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Abstract: The Clairaut convolution differential equation, a variant of the more general Clairaut equation, has been a subject of

considerable interest in the realm of mathematical analysis. Based on an infinite dimensional test space of holomorphic functions, the

purposes of this work are to investigate the convolution calculus in white noise theory to introduce and study the solution of the

analogue of the Clairaut equation, called Clairaut convolution differential equation (CCDE). We study the Clairaut convolution

differential equation as a natural counterpart of the classical Clairaut differential equation and give its general and singular solutions.
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1 Introduction

The Clairaut convolution differential equation, a variant of the more general Clairaut equation, has been a subject of
considerable interest in the realm of mathematical analysis. First introduced by the French mathematician Alexis Clairaut
in 1734, this equation takes the form

η = tη ′+Λ(η ′), (1)

where Λ is a continuously differentiable non-linear function. Researchers studied various aspects of the Clairaut
convolution differential equation, focusing on analytical methods, the existence, and the uniqueness of solutions,
applications, and recent developments. Differentiate both sides to get

(t +Λ ′(η ′))η ′′ = 0.

Consequently, either

η ′′ = 0 or t +Λ ′(η ′) = 0·

Hence, η ′ =Constant = α which implies that

η(t) = αt +Λ(α).

In addition,
t +Λ ′

(
η ′
)
= 0,

defines a unique solution η(t), known as the singular solution.
Recent research has extended the study of the Clairaut convolution differential equation to explore connections with

other mathematical concepts. Investigations into higher-dimensional versions and applications in emerging scientific
fields demonstrate the ongoing relevance and expanding scope of research in this area. In addition to analytical methods,
numerical techniques play a crucial role in approximating solutions to the Clairaut convolution differential equation.
Researchers explore numerical stability and accuracy, comparing different methods to find effective approaches for
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solving this equation. The Clairaut convolution differential equation finds applications in diverse scientific fields. Its
solutions model phenomena where relationships exhibit both linear and nonlinear characteristics. Applications span from
physics to biology, showcasing the versatility of this mathematical tool in understanding real-world phenomena. It is
noteworthy that a function η is considered a singular solution of the differential equation Λ(t,η ,η ′) = 0 if the
uniqueness of the solution is violated at each point (or at certain points) within the domain of the equation.
Geometrically, this implies that more than one integral curve with a common tangent line passes through each point
(t0,η0).

The parametric notation for the singular solution is give as (x(p),y(p)), where p = y′(x) ([3,4,7,9,10,15,24,25]).
Thus,

t =−Λ ′(q) ; η = tq+Λ(q)·

The purposes of this work are to investigate the convolution calculus in white noise theory to introduce and study the
solution of the analogue of the Clairaut equation, called Clairaut convolution differential equation (CCDE) which is of the
form

ϕ = aξ (ϕ)⋆ψη + f (aξ (ϕ)) (2)

where f : Fγ → Fγ , ψη (x) = 〈x,η〉,x ∈ S ′
C

and ξ ,η ∈ SC such that 〈ξ ,η〉= 1.
In analogy with the classical Clairaut differential equation (1), the variable ψη plays the role of x in (1), the convolution

plays the role of the multiplication and the convolution derivative aξ plays the role of the usual derivation ([1,2,5,6,8,12,
13,14]) and [36]-[46]. In Section 3, we give the general and the singular solutions of the CCDE (2).

2 Preliminaries

Let S (R) denote the Schwartz space [30,32], consisting of rapidly decreasing C∞functions, and let H = L2(R,dt) be
the Hilbert space with the norm | · |0. Now, we will define proj limn→∞ Sn and ind limn→∞ S−n. Let {Sq,q ≥ 0} be a

sequence of Hilbert spaces the following embedding Sq+1− > Sq is continuous for each q ≥ 0. Consider S =
∞⋂

q=0

Sq

equipped with the projective limit topology, i.e., the coarsest topology such that the inclusion S ⊂ Sq is continuous for
every q. This topological vector space S is called the projective limit of {Sq,q ≥ 0} and we write proj limn→∞ Sn. We
define ind limn→∞ S−n by

ind lim
n→∞

S−n =
∞⋃

n=0

S−n.

The space S (R) can be reconstructed using the harmonic oscillator A = 1+ t2−d2/dt2 and H in a standard way (see
[27]). Specifically, S (R) is a nuclear space equipped with Hilbertian norms

|β |n = |Anβ |0 , β ∈ S (R), n ∈R

and we have

S (R) = projlim
n→∞

Sn , S
′(R) = indlim

n→∞
S−n,

where, for n ≥ 0, S p is the completion of S (R) with respect to the norm | · |p and S−p is the topological dual space
of S p. S ′(R) is the topological dual of S (R). The canonical Cbilinear form from S ′(R)×S (R) compatible with the
inner product of H is denoted by 〈·, ·〉, and S ′(R) is the space of tempered distributions ([20,21,22,23,25,27,28,33]).
The complexification of S (R) is denoted by SC = S (R)+ iS (R), and SC,p = Sp(R)+ iSp(R).

Consider a Young function γ : R+→R+, which is a continuous, convex, increasing function satisfying lim
x→∞

γ(x)

x
=∞

and γ(0) = 0. The polar function associated with γ , denoted by γ∗(x), is given by

γ∗(x) = sup
t≥0

{tx− γ(t)}

and it is also a Young function, with (γ∗)∗ = γ .
For a complex Banach space (B, | · |), let H (B) denote the space of all entire functions on B. For each m > 0, let

Exp(B,γ,m) denote the space of all entire functions on B with γ-exponential growth of finite type m, defined as

Exp(B,γ,m) =
{

f ∈ H (B); ‖ f‖γ,m := sup
z∈B

| f (z)|e−γ(m‖z‖) < ∞
}
.
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The projective system Exp(SC,−p,γ,m); ; p ∈N, : m > 0 yields the space

Fγ (S
′
C) = proj lim

p→∞;m↓0
Exp(SC,−p,γ,m) . (3)

On the other hand, {Exp(SC,p,γ,m); p ∈N ,m > 0} becomes an inductive system of Banach spaces, and we put

Gγ(SC) = ind lim
p→∞;m↓∞

Exp(SC,p,γ,m) .

It is known from [35] and [4] that every η ∈ Fγ (S
′
C
) admits a Taylor expansion of the form

η(x) =
∞

∑
n=0

〈x⊗n,ηn〉, x ∈ S
′
C,ηn ∈ S

⊗̂n
C

. (4)

Let Fγ(SC) be the space of all Taylor coefficients ηn as in (4). It is known that

Fγ(SC) = proj lim
p→∞;m↓0

Fγ,m(SC,p),

where

Fγ,m(SC,p) =
{
−→
η = (ηn)n≥0; ηn ∈ S

⊗̂n
C,p, ||

−→
η ||γ,p,m =

∞

∑
n=0

γ−2
n m−n|ηn|

2
p < ∞

}

and

γn = inf
r>0

eγ(r)

rn
, n = 0,1,2, ....

Moreover, equipped with the projective limit topology, Fγ(SC) is a nuclear Fréchet space and is isomorphic to Fγ (S
′
C
).

Let
Gγ (S

′
C) = ind lim

p→∞;m→∞
Gγ,m(SC,−p),

where

Gγ,m(SC,−p) =
{
−→
η = (Fn)n≥0; Fn ∈ S

⊗̂n
C,−p,

∞

∑
n=0

(n!γn)
2mn|Fn|

2
−p < ∞

}
.

By definition, Fγ(SC) and Gγ (S
′
C
) are dual to each other. For any n ∈ N, we say that η ∈ F ∗

γ (S
′
C
) belongs to the n-th

chaos if η is of the form ηn, where ηn ∈ S
′⊗n
C

is a symmetric distribution ([16,17,18,26,29,34]). The following theorem
is useful.

Theorem 1.[19] The Laplace transform L induces a topological isomorphism from F ∗
γ (S

′
C
) onto Gγ∗(SC), where

L η(ξ ) =
〈〈

η ,eξ

〉〉
, ξ ∈ SC (5)

and for any ξ ∈ SC, x ∈ S ′
C

we have eξ (x) = e〈x,ξ 〉.

Originally, a convolution operator on the test space Fγ (S
′
C
) is a continuous linear operator from Fγ (S

′
C
) into itself that

commutes with all the translation operators, where the translation operator is defined by

τxϕ(y) := ϕ(x+ y), x,y ∈ S
′
C, ϕ ∈ Fγ(S

′
C).

The convolution product of a distribution η ∈ F ∗
γ (S

′
C
) with a test function ϕ ∈ Fγ (S

′
C
) is defined by

(η ⋆ϕ)(x) = 〈〈η ,τ−xϕ〉〉, x ∈ S
′
C.

The convolution operator is denoted by Cη . It is noteworthy that the composition Cη1
◦Cη2

is also a convolution operator,
so that there exists a unique element in F ∗

γ (S
′
C
) denoted by η1 ⋆η2 such that

Cη1
◦Cη2

=Cη1⋆η2
, η1,η2 ∈ F

∗
γ (S

′
C). (6)

The distribution η1 ∗η2 defined in (6) is called the convolution product of η1 and η2. The convolution product satisfies

L (η1 ∗η2) = L (η1)L (η2),

where L is the Laplace transform, giving

L (η⋆n) = (L (η))n, n ∈ N.
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3 Clairaut’s convolution differential equation

A convolution derivation, denoted as D , is a continuous linear map from F γ(S ′
C
) to F γ(S ′

C
). It is defined as a derivation

with respect to the convolution product. For η ,Ψ ∈ F ∗γ(S ′
C
), it satisfies the following relation:

D(η ⋆Ψ) = D(η)⋆Ψ +η ⋆D(Ψ)·

For more details, refer to [9]. If the Young function γ meets the condition given by

lim
r→+∞

γ(r)

r2
<+∞, (7)

then the resulting nuclear Gel’fand triple is

Fγ (S
′
C) ⊂ L2(X ′,B(S (R)′),µ) ⊂ F

∗
γ (S

′
C),

where µ is the standard Gaussian measure on (S (R)′,B(S (R)′)), and its characteristic function is given by

∫

S (R)′
ei〈y,ξ 〉 dµ(y) = e−|ξ |20/2, ξ ∈ S (R).

As a standard example of the convolution derivative, we recall that the holomorphic derivative of ϕ(x) = ∑∞
n=0〈x

⊗n,ϕn〉
at a point x ∈ S ′

C
along the z axis

(azϕ)(x) := lim
t→0

ϕ(x+ tz)−ϕ(x)

t
.

It is well-known that

(azϕ)(x) =
∞

∑
n=0

(n+ 1)〈x⊗n,z⊗1 ϕn+1〉,

where z⊗1 ϕn+1 stands for the contraction of the tensor products. Such az is called the annihilation operator associated
to z, ( see [11] and [27] for more details). We write at := a(δt) and call it the standard annihilation operator or Hida’s
differential operator. It is well–known from [31] and [32] that, for any z ∈ S ′

C
, the operator az is a continuous mapping

from F γ(S ′
C
) to itself. Moreover, for a fixed ϕ ∈ Fγ (S

′
C
), the map z −→ az(ϕ) is also continuous.

Let f be a function in the form

f (ϕ) = α0δ0 +α1ϕ +α2ϕ⋆2 + · · ·+αnϕ⋆n,

where ϕ ∈ Fγ(S
′
C
), n ∈ N and α1,α2, · · · ,αn ∈C. We introduce the CCDE as follows

ϕ = aξ (ϕ)⋆ψη + f (aξ (ϕ)) (8)

where f : Fγ → Fγ , ψη (x) = 〈x,η〉, x ∈ S ′
C

and ξ ,η ∈ SC such that 〈ξ ,η〉= 1.

Theorem 2.The CCDE (8) have a singular solution with a parametric description given as follows:

Setting ηξ = aξ (ϕ) {
ψη =−(aξ f )(ηξ ),
ϕ = ηξ ⋆ψη + f (ηξ ).

(9)

Proof.Applying aξ on both sides in equation (8), we obtain

aξ (ϕ) = aξ

(
aξ (ϕ)⋆ψη + f (aξ (ϕ))

)

= a2
ξ (ϕ)⋆ψη + aξ (ϕ)⋆ aξ (ψη )+ aξ

(
f (aξ (ϕ))

)
.

But aξ (ψη ) is given by

aξ (ψη)(x) = lim
t→0

〈x+ tξ ,η〉− 〈x,η〉

t

= lim
t→0

t〈ξ ,η〉

t

= 〈ξ ,η〉

= 1.
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Then, we obtain

aξ (ϕ) = a2
ξ (ϕ)⋆ψη + aξ (ϕ)+ aξ

(
f (aξ (ϕ))

)
.

This gives

a2
ξ (ϕ)⋆ψη + aξ

(
f (aξ (ϕ))

)
= 0. (10)

Since

aξ

(
f (aξ (ϕ))

)
= (aξ f )(aξ (ϕ))⋆ a2

ξ (ϕ),

Therefore, from (10), we get

a2
ξ (ϕ)⋆

(
ψη +(aξ f )(aξ (ϕ))

)
= 0·

By applying the Laplace transform L , we get

a2
ξ (ϕ) = 0 or ψη +(aξ f )(aξ (ϕ)) = 0. (11)

The singular solution of (8) corresponds to the right equation in (11).
Setting ηξ = aξ (ϕ), the right equation in (11) becomes

ψη =−(aξ f )(ηξ ).

Hence the parametric expression of the singular solution of (8) is given by

ψη =−(aξ f )(ηξ ) and ϕ = ηξ ⋆ψη + f (ηξ ),

which is (16). This ends the proof.

Theorem 3.The solution that includes all possibilities for equation (8) is expressed as:

ϕ(x) = c〈x,η〉+ f (c),

where c ∈ C.

Proof.By analogy with the solution that includes all possibilities the classical Clairaut equation (1), setting

ϕ(x) = c〈x,η〉+ f (c). (12)

Then we get

aξ (ϕ)(x) = lim
t→0

c〈x+ tξ ,η〉+ f (c)− c〈x,η〉− f (c)

t

= lim
t→0

c〈x,η〉+ tc〈ξ ,η〉− c〈x,η〉

t

= c〈ξ ,η〉

= c.

Therefore
aξ (ϕ)⋆ψη + f (aξ (ϕ)) = c〈x,η〉+ f (c) = ϕ(x).

which means that ϕ given in (12) satisfies the CCDE (8). By uniqueness of solution ϕ given in (12) is the general solution
of (8).

As an application, we will study the following equation:

1

2
ϕ⋆2 = aξ (ϕ)⋆ψη ⋆ϕ + f (aξ (ϕ)⋆ϕ). (13)

We put

v =
1

2
ϕ⋆2.

Then, we get
aξ (v) = ϕ ⋆ aξ (ϕ).

Then, we obtain

v = aξ (v)⋆ψη + f
(
aξ (v)

)
.

Which leads to Clairaut equation.

© 2025 YU

Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.



144 Sami H. Altoum: Clairaut Convolution Differential Equation

Example 1.Let us study the following equation

ϕ = 2ψη ⋆ aξ (ϕ)− 3
(
aξ (ϕ)

)⋆2
. (14)

Identifying Eq. (14) with Eq. (8), we can say that Eq. (14) is (CCDE) such that:

{ψη , f (η)}

are replaced by

{2ψη ,−3η⋆2}.

Then, by Theorem (3.2), we obtain

ϕ(x) = 2c〈x,η〉− 3c2

as a general solution. Now, using Theorem (3.1), we get a singular solution as follows:

{
2ψη = 6ηξ

ϕ = ηξ ⋆ψη − 3 f (η⋆2
ξ ) (15)

which gives

{
2ψη = 3ηξ

ϕ = ηξ ⋆ψη − 3 f (η⋆2
ξ ).

(16)

From which we obtain
ϕ = 0.

4 Conclusion

The Clairaut convolution differential equation, a variant of the more general Clairaut equation, has been a subject of
considerable interest in the realm of mathematical analysis. Based on an infinite dimensional test space of holomorphic
functions, In this work, using an infinite dimensional Gel’fand triple, we studied a new class of convolution differential
equation which was called Clairaut convolution differential equation (CCDE). Its general solution can be applied in
harmonic analysis where the basic background is used in new context. We study the Clairaut convolution differential
equation as a natural counterpart of the classical Clairaut differential equation and give its general and singular solutions.
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