski operators. Ph.D. thesis, The Ohio State University, (1963).
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