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A STUDY OF HYBRID HADAMARD FRACTIONAL

DIFFERENTIAL INCLUSIONS WITH INTEGRAL BOUNDARY

CONDITIONS

HABIB DJOURDEM

Abstract. In this manuscript, we study the existence of solutions for a class of hy-

brid fractional Hadamard integro-differential inclusions supplemented with hybrid

Hadamard integral boundary conditions. The results are obtained by applying the

hybrid fixed point theorem for three operators in a Banach algebra due to Dhage.

An example is also presented to illustrate our main results.

1. Introduction

Differential equations with fractional-order became an important field in analy-

sis theory due their significations in mathematical modeling of many phenomena

in real world related to engineering and scientific disciplines such as biology, chem-

istry, economics and numerous branches of physical sciences (see [21, 22, 25, 30, 33]).

Boundary value problems of fractional differential equations implicit several kinds

of fractional derivatives like Riemann-Liouville-type, Caputo-type, Hadamard-type,

Caputo-Hadamard-type and Hilfer-Hadamard-type fractional derivative with differ-

ent sorts of boundary conditions have studied by many authors ( see [1, 5, 7, 8, 9,

17, 18, 26, 24]).

Hybrid differential equations have been considered more important and are more

general and covers several dynamic systems as particular cases. First time, Dhage

and Lakshmikantham in [16] proposed hybrid differential equations and showed some

essential results on this kind of differential equations. In recent years, with the wide
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study of fractional differential equations, the theory of hybrid fractional differen-

tial equations were also studied by several researchers, see [3, 6, 28, 31] and the

references therein. It’s worth to mention some interesting works deal with solving

integro-differential equations by using hybrid fixed point theorems or hybrid numer-

ical methods, we quote for instance [13, 32, 37].

Integro-differential inclusions are models of many realistic problems in different

fields, like economics, optimal control, stochastic analysis, we refer the reader to

[11, 34, 36]. As an application to this kind of these problems, we cite as an example

the integral inclusion for the temperature control by means of a thermostat, see [12].

Differential inclusions in ordinary forms or in hybrid forms have gained so much

attention of many authors, see [2, 4, 10, 19, 29] and the references therein.

Motivated and inspired by the works mentioned above, we are concerned with

the existence of solutions for the following nonlinear hybrid fractional differential

inclusions

(1.1) Dσ

[

υ (τ)−∑m

i=1 I
θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

]

∈ G (t, υ (τ) , Iγυ (τ)) , 1 < t < e,

subject to the boundary conditions

υ (1) = 0,

Dσ−1

(

υ (τ)−∑m
i=1 I

θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

)∣

∣

∣

∣

τ=1

= 0,

(

υ (τ)−∑m
i=1 I

θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

)∣

∣

∣

∣

τ=e

= λ (Ipυ) (η) ,

(1.2)

where Dσ denotes the Hadamard fractional derivative of order 2 < σ ≤ 3. Iγ ,

Iθi and Ip are respectively the Hadamard fractional integrals of order γ, θi, p > 0

(i = 1, 2, ..., m), Ψ ∈ C ([1, e]× R
2,R \ {0}) and G : [1, e] × R × R −→ P (R)

is a multivalued map, P (R) is the family of all nonempty subsets of R and χi ∈
C ([1, e]× R,R) with χi (1, 0) = 0, for i = 1, 2, ..., m. λ, η are two real parameters

with λ > 0, 1 < η < e and λΓ(σ−1)
Γ(p+σ−1)

(log η)p+σ−2 6= 1.

The rest of our work is divided into two sections. In the next section, we first

recall some preliminary results that we need in the sequel. In section 3, an hybrid

fixed point theorem for three operators in a Banach algebra due to Dhage is used to
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establish the existence results of the problem (1.1)-(1.2). Finally, an example is given

to illustrate the obtained results.

2. Background and materials

Here, we give certain definitions and results which are needed to prove our main

results.

Let C (I,R) be the Banach space of all continuous functions from I into R.

We begin by defining Hadamard fractional integrals and derivatives, and we intro-

duce some properties that can be used thereafter.

Definition 2.1. [25] The Hadamard fractional integral of order σ ∈ R
+ for a function

Ψ ∈ C [a, b], 0 ≤ a ≤ τ ≤ b ≤ ∞, is defined as

IσΨ (τ) =
1

Γ (σ)

∫ τ

a

(

log
τ

s

)σ−1

Ψ (s)
ds

s
,

where Γ (.) is the Gamma function and log (.) = loge (.).

Definition 2.2. [25] Let 0 < a < b < ∞ and δ = τ d
dτ
. The Hadamard derivative of

fractional order σ ∈ R
+ for a function Ψ ∈ Cn−1 ([a, b] ,R) is defined as

DσΨ (τ) = δn
(

In−σ
)

(τ) =
1

Γ (n− σ)

(

τ
d

dτ

)n ∫ τ

a

(

log
τ

s

)n−σ−1 Ψ (s)

s
ds,

where n−1 < σ ≤ n ∈ Z
+, n = [σ]+ 1 denotes the integer part of the real number q.

Lemma 2.1. ([25], Property 2.24) If a, α, β > 0, then
(

Dσ
(

log
τ

a

)β−1
)

(τ) =
Γ (β)

Γ (β − σ)

(

log
τ

a

)β−σ−1

,

(

Iσ
(

log
τ

a

)β−1
)

(τ) =
Γ (β)

Γ (β + σ)

(

log
τ

a

)β+σ−1

.

Lemma 2.2. ([25]) Let σ > 0 and υ ∈ C [1,∞) ∩ L1 [1,∞). Then the solution of

Hadamard fractional differential equation Dσυ (τ) = 0 is given by

υ (τ) =
n
∑

i=1

ci (log τ)
σ−i

,

and the following formula holds:

IσDσυ (τ) = υ (τ) +

n
∑

i=1

ci (log τ)
σ−i

,
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for some ci ∈ R, i = 1, 2, ..., n, where n = [σ] + 1.

Now, we put Y = C (I,R) where I = [1, e]. Define a norm ‖.‖ and a multiplication

in Y by

‖υ‖ = sup
τ∈I

|υ (τ)| and (υ̟) (τ) = υ (τ)̟ (τ) , ∀τ ∈ I.

Clearly Y is a Banach algebra with respect to above supremum norm and the multi-

plication in it.

In the rest of this section, we recall some material on multivalued analysis [14, 23]

related to this research. For a normed space (X , ‖.‖), let Pb (X ) = {F ∈ X : F is bounded},
Pcl (X ) = {F ∈ X : F is closed}, Pcp (X ) = {F ∈ X : F is compact} and Pcp,c (X ) =

{F ∈ X : F is compact and convex}.

Definition 2.3. A multivalued map H : X −→ P (X ).

(1) is convex (closed) valued for all υ ∈ X if H (υ) is convex (closed) for all υ ∈ X ;

(2) is bounded on bounded sets if H (B) = ∪υ∈BH (υ) is bounded in X for all B ∈
Pb (X ) i.e supυ∈B {sup {|ω| , ω ∈ H (υ)}} < ∞.

(3) is called upper semi-continuous (u.s.c) on X if for each υ0 ∈ X , the set H (υ0) is

a nonempty closed subset of X and if for each open set N of X containing H (υ0)

there exists an open neighborhood N0 of υ0 such that H (N0) ⊆ N ;

(4) is said to be completely continuous if H (B) is relatively compact for every B ∈
Pb (X );

(5) has a fixed point if there is υ ∈ X such that υ ∈ H (υ). The fixed point set of the

multivalued operator H will be denote by FixH.

Remark 1 ( [14], Proposition 1.2). It is well known that, if the multivalued map H
is completely continuous with nonempty compact values, then H is u.s.c if and only

if H has closed graph i.e., υn −→ υ, ωn −→ ω, ωn ∈ H (υn) imply ω ∈ G (υ).

Definition 2.4. A multivalued map H : J −→ Pcl (R) is said to be measurable if

for every y ∈ R the function

t 7−→ d (y,H (t)) = inf {‖y − z‖ : z ∈ H (t)} ,

is measurable.
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Let L1 (I,R) be the Banach space of measurable functions υ : I −→ R which are

Lebesgue integrable and normed by ‖υ‖L1 =
∫ e

1
|υ (τ)| dτ

Definition 2.5. [14, 20] A multivalued map H : J × R × R −→ P (R) is called

L1-Caratheodory if

(i) t 7−→ H (t, υ1, υ2) is measurable for all υ1, υ2 ∈ R,

(ii) τ 7−→ H (t, υ1, υ2) is upper semi-continuous for almost all τ ∈ [1, e], and

(iii) for each ς > 0, there exists fς ∈ L1 (I,R+) such that

‖H (τ, υ1, υ2)‖ = sup {|ω| , ω ∈ H (τ, υ1, υ2)} ≤ fς (τ) ,

for all |υ1| , |υ2| ≤ ς and for a.e. τ ∈ I.

The multivalued map H is said to be Caratheodory if it satisfies (i) and (ii).

For each υ ∈ C (I,R), we define the set of selections of G by

SH,υ =
{

ω ∈ L1 (I,R) : ω (τ) ∈ H (τ, υ (τ)) , for almost all τ ∈ I
}

.

Lemma 2.3. [27] Let Y be a Banach space and let H : I × Y × Y −→ Pcp,c (Y)

be an L1-Carathéodory multivalued map and let Θ be a linear continuous mapping

from L1 (I,Y) to C (I,Y). Then the operator Θ ◦ SH,υ : C (I,Y) −→ Pcp,c (C (I,Y))

defined by (Θ ◦ SH) (υ) = Θ (SH,υ) is a closed graph operator in C (I,Y)× C (I,Y).

3. Existence results

In this section, we will establish the existence results for the boundary value prob-

lem (1.1)-(1.2) by using the following hybrid fixed point theorem for three operators

in a Banach algebra Y due to Dhage [15].

Lemma 3.1. Let Y be a Banach algebra and let A,C : Y −→ Y and B : Y −→
Pcp,c (Y) be three operators satisfying:

(a1) A and C are Lipschitzian with Lipschitz constants r1 and r2, respectively,

(a2) B is compact and upper semi-continuous,

(a3) r1M + r2 < 1, where M = ‖B (Tρ)‖P .
Then, either (i) the operator inclusion υ ∈ AυBυ + Cυ has a solution, or

(ii) the set ∆ = {υ ∈ Y : ̺υ ∈ AυBυ + Cυ, ̺ > 1} is unbounded.
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For convenience we put

(3.1) Ω = 1− λΓ (σ − 1)

Γ (p+ σ − 1)
(log η)p+σ−2

.

Lemma 3.2. Let h ∈ C ([1, e] ,R). The solution function u0 of the hybrid Hadamard

equation

(3.2) Dσ

[

υ (τ)−∑m
i=1 I

θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

]

= h (τ) , 1 < t < e, 2 < σ ≤ 3,

subject to the boundary conditions

υ (1) = 0,

Dσ−1

(

υ (τ)−∑m

i=1 I
θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

)∣

∣

∣

∣

τ=1

= 0

(

υ (τ)−∑m
i=1 I

θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

)∣

∣

∣

∣

τ=e

= λ (Ipυ) (η) ,

(3.3)

if and only if the function υ0 is a solution for the following Hadamard integral equa-

tion:

υ (τ) = Ψ (τ, υ (τ) , Iγυ (τ))

[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 h (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 h (s)

s
ds

− 1

Γ (q)

∫ e

1

(

log
e

s

)q−1 h (s)

s
ds

)]

+
m
∑

i=1

χi (t, υ (t)) .

(3.4)

Proof. Let υ0 be a solution for hybrid equation (3.2) By virtue of the lemma 2.2,

there exist constants c1, c2, c3 ∈ R provided that

[

υ (τ)−∑m
i=1 I

θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

]

=
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 h (s)

s
ds

+ c1 (log τ)
σ−1 + c2 (log τ)

σ−2 + c3 (log τ)
σ−3

.

(3.5)

Since χi (1, 0) = 0, i = 1, 2, ..., m and Ψ (1, 0, 0) 6= 0, the use of boundary conditions

υ (1) = 0 and Dσ−1
(

υ(τ)−
∑m

i=1
Iθiχi(τ,υ(τ))

Ψ(τ,υ(τ),Iγυ(τ))

)∣

∣

∣

τ=1
= 0 gives c1 = c3 = 0. Applying

Hadamard fractional integral operator of order p > 0 on both sides of equality (3.5)



HYBRID HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS... 217

and using Lemmas 2.1, we get that

Ip
(

υ (τ)−∑m

i=1 I
θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

)

=
1

Γ (σ + p)

∫ τ

1

(

log
τ

s

)p+σ−1 h (s)

s
ds

+ c2
Γ (σ − 1)

Γ (p + σ − 1)
(log τ)p+σ−2

.

By using the Hadamard integral boundary condition
(

υ(τ)−
∑m

i=1
Iθiχi(τ,υ(τ))

Ψ(τ,υ(τ),Iγυ(τ))

)∣

∣

∣

τ=e
=

λ (Ipυ) (η), we get

c2 =
1

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 h (s)

s
ds− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 h (s)

s
ds

)

,

where Ω is defined in (3.1).

By inserting the values ci for i = 1, 2, 3 in (3.5), we get

υ0 (τ) = Ψ (τ, υ0 (τ) , I
γυ0 (τ))

[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 h (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 h (s)

s
ds

− 1

Γ (q)

∫ e

1

(

log
e

s

)q−1 h (s)

s
ds

)]

+

m
∑

i=1

χi (t, υ0 (t)) .

That is υ0 a solution for integral equation (3.4). Conversely, one can easily see that

υ0 is a solution function for the hybrid boundary value problem of fractional order

(3.2)-(3.3) whenever υ0 is a solution function for the fractional integral equation

(3.4). �

Definition 3.1. A function υ ∈ C ([1, e] ,R) is called a solution for the problem

(1.1)-(1.2) if there exists a function κ ∈ SG,υ such that

υ (τ) = Ψ (τ, υ (τ) , Iγυ (τ))

[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

− 1

Γ (q)

∫ e

1

(

log
e

s

)q−1 κ (s)

s
ds

)]

+

m
∑

i=1

χi (t, υ (t)) ,

where SG,υ = {κ ∈ L1 [1, e] : κ (τ) ∈ G (τ, υ (τ) , Iγυ (τ)) for almost all τ ∈ [1, e]}.
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Theorem 3.1. Let us consider the continuous functions Ψ : [1, e]×R×R −→ R\{0},
χi : [1, e]× R −→ R with χi (1, 0) = 0 for i = 1, 2, ..., m), and the measurable multi-

valued map τ 7−→ G (τ, x1, x2) for all x1, x2 ∈ R , such that the following assumptions

hold:

(H1) There exist two positive functions Θ,Λi, i = 1, 2, ..., m with bounds ‖Θ‖, ‖Λi‖,
i = 1, 2, ..., m respectively, such that

(3.6) |Ψ (τ, υ1, υ2)− Ψ (t, υ1, υ2)| ≤ Θ (τ) (|υ1 − υ1|+ |υ2 − υ2|) ,

and

(3.7) |χi (τ, υ)− χi (τ, υ)| ≤ Λi (τ) |υ − υ| , i = 1, 2, ..., m,

for τ ∈ [1, e] and υ, υ, υ1, υ2, υ1, υ2 ∈ R.

(H2) There exists a continuous function ϑ : [1, e] −→ (0,∞) such that

‖G (τ, υ, υ)‖ ≤ ϑ (τ) ,

for almost all τ ∈ [1, e] and υ, υ ∈ R.

If

‖Θ‖
(

1 +
1

Γ (γ + 1)

)

‖ϑ‖
[

1

Γ (σ + 1)

(

1 +
1

|Ω|

)

+
λ (log η)p+σ

|Ω|Γ (p+ σ + 1)

]

+

m
∑

i=1

‖Λi‖
Γ (θi + 1)

< 1.

(3.8)

Then the problem (1.1)-(1.2) has at least one solution on [1, e].

Proof. Let Y = C ([1, e] ,R) and consider three operators A : Y −→ Y by

(3.9) Aυ (τ) = Ψ (τ, υ (τ) , Iγυ (τ)) , τ ∈ [1, e] ,

B : Y −→ Y by

Bυ (τ) =
{[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

− 1

Γ (q)

∫ e

1

(

log
e

s

)q−1 κ (s)

s
ds

)

, κ ∈ SG,υ

}

,

(3.10)
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and C : Y −→ Y by

Cυ (τ) =
m
∑

i=1

Iθiχi (τ, υ (τ))

=

m
∑

i=1

∫ τ

0

(

log
τ

s

)θi−1

χi (s, υ (s))
ds

s
, τ ∈ [1, e] .

(3.11)

Therefore, the problem (1.1)-(1.2) is equivalent to the problem

(3.12) υ ∈ AυBυ + Cυ.

We will prove that the operators A, B and C satisfy the assumptions of Lemma 3.1.

We will divide the rest of the proof into five steps.

Step 1. We show that the opertors A, C define single-valued operators A, C :

Y −→ Y and B : Y −→ Pcp,c (Y).

The operators A, C are well defined because the functions Ψ and χi, i = 1, 2, ..., m

are continuous on [1, e] × R × R and [1, e] × R respectively. For this step, it only

remains to prove the claim for the multi-valued operator B. Note that, the operator

B is equivalent to the composition Q◦SG,υ, where Q is the continuous linear operator

on L1 ([1, e] ,R) into C ([1, e] ,R) defined by

Qκ (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ (s)

s
ds

)

.

Let us consider an arbitrary element υ in Y and {κn} a sequence in SG,υ. Then,

κn ∈ G (τ, υ (τ) , Iγυ (τ)) for almost τ ∈ [1, e]. Since G (τ, υ (τ) , Iγυ (τ)) is compact

for all τ ∈ [1, e], there exists a convergent subsequence of {κn (τ)}(we denote it again
{κn (τ)}) to some κ (τ) ∈ SG,υ. The continuity of Q gives that Qκn (τ) converges to

Qκ (τ) pointwise on [1, e]. To show that this convergence is uniform, we must show

that {Qκn} is an equi-continuous sequence. Let τ1, τ2 ∈ [1, e] with τ1 < τ2. So, we
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have

|Qκ (τ2)−Qκ (τ2)| ≤
1

Γ (σ)

∣

∣

∣

∣

∫ τ1

1

[

(

log
τ2

s

)σ−1

−
(

log
τ1

s

)σ−1
]

κ (s)

s
ds

+

∫ τ2

τ1

(

log
τ2

s

)σ−1 κ (s)

s
ds

+

[

(log τ2)
σ−2 − (log τ1)

σ−2

Ω

]

×
(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ (s)

s
ds

)∣

∣

∣

∣

.

The right hand of the above inequality tends to zero when τ2 tends to τ1. Then,

the sequence {Qκn} is equi-continuous. From Arzela-Ascoli, it follows that there is a

uniformly convergent subsequence. Thus, there is a subsequence of {κn} ( we show it

again by {κn}) such that Qκn −→ Qκ. Note that Qκ ∈ Q (SG,υ). Then B = Q (SG,υ)

is compact for all υ ∈ Y .

Now, we shall show that B (υ) is convex for all υ ∈ Y . Let υ ∈ Y and υ1, υ2 ∈ B (υ).

Select κ1, κ2 ∈ SG,υ such that

υi (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κi (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κi (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κi (s)

s
ds

)

, i = 1, 2,

for almost all τ ∈ [1, e]. Let 0 ≤ ω ≤ 1. Then, we have

[ωυ1 + (1− ω) υ2] (τ)

=
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 [ωκ1 (s) + (1− ω)κ2 (s)]

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 [ωκ1 (s) + (1− ω)κ2 (s)]

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 [ωκ1 (s) + (1− ω)κ2 (s)]

s
ds

)

.
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Since G has convex valued, SG,υ is convex, so ωκ1 (τ) + (1− ω)κ2 (τ) ∈ SG,υ. Hence

ωυ1 + (1− ω) υ2 ∈ Qυ.

This means that B is convex-valued.

Step 2. In this part, we show that A and C are Lipschitz on Y .

Let υ, υ ∈ Y . Then by (H1), for τ ∈ [1, e] we have

|Aυ (τ)−Aυ (τ)| = |Ψ (τ, υ (τ) , Iγυ (τ))− Ψ (τ, υ (τ) , Iγυ (τ))|

≤ Θ (τ) (|υ (τ)− υ (τ)|+ |Iγυ (τ)− Iγυ (τ)|)

= Θ (τ) (|υ (τ)− υ (τ)| (1 + Iγ (1)))

≤ ‖Θ‖
(

1 +
1

Γ (γ + 1)

)

‖υ − υ‖ ,

which implies ‖Aυ −Aυ‖ ≤ ‖Θ‖
(

1 + 1
Γ(γ+1)

)

‖υ − υ‖ for all υ, υ ∈ Y . Hence, A a

Lipschitzian on Y with with Lipschitz constant ‖Θ‖.

Analogously, for any υ, υ ∈ Y , we have

|Cυ (τ)− Cυ (τ)| =
∣

∣

∣

∣

∣

m
∑

i=1

Iθi [χi (τ, υ (τ))− χi (τ, υ (τ))]

∣

∣

∣

∣

∣

≤
m
∑

i=1

1

Γ (θi)

∫ τ

1

(

log
τ

s

)θi−1

Λi (s) |υ (s)− υ (s)| ds
s

≤ ‖υ − υ‖
m
∑

i=1

‖Λi‖
Γ (θi + 1)

.

Then

‖Cυ − Cυ‖ ≤
m
∑

i=1

‖Λi‖
Γ (θi + 1)

‖υ − υ‖ .

Which means that C is a Lipschitzian on Y with Lipschitz constant
∑m

i=1
‖Λi‖

Γ(θi+1)
.

Step 3. Now, we show that B is compact and upper semi-continuous.

We will show that B maps bounded sets into bounded sets in Y . Let Tρ be a bounded

subset of Y . Then, there is a constant ρ > 0, such that ‖υ‖ ≤ ρ for all υ ∈ Tρ. Then
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for g ∈ B, υ ∈ Tρ, there exists κ ∈ SG,υ such that

g (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ (s)

s
ds

)

.

Then for τ ∈ [1, e], we have

|g (τ)| ≤ 1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 |κ (s)|
s

ds

+
(log τ)σ−2

|Ω|

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 |κ (s)|
s

ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 |κ (s)|
s

ds

)

≤ 1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 ϑ (s)

s
ds

+
(log τ)σ−2

|Ω|

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 ϑ (s)

s
ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 ϑ (s)

s
ds

)

≤ ‖ϑ‖
[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 ds

s

+
(log τ)σ−2

|Ω|

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 ds

s

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 ds

s

)]

≤ L1, τ ∈ [1, e] ,

where

(3.13) ‖ϑ‖
[

1

Γ (σ + 1)

(

1 +
1

|Ω|

)

+
λ (log η)σ+p

|Ω|Γ (p + σ + 1)

]

= L1,

for all τ ∈ [1, e]. Hence, ‖g‖ ≤ L1, this means that B (Tρ) is uniformly bounded on Y .
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Now, we will prove that B (Tρ) is an equicontinuous set in Y . Suppose that t1, t2 ∈
[1, e] with t1 < t2 and υ ∈ Tρ. Then, we have

|g (t2)− g (t1)| =
1

Γ (σ)

∣

∣

∣

∣

∣

[

∫ t2

1

(

log
t2

s

)σ−1
κ (s)

s
ds−

∫ t1

1

(

log
t2

s

)σ−1
κ (s)

s
ds

]

+
(log t2)

σ−2 − (log t1)
σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ (s)

s
ds

)∣

∣

∣

∣

≤ 1

Γ (σ)

[

∫ t1

1

∣

∣

∣

∣

∣

(

(

log
t2

s

)σ−1

−
(

log
t1

s

)σ−1
)∣

∣

∣

∣

∣

|κ (s)|
s

ds

+

∫ t2

t1

(

log
t2

s

)σ−1 |κ (s)|
s

ds

]

+

∣

∣(log t2)
σ−2 − (log t1)

σ−2
∣

∣

|Ω|

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 |κ (s)|
s

ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 |κ (s)|
s

ds

)

≤ 1

Γ (σ)

[

∫ t1

1

∣

∣

∣

∣

∣

(

(

log
t2

s

)σ−1

−
(

log
t1

s

)σ−1
)∣

∣

∣

∣

∣

‖ϑ‖
s

ds

+

∫ t2

t1

(

log
t2

s

)σ−1 ‖ϑ‖
s

ds

]

+

∣

∣(log t2)
σ−2 − (log t1)

σ−2
∣

∣

|Ω|

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 ‖ϑ‖
s

ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 ‖ϑ‖
s

ds

)

,

which is independent of υ. Then, the right-hand side of the above inequality tends

to zero when t1 −→ t2. Hence, by using the Arzela-Ascoli theorem, B is completely

continuous operator on Tρ.

Here, we show that B has a closed graph. Suppose that υn ∈ Tρ and gn ∈ Bυn for

all n such that υn −→ υ∗ and gn −→ g∗. We show that g∗ ∈ Bυ∗. For each natural

number n, select κn ∈ SG,υn such that for each τ ∈ [1, e],
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gn (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κn (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κn (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κn (s)

s
ds

)

.

Thus it suffices to show that there exists κ∗ ∈ SG,υ∗ such that for each τ ∈ [1, e],

g∗ (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ∗ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ∗ (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ∗ (s)

s
ds

)

.

Consider the linear operator L : L1 ([1, e] ,R) −→ Y defined by

κ 7−→ L (κ) (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ (s)

s
ds

)

.

Note that

‖gn (τ)− g∗ (τ)‖ =
1

Γ (σ)

∥

∥

∥

∥

∫ τ

1

(

log
τ

s

)σ−1 (κn (s)− κ∗ (s))

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 (κn (s)− κ∗ (s))

s
ds

+
1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 (κn (s)− κ∗ (s))

s
ds

)∥

∥

∥

∥

→ 0,

as n −→ ∞.
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Thus, it follows by Lemma 2.3 that L ◦ SG is a closed graph operator. Further, we

have gn (τ) ∈ L (SG,υn). As υn −→ υ∗, we get

g∗ (τ) =
1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ∗ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ∗ (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ∗ (s)

s
ds

)

,

for some κ∗ ∈ SG,κ∗. Hence B has a closed graph. Consequently, the operator B is

upper semi-continuous.

Step 4. We show that the condition (a3) of Lemma 3.1 holds. Since

M = ‖B (Tρ)‖ = sup
υ∈Tρ

{

sup
τ∈[1,e]

(Bυ (τ))
}

≤ ‖ϑ‖
[

1

Γ (σ + 1)

(

1 +
1

|Ω|

)

+
λ (log η)p+σ

|Ω|Γ (p+ σ + 1)

]

,

(3.14)

as

‖Θ‖
(

1 +
1

Γ (γ + 1)

)

‖ϑ‖
[

1

Γ (σ + 1)

(

1 +
1

|Ω|

)

+
λ (log η)p+σ

|Ω|Γ (p + σ + 1)

]

+

m
∑

i=1

‖Λi‖
Γ (θi + 1)

< 1,

where r1 = ‖Θ‖
(

1 + 1
Γ(γ+1)

)

and r2 =
∑m

i=1
‖‖Λi‖‖
Γ(θi+1)

. Then condition (a3) of Lemma

3.1 is satisfied. So, A,B and C satisfy the conditions of Lemma 3.1.

Step 5. In this last step, we show that the conclusion (ii) of Lemma 3.1 is unachiev-

able.

Let υ any solution of the problem (1.1)-(1.2) such that ̺υ ∈ AυBυ + Cυ for some

̺ > 1. Then there exists κ ∈ SG,υ such that

υ (τ) = ǫΨ (τ, υ (τ) , Iγυ (τ))

[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 κ (s)

s
ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 κ (s)

s
ds

− 1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 κ (s)

s
ds

)]

+ ǫ

m
∑

i=1

Iθiχi (τ, υ (τ)) , τ ∈ [1, e] ,
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where ǫ = 1
̺
< 1. Therefore, we have

|υ (τ)| ≤ |Ψ (τ, υ (τ) , Iγυ (τ))|
[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 |κ (s)|
s

ds

+
(log τ)σ−2

Ω

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 |κ (s)|
s

ds

− 1

Γ (q)

∫ e

1

(

log
e

s

)q−1 |κ (s)|
s

ds

)]

≤ (|Ψ (τ, υ (τ) , Iγυ (τ))− Ψ (τ, 0, 0)|+ |Ψ (τ, 0, 0)|) ‖ϑ‖
[

1

Γ (σ)

∫ τ

1

(

log
τ

s

)σ−1 ds

s

+
(log τ)σ−2

|Ω|

(

λ

Γ (σ + p)

∫ η

1

(

log
η

s

)p+σ−1 ds

s
+

1

Γ (σ)

∫ e

1

(

log
e

s

)σ−1 ds

s

)

]

+

m
∑

i=1

1

Γ (θi + 1)

∫ θi

1

(

log
θi

s

)

(|χi (s, υ (s))− χi (s, 0)|+ |χi (s, 0)|)
ds

s

≤
[

‖Θ‖
(

1 +
1

Γ (γ + 1)

)

‖υ‖+ Ψ0

]

L1 + (‖υ +X0‖)
m
∑

i=1

‖Λi‖
Γ (θi + 1)

,

where L1 defined in (3.13), Ψ0 = supτ∈[1,e] |Ψ (τ, 0, 0)| and X0 = supτ∈[1,e] |χi (τ, 0)|,
i = 1, 2, ..., m, this gives that

‖υ‖ ≤
Ψ0L1 +X0

∑m
i=1

‖Λi‖
Γ(θi+1)

1−
[

L1 ‖Θ‖
(

1 + 1
Γ(γ+1)

)

+
∑m

i=1
‖Λi‖

Γ(θi+1)

] .

Consequently, the conclusion (ii) of Lemma 3.1 does not hold. Thus, the conclusion (i)

holds and consequently the problem (1.1)-(1.2) has at least one solution on [1, e]. �

In order to illustrate the obtained results, we give an example in the next.

Example 3.1. Consider the following hybrid fractional differential inclusion

(3.15) D
5

2





υ (τ)−∑4
i=1 I

2i−1

2 χi (τ, υ (t))

Ψ
(

τ, υ (τ) , I
9

2υ (τ)
)



 ∈ G
(

τ, υ (τ) , I
9

2υ (τ)
)

, τ ∈ [1, e] ,
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with the boundary conditions

υ (1) = 0,

D
3

2

(

υ (τ)−∑m

i=1 I
θiχi (τ, υ (τ))

Ψ (τ, υ (τ) , Iγυ (τ))

)∣

∣

∣

∣

τ=1

= 0,





υ (τ)−∑m

i=1 I
θiχi (τ, υ (τ))

Ψ
(

τ, υ (τ) , I
9

2υ (τ)
)





∣

∣

∣

∣

∣

∣

τ=e

= 0, 02
(

I2,5υ
)

(η) ,

(3.16)

where

χi (τ, υ (τ)) =
1− |υ (τ)|

3 (6 + i+ τ) (1 + |υ (τ)|) , i = 1, 2, 3, 4,

Ψ
(

τ, υ (τ) , I
9

2υ (τ)
)

=
sin |υ (τ)|

1 + cosh (
√
τ )

+
1

12 (τ + 1)





3

1 +
∣

∣

∣
I

9

2υ (τ)
∣

∣

∣

+ 3





∣

∣

∣
I

9

2υ (τ)
∣

∣

∣
,

and G
(

τ, υ (τ) , I
9

2

)

=

[

1+cos|υ(τ)|
cosh(υ(τ))(2+τ3)

,
sin

(

I
9

2 υ(τ)
)

2
√
τ+1

]

Here, σ = 5
2
, m = 4, θ1 =

1
2
, θ2 =

3
2
, θ3 =

5
2
, θ4 =

7
2
, γ = 9

2
, p = 5

2
and λ = 0, 02.

We obtain

|Ψ (τ, υ1, υ1)− Ψ (τ, υ2, υ2)| ≤
1

2 (τ + 1)
(|υ1 − υ2|+ |υ1 − υ2|) ,

and

|χi (τ, υ)− χi (τ, υ)| ≤
2

3 (6 + i+ τ)
|υ − υ| , i = 1, 2, 3, 4,

for υ, υ, υj, υj ∈ R, j = 1, 2. Set Θ (τ) = 1
2(τ+1)

and Λi (τ) = 2
3(6+i+τ)

, we get

‖Θ‖ = 1
2
and ‖Λi‖ = 2

3(7+i)
, i = 1, 2, 3, 4. For g ∈ G, we have

|g| ≤ max





1 + cos |υ (τ)|
cosh (υ (τ)) (2 + τ 3)

,
sin
(

I
9

2υ (τ)
)

2
√
τ + 1



 ≤ 1

2
√
τ + 1

.

Then

∥

∥

∥
G
(

τ, υ (τ) , I
9

2υ (τ)
)∥

∥

∥

P
≤ ϑ (τ) ,
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where ϑ (τ) = 1
2
√
τ+1

, thus ‖ϑ‖ = 1
2
√
2
.

By direct computation, we have

‖Θ‖
(

1 +
1

Γ (γ + 1)

)

‖ϑ‖
[

1

Γ (q + 1)

(

1 +
1

Ω

)

+
λ (log η)p+q

ΩΓ (p+ q + 1)

]

+
m
∑

i=1

‖Λi‖
Γ (θi + 1)

= 0, 3113141 < 1.

By Theorem 3.1, we claim that problem (3.15)-(3.16) has at least one solution on

[1, e].

4. Conclusion

In this article, we study a class of hybrid integro-differential inclusions involving

Hadamard-type derivative supplemented with hybrid Hadamard integral boundary

conditions. We investigate the existence results of the suggested problem by means

of hybrid fixed point theorem of Schaefer type for three operators in Banach algebra

due to Dhage. We justify our obtained results by giving an example.
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