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VERTEX INDUCED k—EDGE COLORING AND VERTEX
INCIDENT k—EDGE COLORING OF GRAPHS

ANU JOSEPH() AND CHARLES DOMINIC(®

ABSTRACT. Let k£ > 2 be a natural number. Then the vertex induced k—edge
coloring number ¢/, (G) of a simple connected graph G = (V, E) is the highest
number of colors needed to color the edges of a graph G such that the edges of the
subgraph induced by the closed neighborhood N[v] of the vertex v € V(G) receives
not more than k colors.

The vertex incident k—edge coloring number ¢/, . (G) of a simple connected
graph G = (V, E) is the highest number of colors required to color the edges of a
graph G such that the edges incident to a vertex v in graph G receives not more
than & colors. In this paper, we initiate the study on ¢/, (G) and ¢/, . (G). We

also determine the exact values of ¢, (G) and v}, ., (G) for k = 2 for some special

graphs.

1. INTRODUCTION

A wide range of studies has been explored in the area of graph coloring concepts
where one has to maximize the number of colors under valid conditions. The notion
of 3-consecutive vertex coloring number was first introduced by E. Sampathkumar in
[9] and later its edge analog named 3-consecutive edge coloring number was studied
in [2]. The findings in this paper have been inspired by the concepts studied in
9, 2, 7, 5].

For a graph G = (V, E), the closed neighborhood of a vertex v in the graph G is
denoted as N[v] and is equal to {v} U {u : wv € E}. Throughout this manuscript
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(N[v]) represents the subgraph induced by N[v]. The star subgraph at a vertex v is
the subgraph of GG containing all the edges incident at v.

The vertex induced k—edge coloring of a graph G is an edge coloring of G such
that for each vertex v in V(G), not more than k edges in the (N[v]) receives distinct
colors, where k € N and k£ > 2. The vertex induced k—edge coloring number is the
highest number of colors conceded in such a coloring. Whereas, the vertex incident
k—edge coloring number of a graph G is the maximum number of colors required to
color the graph edges E(G) such that for each vertex v in V(G), not more than k
edges, where k£ € N and k£ > 2, in the star subgraph at a vertex v receive distinct
colors. The vertex induced k—edge coloring and vertex incident k—edge coloring
concepts are the generalized version of the edge coloring approach as introduced and
studied in [7].

In this paper, we initiate a combinatorial study of vertex induced k—edge coloring
number and vertex incident k—edge coloring number and obtain some bounds besides
finding the exact value of these parameters for some graph classes. We have also
determined the exact value of these parameters for £ = 2 for some special graphs.

For more definitions on graph theory refer to [4].

2. REsuLTS ON ¢! (G) AND ¢! (G)

vink

This section deals with some bounds and exact values of vertex induced k—edge
coloring and vertex incident k—edge coloring of some graphs. Also we characterize
simple connected graphs for which 1/, (G) = m. The following bounds are obvious

for a connected simple graph G = (V, E) of order n and size m.

Theorem 2.1. For a connected graph G with size m > 2 and for k > 3,
(1) 2 <4 (G) <m.
(17) 2 < L. (G) < m.

vink

Next theorem provides a characterization of ¢!, (G) in terms of the number of edges
in a graph GG. For a connected graph G of order n > 2 we denote the number of edges
in the subgraph induced by N[v;] by |E({(N[v;]))|. Let ¢ = m?x|E((N[vZ]))| For
example, consider the graph G, depicted in the figure 1. In figure 1, |E((N[vy]))| =
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LIE(Nwa]))] = 2, |E((N[vs]))| = 4, [E({(Nva]))| = 3 and [E((N[vs]))| = 3. There-
fore in graph G4, ¢ = 4.

@ v3 vs

F1GURE 1. The graph G with ¢ =4

Theorem 2.2. Let G be a simple connected (n,m)—graph of order n > 2 and let
2<k<m. Then ., (G) =m if and only if m > k > q, where ¢ = max |E((N[v;]))|

Proof. Without loss of generality assume that G is a connected (n,m)—graph of
order n > 2 and 2 < k < m. To prove the necessary condition let ¢, (G) = m.
Suppose that k < ¢, where ¢ = max |E((N[v;]))]. Then, there exists at least one edge
e € E(G) such that the edge e receives a repeated color. This implies ¢/, (G) < m,
a contradiction. Therefore, m > k > ¢q. Conversely, m > k > ¢. Since k > ¢, by the

definition of vertex induced k—edge coloring, we can use distinct colors to color all

the edges in (N[v;]). Therefore, ¢, (G) = m. O

Corollary 2.1. Let G = (V, E) be a simple connected (n, m)—graph with A(G) < 2.
If G is either a path or a cycle, then for k >3, ¢! (G) = .. .(G) =m.

vink

Theorem 2.3. If G = (V, E) is a simple connected graph, then ., (G) < .. . (G)

vik —
where k > 3.

Proof. It can be noted that any vertex induced k—edge coloring of a graph G is a
vertex incident k—edge coloring of the graph G. Since we are maximizing the number
of colors to obtain vertex induced k—edge coloring number of G' and vertex incident

k—edge coloring number of G. Therefore, it follows that ¢/, (G) < ¢!, . (G). O

vink

The above result can be verified with an example. Consider the friendship graph

F,, with n triangles T}, where 1 < ¢ < n, with a common vertex. By construction,
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the friendship graph F}, is a simple planar graph having 2n + 1 vertices and 3n edges.
Note that, ¢!, (F,) = k whereas, the vertex incident k—edge coloring number of

graph F, is ¢!, (F,) =k +n.

For a triangle free graph, the subgraph induced by N{v] is isomorphic to the star
subgraph at vertex v. Hence the definition of the vertex induced k—edge coloring
number and the vertex incident k—edge coloring number coincides for a triangle free
graph. Therefore, if G is triangle free graph, then ¢/, (G) = /. . (G). Similarly, the
equality of ¢/, (G) and ¢, (G) holds if k = |E(G)].

Theorem 2.4. Let G = (V, E) be a simple connected graph with V(G) and E(G)
as the vertex set and edge set of the graph G, respectively. If G is a graph with a

universal vertex v, then ¢!, (G) = k.

Proof. Since v is an universal vertex in G, i.e. deg(v) = |[V(G)| — 1. So, G = (N[v]),
where (N[v]) denotes the subgraph induced by N[v]. Therefore, one can use at most

k colors to color the edges in graph GG. Hence the result. O

The following graphs are some standard graphs with a universal vertex v.

Corollary 2.2. i) For a complete graph K,, on n > 3 wvertices , ¥, (K,) = k.
ii) For a wheel graph W,, on n > 4 vertices, ¢, (W,) = k.
iii) For a star graph Ky, onn > 3 vertices, V... (Ki,) = k.

Theorem 2.5. Let G be a simple connected (n, m)—graph. Then k > A(G) if and
Only Zf ,lvbmnk( ) m.

Proof. If k > A(G), then it can be easily verified that ¢!, (G) = m. Conversely,
assume for a simple connected (n,m)—graph with n vertices and m edges that

' ime(G) = m. Suppose that k& < A(G). Let v be a vertex in G with maximum
degree deg(v) = A(G). Then there will be at least one edge incident to the vertex
v, which receives a repeated color. Thus, ¢!, . (G) < m, a contradiction. Therefore,

k> A@G). O
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Hereafter we assume that k£ < A(G), unless otherwise mentioned.

For integers n and r with 2 < 2r < n, the generalized Petersen graph G(n,r) as de-
fined in [12] is a graph with vertex set V(G (n,r)) = {ug, u1, ..., Up_1,V0, V1, -, Up_1}
and edge set E(G(n,r)) consisting of all edges of the form [u;u;i1], [wvs], [VivVigr],

where 7 is an integer, 0 <7 <n — 1 and the sums are mod n, r < 3.

Theorem 2.6. Vertex induced (incident) k— edge coloring number of some standard

graphs are listed below:

(i) For a complete graph K, of order n > 5 and with 3 <k <n—1,n+1 <
n?—3n+4
vink (1) < #=5

vink
(ii) For a wheel graph W,, of order n >4 and 3 <k <n, ¢, . (W,) =k+n— 1.
(ili) For a generalized Petersen graph G(n,r) where n > 3 and 1 < r < [%51],

(iv) For a complete bipartite graph K, , with order m,n > 1,

) ) k-min{m,n}, for 6(Kmn,) <k < A(Kpn)
¢vik(Km,n) = @Dvmk(Km,n) =
mn, for k> A(Knp)

A matching of a graph G is a set of mutually non-incident edges. A matching is
said to be maximum if it has the largest number of edges among all matching of the
graph G. The number of edges of a maximum matching of G is called the matching

number of G and is denoted by v(G) [1].

Theorem 2.7. Let G be a (n, m)—graph with m > 2. Let M be a mazximum matching
set of G and S be an independent set of vertices in G such that > deg(v) is mazimum.
veS

Then, for k < A(G), |IM|+1<y!. (G)<m— > deg(v)+ k|S]|.

vink
vES

Proof. Consider G to be a connected (n,m)—graph with m > 2. Let M be the
maximum matching of graph GG. Then, in any vertex incident k—edge coloring, each
edge in the set M can be assigned with any of the |M| distinct colors. So, the
remaining uncolored edges in the graph G can be given at least one more color.

Thus, for k < A(G), |M|+1 < ¢/, (G).

vink
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Let S be an independent set of vertices in G. Then, at most k colors are used to
color the edges incident at each vertex v € S where k < A(G). Thus, at most k|S]|
colors are required to color all the edges incident to the vertices in S. From theorem
2.1, we know that the maximum number of colors used in coloring all the edges of
graph G with distinct colors is m. Therefore, the remaining uncolored edges of graph

G requires at most m — > deg(v) colors. O
veS

In the above theorem, the upper bound is attained in the case of cycle and tree

when k£ = 2, while, the lower bound is satisfied for the graph Ps.

Corollary 2.3. If G is a r-regular graph, v(G) be the matching number of G and S
is an independent set of vertices in G, then for 3 <k <r, v(G)+1 <. (G) <
m — |S|(r — k).

Theorem 2.8. Let (N[v]) be an induced subgraph of a simple connected graph G =
(V,E). If s = maz|E((N[v]))|,v € V(G), then ¢, (G) <m —s+k.

Proof. At most k colors are required to color the edges of induced subgraph (N[v]).
From theorem 2.1, we know that ¢/, (G) < m. So, for the remaining uncolored
edges of the graph G we can use maximum of m — s colors. Therefore, at most
m — s + k colors are required to color the edges of a graph G with vertex induced

k—edge coloring. O

Corollary 2.4. Let v(G) denote the matching number of a graph G. Then for a
triangle-free connected (n, m)—graph G and for2 < k < A(G), v(G)+1 < ¢, (G) <
'oo(G) <m—A(G) + k.

vink

Proof. Since A(G) < s. This result follows from theorem 2.1, theorem 2.3, theorem
2.7 and theorem 2.8. U

In a graph G = (V, E), aset A C V is called a neighbourhood set or an n—set
if G = | (Nv]), where (N[v]) denotes the subgraph of G induced by the vertices

veEA
in N[v]. The neighbourhood number, ny(G), of G is the minimum cardinality of an

n—set of G [8].

Theorem 2.9. For any connected graph G of order n > 2, ¢!, (G) < k no(G).

vik
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Proof. Since at most k colors are used to color the edges of subgraph (N[v]). Hence

the result follows. O

This bound is sharp and is attained for a graph with an universal vertex.

Let G = (V, E) be a simple graph. A set S C V is called vertex covering of G if
every edge uv € E is incident with a vertex in S. The vertex covering number ay(G)

is the minimum cardinality of a vertex covering set of graph G.

e For a graph without isolated vertices, no(G) < ap(G) (see [8]).
e For a graph G of order n, ng(G) = 1 if and only if G has a vertex of degree
n—1 (see [8]).

Corollary 2.5. For any simple connected graph G of ordern > 2, ¢!, (G) < k ap(G).

vik
It is to be noted that, k no(G) is not an upper bound for ¢/, , (G). For example
consider, the friendship graph F),. The neighbourhood number ngy(F,,) = 1, whereas,
as discussed above ¢!, , (F,) =k + n.

vink

However, the following result holds.

Theorem 2.10. For a simple connected graph G of order n > 2 and for k < A(G),
Lon(G) <k ag(G).

vink

Proof. Consider S to be the minimum vertex covering set of graph G. Then, every
edge in G is incident with a vertex in S. Since k¥ < A(G), in a vertex incident k—edge

coloring of GG, at most k colors can be used to color the edges incident with a vertex

v e S. Thus, Y. (G) <k ag(G). O

vink

3. Yl.5(G) AND .. 5(G) OF SOME SPECIAL GRAPHS

vi2 vin2

The first result in this section is to find out the exact values for the vertex induced
(incident) 2—edge coloring number of multi r-bridge graph. Let r be a positive integer
with » > 3 and let 6(ly,ls,...,l,) denote the graph obtained by connecting two
distinct vertices with r independent (internally disjoint) paths of length [y, 1ls, ...,
respectively. The graph is called the multi r—bridge graph where [; <[y < ... <,
and [ >2; [, e N [6].
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Theorem 3.1. Let 0(ly, 1y, ..., 1), represent the multi r—bridge graph such that l; <
l2 S e S lT’ and r Z 3 Then? sz(e(llﬁ l2? tee l )) = ;in2(9(l1’ l2’ te ‘7l7’)) =
Sl —2(r—2).

i=1

Proof. Consider G = 0(ly, s, ...,l,) where p > 3. We first prove the result for p = 3
and then the result can be extended for the case when p = r. When p = 3, i.e,,
G = 0(ly,15,13) is a graph obtained by connecting two distinct vertices with three
independent paths of length [, s and I3 respectively. The vertex induced (incident)
2—edge coloring number of a path P, is |E(F,)| which is the length of P,. Also,
since the end vertices has three edges incident to it, at most two colors can be given
to color these edges. Thus, il — 2 gives the maximum vertex induced (incident)

—edge coloring number of G Similarly, for r independent paths of the graph G,
Z [; distinct colors can be assigned to the edges. But, there are exactly two vertices
;;l graph G with degree r and the edges incident to these vertices can be given at

most two colors. Therefore, 2(r — 2) colors has to be removed from the original color

set else vertex induced 2—edge coloring condition fails. Thus, 9., (0(l1,1ls,...,1.)) =
2 li —2(r —2). O

Let P, be a path on n vertices. Then the snake-path multi r—bridge graph (or
s—path r—bridge graph), denoted as SP}(ly,1ls,...,[,), is a graph obtained from P,
by replacing each edge of the path by a multi r—bridge graph. An example of a
s—path r—bridge graph, SP}(4,3,4), is shown in figure 2.

3—0—4 10—o—11
1/07 _0\5 6/)7 _0\12

<22 7 66X66 O—14—=0 1?;3>
\078—0—9—0/ \0715—0—16—0/

FIGURE 2. SP;(4,3,4)

Corollary 3.1. Let r > 3 be a positive integer. Consider SPy(ly,ls,... 1) as the
s—path r—bridge graph with r independent paths of length 1,1, ..., 1., respectively,
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such that Iy < ly < ... <, forly > 2 ; l; € N. Then ¢, ,,(SP;(l1,12,...,1.)) =
vzn2(SP (ll>52>alr)):(n—l)le—an—l—2n+2r

i=1
Proof. Consider, G = SP}'(l1,ls,...,l,), where, for 1 < i < r, [; is the length of the
i—path. From theorem 3.1, ¢! ,(0(l1,1ls,...,1.)) = Zl —2(r — 2). As each edge of
the path P, is identified as a multi r—bridge graph so there are n — 1 copies of multi
r—bridge subgraph in the graph G. Thus, (n — 1) Z l; — 2(r — 2) distinct colors can
be assigned to the edges of the multi r—bridge subgraph components of the graph G.
Since, at most two different colors can be given to the edges incident to each vertex
v with maximum degree, A(G). So, (n — 2)(2r — 2) colors has to be removed from

(n—1) > 1;—2(r—2) in order to color the edges of the graph G. Therefore, ¢! .,(G) =

) = (=D L=2(r—2) = (n=2)(2r—=2) = (n—1) 3 ;= 2rn+2n+2r. O

vin2
i=1 =1
The vertex induced 2—edge coloring number and vertex incident 2—edge coloring

number of graph SP;(4,3,4), shown in figure 2, is 16.

Let C,, be a cycle of order n. Then the snake-cycle multi r—bridge graph (or s—cycle
r—bridge graph), denoted as SCy(ly,ls,...,[,), is a graph obtained from C,, by re-
placing each edge of the cycle graph by a multi r—bridge graph. An example of a
s—cycle r—bridge graph, SCy(3,3,2), is shown in figure 3.

5/0\7

FIGURE 3. SC4(3,3,2)
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Corollary 3.2. Let r > 3 be a positive integer. Consider SCy(ly,ls,... 1) as the

s—cycle r—bridge graph with r independent paths of length ly,ls, . .., 1., respectively,

such that Iy < ly < ... <, forly > 2; 1l; € N. Then ¢, ,(SCy(l1,ls,...,1.)) =
(SO, Lo, . 1)) = 0 2 1 — 2rm + 2n.

vin2
=1
Proof. The result follows from theorem 3.1 and corollary 3.1. U

The vertex induced 2—edge coloring number and vertex incident 2—edge coloring

number of graph SCj(3,3,2), shown in figure 3, is 16.

The vertex induced (incident) 2—edge coloring number of Petersen graph P is 7
[7]. In the next result we find the exact values of the generalized Petersen graph
GP(n,r). The generalized Petersen graph GP(n,r), also denoted as P(n,r), for
n>3and 1 <r < VT_lJ is a connected cubic graph consisting of an inner circulant
graph C; (r) and an outer cycle graph C,, such that the corresponding vertices in the
inner edges and the outer edges of the graph GP(n,r) are connected with edges.

Theorem 3.2. For the generalized Petersen graph GP(n,r), ¥,,5(GP(n,r)) =
tina(GP(n, 1)) =n+ 2 where n > 3.

vin2

Proof. Consider G = GP(n,r) as the generalised Petersen graph, where n > 3, and
1<r< LHT_lJ . Each edge connecting the inner circulant subgraph and the outer cycle
of the graph G can be assigned with n distinct colors. The remaining uncolored edges
of the outer cycles of the graph G is assigned (n+ 1) color, whereas, the inner cycle
of G can be given (n + 2)™ color. Therefore, for n > 3, 1.,(G) = ! ,,o(G) = n + 2.

It is to be noted that the maximum vertex induced (incident) 2—edge coloring
number of the generalized Petersen graph G P(n, ) is obtained by coloring the edges
of G in the above-mentioned coloring procedure. Suppose if, n edges in the outer
cycle of the graph G are given n different colors. Then, the uncolored edges joining
the inner cycle and outer cycles of the graph G cannot be assigned with any new

color. Further, at most one new color can be assigned to all the edges of the inner

circulant subgraph of graph G. In this vertex induced (incident) 2—edge coloring, we
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will get a maximum of n + 1 colors which is less than that of the above-mentioned
vertex induced (incident) 2-edge coloring number n + 2, a contradiction. Similarly,
a contradiction can be obtained when the coloring procedure is started by giving

different colors to all the inner circulant edges of the graph G. U

Shadow of a graph GG, denoted by D,.(G), is obtained by taking r copies of a graph
G and adding edges between the vertices of copies if their corresponding vertices
are adjacent in G. In particular, a shadow graph Ds(G) of a connected graph G is
constructed by taking two copies of G, say H and H'. Let {v;} and {v]} be the vertex
set of graph H and H' respectively. Join each vertex v in H to the neighbors of the
corresponding vertex v’ in H'[11]. The next result will give a coloring procedure to
get the lower bound of the vertex induced (incident) 2—edge coloring of the graph
Dy(P,).

Theorem 3.3. Let Do(P,) be the 2—shadow of the path P,, where n > 3. Then
! o(Do(P)) =4 o(Da(P,)) >n+1.

vi2 vin2

Proof. The graph Dy(P,) is a cycle of order 4. So, the vertex induced (incident)
2—edge coloring number of graph Dy(P,) is 4 [7]. Consider Dy(P,) as the 2-shadow
of the path P, on n vertices with n > 3. Let V(Do(P,)) = {v;, v, | 1 €{1,2,...,n}}
and E(Dy(P,)) = {vivig1 Uvjv, UvivjUvvl, | @€ {1,2,...,n—1}} be the vertex
set and the edge set of the graph Dy(P,) respectively. The vertex induced (incident)
2—edge coloring number of path on n vertices is n — 1 (see [7]). So, the edges of the
first copy of path in the graph Dy(P,) can be distinctively given n — 1 colors, say
C=A{cr,c9,...,cn1}.

Now, consider the colorless edges of Dy(P,) that are incident to the vertices {vy, vs}.
The edge v1v4 can be given a new color ¢,, whereas, the remaining two uncolored edges
that are incident to vertices {v;, v2} has to be colored with one of the colors from the

set C. Suppose if the edge v9v is given a new color, say ¢/, then the vertex induced

/

(incident) 2—edge coloring condition fails at vertex vy. Similarly, the edge v,v!,_,

receives a new color ¢, 1 and all the remaining uncolored edges incident to vertex v;
where 2 < 7 < n — 1 has to be assigned with one of the colors from the set C. It is

to be noted that each vertex v in V(Dy(P,)), where i € {2,...,n — 1}, is of degree
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4. Further, since there are exactly two edges incident to each vertex v that received
two different colors from the coloring pattern discussed earlier. Therefore, the two
uncolored edges incident at each of the vertex v, for 2 <i < n—1, cannot be colored

with any more new colors. So, ¢],,(D2(P,)) > n+ 1. O

vi2
The graph Dy(C},) is obtained by taking two copies of the cycle C,, such that each
vertex v; in the first copy of the cycle graph joins the neighbors of the corresponding
vertex v;- in the second copy, where 1 < j < n and n > 4. The next result gives the

lower bound for vertex induced (incident) 2—edge coloring of Dy(C,,) graph.

Theorem 3.4. Let Do(C),) denote the 2—shadow of cycle on n vertices where n > 4.
Then ¥y(Da(Ca)) = Yuna(D2(Cr)) = m+ 1.

vi2 vin2

Proof. Consider Dy(C),) as the 2—shadow of cycle graph with order 2n and size 4n.
The coloring procedure can be started by giving each alternate edge in both copies
of cycle of Dy(C,,) by a new color. Whereas, all the remaining colorless edges of the
graph Dy(C,,) can be given one color. So, the 2n edges of cycle subgraphs of the
graph Dy(C},) can be assigned with at least n + 1 colors. Therefore, ¥ .,(Ds(C},)) =
Uuina(D2(Cr)) = n + 1.

O

The coloring pattern discussed in the above theorem has been described in the
figure 4. The vertex induced (incident) 2—edge coloring number of Dy(C}y) and Dy(Cs5)
is shown in figure 4.(a) and figure 4.(b) respectively.

FIGURE 4. (a) ¥,5(D2(Cy)) =5 and (b) ¥).5(D2(C5)) =6

vi2
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Corollary 3.3. Let Dy(Cs) be the 2—shadow of a cycle on three vertices. Then
(i) V4in(D2(C3)) = 3 and (ii) ;s (D2(Cs)) = 4.

Proof. (i) Let V = {v;, v, : i € {1,2,3}} be the vertex set of the graph Dy(C'3). Since
the vertex v; and vertex v}, for 1 < j < 3, are not adjacent in the graph Dy(Cs).
Thus, the induced subgraph generated by Nv;] (for any j) is not equivalent to the
graph Dy(Cj3). Therefore, at most two colors can be given to the edges of the induced
subgraph generated by N[v;], where j € {1,2,3}. Moreover, as (N[v;]) U (N[vj]) =
Dy (C3). So, the remaining uncolored edges of the Dy(C3) graph can be given at most

one new color. Hence the result follows.

(ii) The result follows from theorem 3.4. O

The next few results are on the vertex induced (or incident) 2—edge coloring num-
ber of r—splitting of some graphs. The splitting graph S(G) of a graph G = (V, E)
is obtained by adding a new vertex v’ to each vertex v € V' such that v is adjacent
to every vertex that is adjacent to the vertex v in G [10]. The r— splitting graph

", such

spl,(@) of a graph G is obtained by adding r new vertices, say v!,v?, ... v
that v/,1 < j < r is adjacent to each vertex which is adjacent to v in G [11]. The
Bistar graph B, , is a graph obtained by joining the center vertices of two copies of

K, by an edge [3].

Theorem 3.5. Let G be a connected graph of order n > 2 with A(G) < 2 and
G # Ks. If Spl.(G) denotes the r—splitting graph of a graph G, then ., .(Spl,(G)) =
1io(SPL(G)) > n+ 1.

vi2

Proof. Consider V' = {v,va,...,v,} to be the vertex set of the graph G such that
A(G) < 2 and G # Kj. Then, G is either a path graph or a cycle graph. Let
V' ={vl,v],...,v] : 1 <j <r} be the vertex set of 7 new vertices which are added
to the graph G to form the r—splitting graph of G. Then, V' UV’ becomes the vertex
set of the graph spl,.(G). Clearly, 1 < deg(v]) < 2 and r + 1 < deg(v;) < 2(r + 1),
fori e {1,2,...,n} and j € {1,2,...,r}. The result is trivial for n = 2, as Spl,.(P,)
is a bistar graph B, ,, and so, wvim,(Splr(%)) =3=2+1.

Assume that » > 1 and n > 3. Suppose we assign distinct colors to all the edges

incident to the vertex vg with degree 2. Then, there exists at least one colored edge
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incident to the vertex v; with degree 2(r + 1) where the vertex induced (incident)
2—edge coloring condition fails. Thus, all edges incident to vertex vg with degree 2
cannot be assigned with distinct colors. So, for a fixed j and 1 < i < n, at least one
of the edge which is incident to each vertex vf in the set V', can be assigned with
n distinct colors. Whereas, all the remaining uncolored edges of the graph Spl.(G)
can be given at most one more new color. Hence, for A(G) < 2 and G # K3,

1o (SPL(G)) = Y5(SPl(G)) > n+ 1. O

vi2 vin2

Corollary 3.4. Let Spl,.(C3) be the r—splitting of the cycle graph with order 3. Then,

(1) Yrin(Spl(Cs)) = 3.
(ii) 2 (SPL(C3)) = 4.

Proof. This result can be easily verified. O

Theorem 3.6. Let G be a connected (n, m)—graph without pendant edges such that
A(G) =n —1. Then,

(i) ¥ (SpL(G)) = 3.
(i) a(SPL(G)) >+ 1.

Proof. (i) Consider G to be a connected (n,m)— graph without pendant edges. The

graph Spl,.(G) denotes the r—splitting of graph G. Let V(Spl.(G)) = {v;,v] : 1 <
i <mn,1<j<r} be the vertex set of the graph Spl,(G). Since A(G) = n — 1, there
exists at least one vertex v with degree n — 1 such that the vertex v forms an edge
with all the vertices in vertex set V(Spl,.(G)) except the vertices in {v',v? ... v"}.
It is to be noted that, no two vertices in the set {v,v!,v?, ... v"} are adjacent to each
other. Thus, all the edges in the induced subgraph generated by closed neighborhood
NJv] have to be allotted with 2 different colors. All the remaining colorless edges of
the Spl,(G) graph can be colored with at most one new color to satisfy the vertex

induced 2—edge coloring condition. Hence the result.

(ii) similar to proof mentioned in proposition 3.5. O
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4. CONCLUSION

In this paper, the vertex induced k—edge coloring number and vertex incident
k—edge coloring number have been introduced. Section 2 gives few bounds and some

exact values of ¢/, (G) and ¢, . (G) of some graph classes.

vink
In section 3, the lower bound of vertex induced (incident) 2—edge coloring of the
2—shadow graph and the r—splitting of some graph classes has been mentioned. It

is an open problem to find out the exact values of ¥/ ,(G) and v, ,(G) of r—shadow

vi2 vin2
graphs and r—splitting graphs. Section 3 also discusses some exact values of ver-
tex induced (incident) 2-edge coloring of multi r-bridge graphs and the generalized

Petersen graph.
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