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VERTEX INDUCED k−EDGE COLORING AND VERTEX

INCIDENT k−EDGE COLORING OF GRAPHS

ANU JOSEPH(1) AND CHARLES DOMINIC(2)

Abstract. Let k ≥ 2 be a natural number. Then the vertex induced k−edge

coloring number ψ′

vik
(G) of a simple connected graph G = (V,E) is the highest

number of colors needed to color the edges of a graph G such that the edges of the

subgraph induced by the closed neighborhood N [v] of the vertex v ∈ V (G) receives

not more than k colors.

The vertex incident k−edge coloring number ψ′

vink
(G) of a simple connected

graph G = (V,E) is the highest number of colors required to color the edges of a

graph G such that the edges incident to a vertex v in graph G receives not more

than k colors. In this paper, we initiate the study on ψ′

vik
(G) and ψ′

vink
(G). We

also determine the exact values of ψ′

vik
(G) and ψ′

vink
(G) for k = 2 for some special

graphs.

1. Introduction

A wide range of studies has been explored in the area of graph coloring concepts

where one has to maximize the number of colors under valid conditions. The notion

of 3-consecutive vertex coloring number was first introduced by E. Sampathkumar in

[9] and later its edge analog named 3-consecutive edge coloring number was studied

in [2]. The findings in this paper have been inspired by the concepts studied in

[9, 2, 7, 5].

For a graph G = (V,E), the closed neighborhood of a vertex v in the graph G is

denoted as N [v] and is equal to {v} ∪ {u : uv ∈ E}. Throughout this manuscript
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〈N [v]〉 represents the subgraph induced by N [v]. The star subgraph at a vertex v is

the subgraph of G containing all the edges incident at v.

The vertex induced k−edge coloring of a graph G is an edge coloring of G such

that for each vertex v in V (G), not more than k edges in the 〈N [v]〉 receives distinct

colors, where k ∈ N and k ≥ 2. The vertex induced k−edge coloring number is the

highest number of colors conceded in such a coloring. Whereas, the vertex incident

k−edge coloring number of a graph G is the maximum number of colors required to

color the graph edges E(G) such that for each vertex v in V (G), not more than k

edges, where k ∈ N and k ≥ 2, in the star subgraph at a vertex v receive distinct

colors. The vertex induced k−edge coloring and vertex incident k−edge coloring

concepts are the generalized version of the edge coloring approach as introduced and

studied in [7].

In this paper, we initiate a combinatorial study of vertex induced k−edge coloring

number and vertex incident k−edge coloring number and obtain some bounds besides

finding the exact value of these parameters for some graph classes. We have also

determined the exact value of these parameters for k = 2 for some special graphs.

For more definitions on graph theory refer to [4].

2. Results on ψ′

vik(G) and ψ′

vink(G)

This section deals with some bounds and exact values of vertex induced k−edge

coloring and vertex incident k−edge coloring of some graphs. Also we characterize

simple connected graphs for which ψ′

vik(G) = m. The following bounds are obvious

for a connected simple graph G = (V,E) of order n and size m.

Theorem 2.1. For a connected graph G with size m ≥ 2 and for k ≥ 3,

(i) 2 ≤ ψ′

vik(G) ≤ m.

(ii) 2 ≤ ψ′

vink(G) ≤ m.

Next theorem provides a characterization of ψ′

vik(G) in terms of the number of edges

in a graph G. For a connected graph G of order n ≥ 2 we denote the number of edges

in the subgraph induced by N [vi] by |E(〈N [vi]〉)|. Let q = max
i

|E(〈N [vi]〉)|. For

example, consider the graph G1 depicted in the figure 1. In figure 1, |E(〈N [v1]〉)| =
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1, |E(〈N [v2]〉)| = 2, |E(〈N [v3]〉)| = 4, |E(〈N [v4]〉)| = 3 and |E(〈N [v5]〉)| = 3. There-

fore in graph G1, q = 4.

v1

v2

v3

v4

v5

Figure 1. The graph G1 with q = 4

Theorem 2.2. Let G be a simple connected (n,m)−graph of order n ≥ 2 and let

2 ≤ k ≤ m. Then ψ′

vik(G) = m if and only if m ≥ k ≥ q, where q = max
i

|E(〈N [vi]〉)|

.

Proof. Without loss of generality assume that G is a connected (n,m)−graph of

order n ≥ 2 and 2 ≤ k ≤ m. To prove the necessary condition let ψ′

vik(G) = m.

Suppose that k < q, where q = max
i

|E(〈N [vi]〉)|. Then, there exists at least one edge

e ∈ E(G) such that the edge e receives a repeated color. This implies ψ′

vik(G) < m,

a contradiction. Therefore, m ≥ k ≥ q. Conversely, m ≥ k ≥ q. Since k ≥ q, by the

definition of vertex induced k−edge coloring, we can use distinct colors to color all

the edges in 〈N [vi]〉. Therefore, ψ
′

vik(G) = m. �

Corollary 2.1. Let G = (V,E) be a simple connected (n,m)−graph with ∆(G) ≤ 2.

If G is either a path or a cycle, then for k ≥ 3, ψ′

vik(G) = ψ′

vink(G) = m.

Theorem 2.3. If G = (V,E) is a simple connected graph, then ψ′

vik(G) ≤ ψ′

vink(G)

where k ≥ 3.

Proof. It can be noted that any vertex induced k−edge coloring of a graph G is a

vertex incident k−edge coloring of the graph G. Since we are maximizing the number

of colors to obtain vertex induced k−edge coloring number of G and vertex incident

k−edge coloring number of G. Therefore, it follows that ψ′

vik(G) ≤ ψ′

vink(G). �

The above result can be verified with an example. Consider the friendship graph

Fn with n triangles Ti, where 1 ≤ i ≤ n, with a common vertex. By construction,
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the friendship graph Fn is a simple planar graph having 2n+1 vertices and 3n edges.

Note that, ψ′

vik(Fn) = k whereas, the vertex incident k−edge coloring number of

graph Fn is ψ′

vink(Fn) = k + n.

For a triangle free graph, the subgraph induced by N [v] is isomorphic to the star

subgraph at vertex v. Hence the definition of the vertex induced k−edge coloring

number and the vertex incident k−edge coloring number coincides for a triangle free

graph. Therefore, if G is triangle free graph, then ψ′

vik(G) = ψ′

vink(G). Similarly, the

equality of ψ′

vik(G) and ψ
′

vink(G) holds if k = |E(G)|.

Theorem 2.4. Let G = (V,E) be a simple connected graph with V (G) and E(G)

as the vertex set and edge set of the graph G, respectively. If G is a graph with a

universal vertex v, then ψ′

vik(G) = k.

Proof. Since v is an universal vertex in G, i.e. deg(v) = |V (G)| − 1. So, G = 〈N [v]〉,

where 〈N [v]〉 denotes the subgraph induced by N [v]. Therefore, one can use at most

k colors to color the edges in graph G. Hence the result. �

The following graphs are some standard graphs with a universal vertex v.

Corollary 2.2. i) For a complete graph Kn on n ≥ 3 vertices , ψ′

vik(Kn) = k.

ii) For a wheel graph Wn on n ≥ 4 vertices, ψ′

vik(Wn) = k.

iii) For a star graph K1,n on n ≥ 3 vertices, ψ′

vik(K1,n) = k.

Theorem 2.5. Let G be a simple connected (n,m)−graph. Then k ≥ ∆(G) if and

only if ψ′

vink(G) = m.

Proof. If k ≥ ∆(G), then it can be easily verified that ψ′

vink(G) = m. Conversely,

assume for a simple connected (n,m)−graph with n vertices and m edges that

ψ′

vink(G) = m. Suppose that k < ∆(G). Let v be a vertex in G with maximum

degree deg(v) = ∆(G). Then there will be at least one edge incident to the vertex

v, which receives a repeated color. Thus, ψ′

vink(G) < m, a contradiction. Therefore,

k ≥ ∆(G). �
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Hereafter we assume that k < ∆(G), unless otherwise mentioned.

For integers n and r with 2 ≤ 2r < n, the generalized Petersen graph G(n, r) as de-

fined in [12] is a graph with vertex set V (G(n, r)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge set E(G(n, r)) consisting of all edges of the form [uiui+1], [uivi], [vivi+r],

where i is an integer, 0 ≤ i ≤ n− 1 and the sums are mod n, r < n
2
.

Theorem 2.6. Vertex induced (incident) k− edge coloring number of some standard

graphs are listed below:

(i) For a complete graph Kn of order n ≥ 5 and with 3 ≤ k < n − 1, n + 1 ≤

ψ′

vink(Kn) ≤
n2

−3n+4
2

.

(ii) For a wheel graph Wn of order n ≥ 4 and 3 ≤ k < n, ψ′

vink(Wn) = k + n− 1.

(iii) For a generalized Petersen graph G(n, r) where n ≥ 3 and 1 ≤ r ≤ ⌊n−1
2
⌋,

ψ′

vik(G(n, r)) = ψ′

vink(GP (n, r)) = 3n.

(iv) For a complete bipartite graph Km,n with order m,n ≥ 1,

ψ′

vik(Km,n) = ψ′

vink(Km,n) =











k ·min{m,n}, for δ(Km,n) ≤ k < ∆(Km,n)

mn, for k ≥ ∆(Km,n)

A matching of a graph G is a set of mutually non-incident edges. A matching is

said to be maximum if it has the largest number of edges among all matching of the

graph G. The number of edges of a maximum matching of G is called the matching

number of G and is denoted by ν(G) [1].

Theorem 2.7. Let G be a (n,m)−graph with m ≥ 2. Let M be a maximum matching

set of G and S be an independent set of vertices in G such that
∑

v∈S

deg(v) is maximum.

Then, for k ≤ ∆(G), |M |+ 1 ≤ ψ′

vink(G) ≤ m−
∑

v∈S

deg(v) + k|S|.

Proof. Consider G to be a connected (n,m)−graph with m ≥ 2. Let M be the

maximum matching of graph G. Then, in any vertex incident k−edge coloring, each

edge in the set M can be assigned with any of the |M | distinct colors. So, the

remaining uncolored edges in the graph G can be given at least one more color.

Thus, for k < ∆(G), |M |+ 1 ≤ ψ′

vink(G).
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Let S be an independent set of vertices in G. Then, at most k colors are used to

color the edges incident at each vertex v ∈ S where k < ∆(G). Thus, at most k|S|

colors are required to color all the edges incident to the vertices in S. From theorem

2.1, we know that the maximum number of colors used in coloring all the edges of

graph G with distinct colors is m. Therefore, the remaining uncolored edges of graph

G requires at most m−
∑

v∈S

deg(v) colors. �

In the above theorem, the upper bound is attained in the case of cycle and tree

when k = 2, while, the lower bound is satisfied for the graph P3.

Corollary 2.3. If G is a r-regular graph, ν(G) be the matching number of G and S

is an independent set of vertices in G, then for 3 ≤ k < r, ν(G) + 1 ≤ ψ′

vink(G) ≤

m− |S|(r − k).

Theorem 2.8. Let 〈N [v]〉 be an induced subgraph of a simple connected graph G =

(V,E). If s = max|E(〈N [v]〉)|, v ∈ V (G), then ψ′

vik(G) ≤ m− s+ k.

Proof. At most k colors are required to color the edges of induced subgraph 〈N [v]〉.

From theorem 2.1, we know that ψ′

vik(G) ≤ m. So, for the remaining uncolored

edges of the graph G we can use maximum of m − s colors. Therefore, at most

m − s + k colors are required to color the edges of a graph G with vertex induced

k−edge coloring. �

Corollary 2.4. Let ν(G) denote the matching number of a graph G. Then for a

triangle-free connected (n,m)−graph G and for 2 ≤ k ≤ ∆(G), ν(G)+1 ≤ ψ′

vik(G) ≤

ψ′

vink(G) ≤ m−∆(G) + k.

Proof. Since ∆(G) ≤ s. This result follows from theorem 2.1, theorem 2.3, theorem

2.7 and theorem 2.8. �

In a graph G = (V,E), a set A ⊆ V is called a neighbourhood set or an n−set

if G =
⋃

v∈A

〈N [v]〉, where 〈N [v]〉 denotes the subgraph of G induced by the vertices

in N [v]. The neighbourhood number, n0(G), of G is the minimum cardinality of an

n−set of G [8].

Theorem 2.9. For any connected graph G of order n ≥ 2, ψ′

vik(G) ≤ k n0(G).
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Proof. Since at most k colors are used to color the edges of subgraph 〈N [v]〉. Hence

the result follows. �

This bound is sharp and is attained for a graph with an universal vertex.

Let G = (V,E) be a simple graph. A set S ⊆ V is called vertex covering of G if

every edge uv ∈ E is incident with a vertex in S. The vertex covering number α0(G)

is the minimum cardinality of a vertex covering set of graph G.

• For a graph without isolated vertices, n0(G) ≤ α0(G) (see [8]).

• For a graph G of order n, n0(G) = 1 if and only if G has a vertex of degree

n− 1 (see [8]).

Corollary 2.5. For any simple connected graph G of order n ≥ 2, ψ′

vik(G) ≤ k α0(G).

It is to be noted that, k n0(G) is not an upper bound for ψ′

vink(G). For example

consider, the friendship graph Fn. The neighbourhood number n0(Fn) = 1, whereas,

as discussed above ψ′

vink(Fn) = k + n.

However, the following result holds.

Theorem 2.10. For a simple connected graph G of order n ≥ 2 and for k ≤ ∆(G),

ψ′

vink(G) ≤ k α0(G).

Proof. Consider S to be the minimum vertex covering set of graph G. Then, every

edge in G is incident with a vertex in S. Since k ≤ ∆(G), in a vertex incident k−edge

coloring of G, at most k colors can be used to color the edges incident with a vertex

v ∈ S. Thus, ψ′

vink(G) ≤ k α0(G). �

3. ψ′

vi2(G) and ψ′

vin2(G) of some special graphs

The first result in this section is to find out the exact values for the vertex induced

(incident) 2−edge coloring number of multi r-bridge graph. Let r be a positive integer

with r ≥ 3 and let θ(l1, l2, . . . , lr) denote the graph obtained by connecting two

distinct vertices with r independent (internally disjoint) paths of length l1, l2, . . . , lr

respectively. The graph is called the multi r−bridge graph where l1 ≤ l2 ≤ . . . ≤ lr

and l1 ≥ 2 ; li ∈ N [6].
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Theorem 3.1. Let θ(l1, l2, . . . , lr), represent the multi r−bridge graph such that l1 ≤

l2 ≤ . . . ≤ lr and r ≥ 3. Then, ψ′

vi2(θ(l1, l2, . . . , lr)) = ψ′

vin2(θ(l1, l2, . . . , lr)) =
r
∑

i=1

li − 2(r − 2).

Proof. Consider G ≡ θ(l1, l2, . . . , lp) where p ≥ 3. We first prove the result for p = 3

and then the result can be extended for the case when p = r. When p = 3, i.e.,

G ≡ θ(l1, l2, l3) is a graph obtained by connecting two distinct vertices with three

independent paths of length l1, l2 and l3 respectively. The vertex induced (incident)

2−edge coloring number of a path Pn is |E(Pn)| which is the length of Pn. Also,

since the end vertices has three edges incident to it, at most two colors can be given

to color these edges. Thus,
3
∑

i=1

li − 2 gives the maximum vertex induced (incident)

2−edge coloring number of G. Similarly, for r independent paths of the graph G,
r
∑

i=1

li distinct colors can be assigned to the edges. But, there are exactly two vertices

in graph G with degree r and the edges incident to these vertices can be given at

most two colors. Therefore, 2(r− 2) colors has to be removed from the original color

set else vertex induced 2−edge coloring condition fails. Thus, ψ′

vi2(θ(l1, l2, . . . , lr)) =
r
∑

i=1

li − 2(r − 2). �

Let Pn be a path on n vertices. Then the snake-path multi r−bridge graph (or

s−path r−bridge graph), denoted as SP n
θ (l1, l2, . . . , lr), is a graph obtained from Pn

by replacing each edge of the path by a multi r−bridge graph. An example of a

s−path r−bridge graph, SP 3
θ (4, 3, 4), is shown in figure 2.
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Figure 2. SP 3
θ (4, 3, 4)

Corollary 3.1. Let r ≥ 3 be a positive integer. Consider SP n
θ (l1, l2, . . . , lr) as the

s−path r−bridge graph with r independent paths of length l1, l2, . . . , lr, respectively,



VERTEX INDUCED k−EDGE COLORING ... 195

such that l1 ≤ l2 ≤ . . . ≤ lr for l1 ≥ 2 ; li ∈ N. Then ψ′

vi2(SP
n
θ (l1, l2, . . . , lr)) =

ψ′

vin2(SP
n
θ (l1, l2, . . . , lr)) = (n− 1)

r
∑

i=1

li − 2rn+ 2n+ 2r.

Proof. Consider, G ≡ SP n
θ (l1, l2, . . . , lr), where, for 1 ≤ i ≤ r, li is the length of the

i−path. From theorem 3.1, ψ′

vi2(θ(l1, l2, . . . , lr)) =
r
∑

i=1

li − 2(r − 2). As each edge of

the path Pn is identified as a multi r−bridge graph, so there are n−1 copies of multi

r−bridge subgraph in the graph G. Thus, (n− 1)
r
∑

i=1

li − 2(r− 2) distinct colors can

be assigned to the edges of the multi r−bridge subgraph components of the graph G.

Since, at most two different colors can be given to the edges incident to each vertex

v with maximum degree, ∆(G). So, (n − 2)(2r − 2) colors has to be removed from

(n−1)
r
∑

i=1

li−2(r−2) in order to color the edges of the graph G. Therefore, ψ′

vi2(G) =

ψ′

vin2(G) = (n−1)
r
∑

i=1

li−2(r−2)− (n−2)(2r−2) = (n−1)
r
∑

i=1

li−2rn+2n+2r. �

The vertex induced 2−edge coloring number and vertex incident 2−edge coloring

number of graph SP 3
θ (4, 3, 4), shown in figure 2, is 16.

Let Cn be a cycle of order n. Then the snake-cycle multi r−bridge graph (or s−cycle

r−bridge graph), denoted as SCn
θ (l1, l2, . . . , lr), is a graph obtained from Cn by re-

placing each edge of the cycle graph by a multi r−bridge graph. An example of a

s−cycle r−bridge graph, SC4
θ (3, 3, 2), is shown in figure 3.
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Figure 3. SC4
θ (3, 3, 2)
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Corollary 3.2. Let r ≥ 3 be a positive integer. Consider SCn
θ (l1, l2, . . . , lr) as the

s−cycle r−bridge graph with r independent paths of length l1, l2, . . . , lr, respectively,

such that l1 ≤ l2 ≤ . . . ≤ lr for l1 ≥ 2 ; li ∈ N. Then ψ′

vi2(SC
n
θ (l1, l2, . . . , lr)) =

ψ′

vin2(SC
n
θ (l1, l2, . . . , lr)) = n

r
∑

i=1

li − 2rn+ 2n.

Proof. The result follows from theorem 3.1 and corollary 3.1. �

The vertex induced 2−edge coloring number and vertex incident 2−edge coloring

number of graph SC4
θ (3, 3, 2), shown in figure 3, is 16.

The vertex induced (incident) 2−edge coloring number of Petersen graph P is 7

[7]. In the next result we find the exact values of the generalized Petersen graph

GP (n, r). The generalized Petersen graph GP (n, r), also denoted as P (n, r), for

n ≥ 3 and 1 ≤ r ≤
⌊

n−1
2

⌋

is a connected cubic graph consisting of an inner circulant

graph Cin(r) and an outer cycle graph Cn such that the corresponding vertices in the

inner edges and the outer edges of the graph GP (n, r) are connected with edges.

Theorem 3.2. For the generalized Petersen graph GP (n, r), ψ′

vi2(GP (n, r)) =

ψ′

vin2(GP (n, r)) = n+ 2 where n ≥ 3.

Proof. Consider G ≡ GP (n, r) as the generalised Petersen graph, where n ≥ 3, and

1 ≤ r ≤
⌊

n−1
2

⌋

. Each edge connecting the inner circulant subgraph and the outer cycle

of the graph G can be assigned with n distinct colors. The remaining uncolored edges

of the outer cycles of the graph G is assigned (n+1)th color, whereas, the inner cycle

of G can be given (n+ 2)th color. Therefore, for n ≥ 3, ψ′

vi2(G) = ψ′

vin2(G) = n+ 2.

It is to be noted that the maximum vertex induced (incident) 2−edge coloring

number of the generalized Petersen graph GP (n, r) is obtained by coloring the edges

of G in the above-mentioned coloring procedure. Suppose if, n edges in the outer

cycle of the graph G are given n different colors. Then, the uncolored edges joining

the inner cycle and outer cycles of the graph G cannot be assigned with any new

color. Further, at most one new color can be assigned to all the edges of the inner

circulant subgraph of graph G. In this vertex induced (incident) 2−edge coloring, we
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will get a maximum of n + 1 colors which is less than that of the above-mentioned

vertex induced (incident) 2-edge coloring number n + 2, a contradiction. Similarly,

a contradiction can be obtained when the coloring procedure is started by giving

different colors to all the inner circulant edges of the graph G. �

Shadow of a graph G, denoted by Dr(G), is obtained by taking r copies of a graph

G and adding edges between the vertices of copies if their corresponding vertices

are adjacent in G. In particular, a shadow graph D2(G) of a connected graph G is

constructed by taking two copies of G, say H and H
′

. Let {vi} and {v′i} be the vertex

set of graph H and H
′

respectively. Join each vertex v in H to the neighbors of the

corresponding vertex v′ in H
′

[11]. The next result will give a coloring procedure to

get the lower bound of the vertex induced (incident) 2−edge coloring of the graph

D2(Pn).

Theorem 3.3. Let D2(Pn) be the 2−shadow of the path Pn, where n ≥ 3. Then

ψ′

vi2(D2(Pn)) = ψ′

vin2(D2(Pn)) ≥ n + 1.

Proof. The graph D2(P2) is a cycle of order 4. So, the vertex induced (incident)

2−edge coloring number of graph D2(P2) is 4 [7]. Consider D2(Pn) as the 2-shadow

of the path Pn on n vertices with n ≥ 3. Let V (D2(Pn)) = {vi, v
′

i | i ∈ {1, 2, ..., n}}

and E(D2(Pn)) = {vivi+1∪v
′

iv
′

i+1∪vi+1v
′

i∪viv
′

i+1 | i ∈ {1, 2, ..., n−1}} be the vertex

set and the edge set of the graph D2(Pn) respectively. The vertex induced (incident)

2−edge coloring number of path on n vertices is n− 1 (see [7]). So, the edges of the

first copy of path in the graph D2(P2) can be distinctively given n − 1 colors, say

C = {c1, c2, . . . , cn−1}.

Now, consider the colorless edges ofD2(Pn) that are incident to the vertices {v1, v2}.

The edge v1v
′

2 can be given a new color cn whereas, the remaining two uncolored edges

that are incident to vertices {v1, v2} has to be colored with one of the colors from the

set C. Suppose if the edge v2v
′

2 is given a new color, say c′n then the vertex induced

(incident) 2−edge coloring condition fails at vertex v2. Similarly, the edge vnv
′

n−1

receives a new color cn+1 and all the remaining uncolored edges incident to vertex vi

where 2 ≤ i ≤ n − 1 has to be assigned with one of the colors from the set C. It is

to be noted that each vertex v′i in V (D2(Pn)), where i ∈ {2, ..., n − 1}, is of degree
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4. Further, since there are exactly two edges incident to each vertex v′i that received

two different colors from the coloring pattern discussed earlier. Therefore, the two

uncolored edges incident at each of the vertex v′i, for 2 ≤ i ≤ n−1, cannot be colored

with any more new colors. So, ψ′

vi2(D2(Pn)) ≥ n+ 1. �

The graph D2(Cn) is obtained by taking two copies of the cycle Cn such that each

vertex vj in the first copy of the cycle graph joins the neighbors of the corresponding

vertex v
′

j in the second copy, where 1 ≤ j ≤ n and n ≥ 4. The next result gives the

lower bound for vertex induced (incident) 2−edge coloring of D2(Cn) graph.

Theorem 3.4. Let D2(Cn) denote the 2−shadow of cycle on n vertices where n ≥ 4.

Then ψ′

vi2(D2(Cn)) = ψ′

vin2(D2(Cn)) ≥ n + 1.

Proof. Consider D2(Cn) as the 2−shadow of cycle graph with order 2n and size 4n.

The coloring procedure can be started by giving each alternate edge in both copies

of cycle of D2(Cn) by a new color. Whereas, all the remaining colorless edges of the

graph D2(Cn) can be given one color. So, the 2n edges of cycle subgraphs of the

graph D2(Cn) can be assigned with at least n + 1 colors. Therefore, ψ′

vi2(D2(Cn)) =

ψ′

vin2(D2(Cn)) ≥ n + 1.

�

The coloring pattern discussed in the above theorem has been described in the

figure 4. The vertex induced (incident) 2−edge coloring number ofD2(C4) andD2(C5)

is shown in figure 4.(a) and figure 4.(b) respectively.
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Figure 4. (a) ψ′

vi2(D2(C4)) = 5 and (b) ψ′

vi2(D2(C5)) = 6
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Corollary 3.3. Let D2(C3) be the 2−shadow of a cycle on three vertices. Then

(i) ψ′

vi2(D2(C3)) = 3 and (ii) ψ′

vin2(D2(C3)) = 4.

Proof. (i) Let V = {vi, v
′

i : i ∈ {1, 2, 3}} be the vertex set of the graph D2(C3). Since

the vertex vj and vertex v′j , for 1 ≤ j ≤ 3, are not adjacent in the graph D2(C3).

Thus, the induced subgraph generated by N [vj ] (for any j) is not equivalent to the

graph D2(C3). Therefore, at most two colors can be given to the edges of the induced

subgraph generated by N [vj ], where j ∈ {1, 2, 3}. Moreover, as 〈N [vj ]〉 ∪ 〈N [v′j ]〉 ≡

D2(C3). So, the remaining uncolored edges of the D2(C3) graph can be given at most

one new color. Hence the result follows.

(ii) The result follows from theorem 3.4. �

The next few results are on the vertex induced (or incident) 2−edge coloring num-

ber of r−splitting of some graphs. The splitting graph S(G) of a graph G = (V,E)

is obtained by adding a new vertex v′ to each vertex v ∈ V such that v′ is adjacent

to every vertex that is adjacent to the vertex v in G [10]. The r− splitting graph

splr(G) of a graph G is obtained by adding r new vertices, say v1, v2, . . . , vr, such

that vj, 1 ≤ j ≤ r is adjacent to each vertex which is adjacent to v in G [11]. The

Bistar graph Bn,n is a graph obtained by joining the center vertices of two copies of

K1,n by an edge [3].

Theorem 3.5. Let G be a connected graph of order n ≥ 2 with ∆(G) ≤ 2 and

G 6= K3. If Splr(G) denotes the r−splitting graph of a graph G, then ψ′

vin2(Splr(G)) =

ψ′

vi2(Splr(G)) ≥ n + 1.

Proof. Consider V = {v1, v2, . . . , vn} to be the vertex set of the graph G such that

∆(G) ≤ 2 and G 6= K3. Then, G is either a path graph or a cycle graph. Let

V ′ = {vj1, v
j
2, . . . , v

j
n : 1 ≤ j ≤ r} be the vertex set of r new vertices which are added

to the graph G to form the r−splitting graph of G. Then, V ∪V ′ becomes the vertex

set of the graph splr(G). Clearly, 1 ≤ deg(vji ) ≤ 2 and r + 1 ≤ deg(vi) ≤ 2(r + 1),

for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , r}. The result is trivial for n = 2, as Splr(P2)

is a bistar graph Bn,n and so, ψvin2
′

(Splr(P2)) = 3 = 2 + 1.

Assume that r ≥ 1 and n ≥ 3. Suppose we assign distinct colors to all the edges

incident to the vertex vji with degree 2. Then, there exists at least one colored edge
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incident to the vertex vi with degree 2(r + 1) where the vertex induced (incident)

2−edge coloring condition fails. Thus, all edges incident to vertex vji with degree 2

cannot be assigned with distinct colors. So, for a fixed j and 1 ≤ i ≤ n, at least one

of the edge which is incident to each vertex vji in the set V ′, can be assigned with

n distinct colors. Whereas, all the remaining uncolored edges of the graph Splr(G)

can be given at most one more new color. Hence, for ∆(G) ≤ 2 and G 6= K3,

ψ′

vi2(Splr(G)) = ψ′

vin2(Splr(G)) ≥ n + 1. �

Corollary 3.4. Let Splr(C3) be the r−splitting of the cycle graph with order 3. Then,

(i) ψ′

vi2(Splr(C3)) = 3.

(ii) ψ′

vin2(Splr(C3)) = 4.

Proof. This result can be easily verified. �

Theorem 3.6. Let G be a connected (n,m)−graph without pendant edges such that

∆(G) = n− 1. Then,

(i) ψ′

vi2(Splr(G)) = 3.

(ii) ψ′

vin2(Splr(G)) ≥ n+ 1.

Proof. (i) Consider G to be a connected (n,m)− graph without pendant edges. The

graph Splr(G) denotes the r−splitting of graph G. Let V (Splr(G)) = {vi, v
j
i : 1 ≤

i ≤ n, 1 ≤ j ≤ r} be the vertex set of the graph Splr(G). Since ∆(G) = n− 1, there

exists at least one vertex v with degree n − 1 such that the vertex v forms an edge

with all the vertices in vertex set V (Splr(G)) except the vertices in {v1, v2, . . . , vr}.

It is to be noted that, no two vertices in the set {v, v1, v2, . . . , vr} are adjacent to each

other. Thus, all the edges in the induced subgraph generated by closed neighborhood

N [v] have to be allotted with 2 different colors. All the remaining colorless edges of

the Splr(G) graph can be colored with at most one new color to satisfy the vertex

induced 2−edge coloring condition. Hence the result.

(ii) similar to proof mentioned in proposition 3.5. �
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4. Conclusion

In this paper, the vertex induced k−edge coloring number and vertex incident

k−edge coloring number have been introduced. Section 2 gives few bounds and some

exact values of ψ′

vik(G) and ψ
′

vink(G) of some graph classes.

In section 3, the lower bound of vertex induced (incident) 2−edge coloring of the

2−shadow graph and the r−splitting of some graph classes has been mentioned. It

is an open problem to find out the exact values of ψ′

vi2(G) and ψ
′

vin2(G) of r−shadow

graphs and r−splitting graphs. Section 3 also discusses some exact values of ver-

tex induced (incident) 2-edge coloring of multi r-bridge graphs and the generalized

Petersen graph.
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