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A STUDY OF HYBRID HADAMARD FRACTIONAL
DIFFERENTIAL INCLUSIONS WITH INTEGRAL BOUNDARY
CONDITIONS

HABIB DJOURDEM

ABSTRACT. In this manuscript, we study the existence of solutions for a class of hy-
brid fractional Hadamard integro-differential inclusions supplemented with hybrid
Hadamard integral boundary conditions. The results are obtained by applying the
hybrid fixed point theorem for three operators in a Banach algebra due to Dhage.

An example is also presented to illustrate our main results.

1. INTRODUCTION

Differential equations with fractional-order became an important field in analy-
sis theory due their significations in mathematical modeling of many phenomena
in real world related to engineering and scientific disciplines such as biology, chem-
istry, economics and numerous branches of physical sciences (see [21, 22, 25, 30, 33]).
Boundary value problems of fractional differential equations implicit several kinds
of fractional derivatives like Riemann-Liouville-type, Caputo-type, Hadamard-type,
Caputo-Hadamard-type and Hilfer-Hadamard-type fractional derivative with differ-
ent sorts of boundary conditions have studied by many authors ( see [1, 5, 7, 8, 9,
17, 18, 26, 24]).

Hybrid differential equations have been considered more important and are more
general and covers several dynamic systems as particular cases. First time, Dhage
and Lakshmikantham in [16] proposed hybrid differential equations and showed some

essential results on this kind of differential equations. In recent years, with the wide
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study of fractional differential equations, the theory of hybrid fractional differen-
tial equations were also studied by several researchers, see [3, 6, 28, 31] and the
references therein. It’s worth to mention some interesting works deal with solving
integro-differential equations by using hybrid fixed point theorems or hybrid numer-
ical methods, we quote for instance [13, 32, 37].

Integro-differential inclusions are models of many realistic problems in different
fields, like economics, optimal control, stochastic analysis, we refer the reader to
[11, 34, 36]. As an application to this kind of these problems, we cite as an example
the integral inclusion for the temperature control by means of a thermostat, see [12].
Differential inclusions in ordinary forms or in hybrid forms have gained so much
attention of many authors, see [2, 4, 10, 19, 29] and the references therein.

Motivated and inspired by the works mentioned above, we are concerned with
the existence of solutions for the following nonlinear hybrid fractional differential

inclusions

(1.1)

pr [20-EL, I (7,0 (1)

ONDID) ]EG(t,U(T),IWU(T)), 1<t<e,

subject to the boundary conditions

v (1) =0,
o () S P o (DN
(1.2) P ( 7 (.0 (1), o (7)) >T:1‘0’
0 () =S P Oy o
( 7m0 (7). 170 (7)) )T:e‘w ),

where DY denotes the Hadamard fractional derivative of order 2 < o < 3. I,
I% and IP are respectively the Hadamard fractional integrals of order v,6;,p > 0
(i =1,2,..m), ¥ € C([l,e] xRZ,R\{0}) and G : [l,e] x R x R — P (R)
is a multivalued map, P (R) is the family of all nonempty subsets of R and y; €
C ([1,e] x R,R) with x; (1,0) = 0, for i = 1,2,...,m. A,  are two real parameters

with A > 0, 1 <n < e and F’\(Ef(;_ll)) (logn)PTo% £ 1.

The rest of our work is divided into two sections. In the next section, we first
recall some preliminary results that we need in the sequel. In section 3, an hybrid

fixed point theorem for three operators in a Banach algebra due to Dhage is used to
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establish the existence results of the problem (1.1)-(1.2). Finally, an example is given

to illustrate the obtained results.

2. BACKGROUND AND MATERIALS

Here, we give certain definitions and results which are needed to prove our main
results.

Let C (I,R) be the Banach space of all continuous functions from / into R.

We begin by defining Hadamard fractional integrals and derivatives, and we intro-

duce some properties that can be used thereafter.

Definition 2.1. [25] The Hadamard fractional integral of order o € R for a function
v elClabl,0<a<t1<b<o0,is defined as

I°0 (1) = ﬁ /aT (1og g)a_l v (s) %,

where I' (.) is the Gamma function and log (.) = log, (.).

Definition 2.2. [25] Let 0 < a < b < oo and § = 74-. The Hadamard derivative of

fractional order o € R for a function ¥ € C"~! ([a,b] ,R) is defined as

=110 () )

where n—1 < o <n € Z", n=[o]+1 denotes the integer part of the real number g.

Lemma 2.1. (25|, Property 2.24) If a,«, 3 > 0, then

(17 (7)) = 2 (o)

((2)"") - £ (D)

Lemma 2.2. ([25]) Let 0 > 0 and v € C'[1,00) N L'[1,00). Then the solution of

Hadamard fractional differential equation Dv (1) = 0 is given by

v(r) =i log )™,

and the following formula holds:

I°D%v (1) =v (1) + Z ¢i (logm)7™",
i=1
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for some ¢; € R, i =1,2,...,n, where n = o] + 1.

Now, we put ) = C (I, R) where I = [1, e]. Define a norm ||.|| and a multiplication
in ) by

lv|| = ilé}j) |v(7)| and (vw) (1) =v(T)w (1), V7T € I.

Clearly Y is a Banach algebra with respect to above supremum norm and the multi-
plication in it.

In the rest of this section, we recall some material on multivalued analysis [14, 23]
related to this research. For a normed space (X, [|.||), let P, (X) = {F € X : F is bounded},
Pu(X)={F € X: Fisclosed}, P, (X)={F € X: Fiscompact} and P, .(X) =
{F € X : Fiscompact and convex}.

Definition 2.3. A multivalued map H : X — P (X).

(1) is convex (closed) valued for all v € X if H (v) is convex (closed) for all v € X;
(2) is bounded on bounded sets if H (B) = UyepM (v) is bounded in X for all B €
Py (X) i.e sup,p {sup {|lw|, w € H (v)}} < oc.

(3) is called upper semi-continuous (u.s.c) on X if for each vy € X, the set H (vy) is
a nonempty closed subset of X' and if for each open set N of X’ containing H (vo)
there exists an open neighborhood Ny of vg such that H (Ny) C N;

(4) is said to be completely continuous if H (B) is relatively compact for every B €
Py (X);

(5) has a fixed point if there is v € & such that v € H (v). The fixed point set of the
multivalued operator ‘H will be denote by FizH.

Remark 1 ( [14], Proposition 1.2). It is well known that, if the multivalued map H
s completely continuous with nonempty compact values, then H is u.s.c if and only

if H has closed graph i.e., v, — v, W, — W, W, € H (v,) tmply w € G (v).

Definition 2.4. A multivalued map H : J — P, (R) is said to be measurable if
for every y € R the function

t—d(y, H({t)) =inf{{ly —z[| : z € H (1)},

is measurable.
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Let L' (I,R) be the Banach space of measurable functions v : I — R which are

Lebesgue integrable and normed by [[v||,. = [} v (7)| dr

Definition 2.5. [14, 20] A multivalued map H : J x R x R — P (R) is called
L'-Caratheodory if

(i) t — H (t,v1,v2) is measurable for all vy, vy € R,

(ii) 7 — H (¢, vy, ve) is upper semi-continuous for almost all 7 € [1, ¢], and

(iii) for each ¢ > 0, there exists f. € L' (I, RT) such that
||H (77 U1>U2)|| = Sup {|C<J| s weH (77 U1, UQ)} < f§ (7_) )

for all |vq], |va] < ¢ and for a.e. 7 € I.

The multivalued map H is said to be Caratheodory if it satisfies (i) and (ii).
For each v € C' (I,R), we define the set of selections of G by
Sne={we L' (I,R): w(r) € H(r,v (1)), foralmostallT € I}.

Lemma 2.3. [27] Let Y be a Banach space and let H : I XY x Y — Pepo (V)
be an L'-Carathéodory multivalued map and let © be a linear continuous mapping
from L* (I1,Y) to C (I,Y). Then the operator © o Sy, : C(I,Y) — Py (C(1,Y))
defined by (© o Sy) (V) = O (Su,w) is a closed graph operator in C (1,Y) x C (I1,)).

3. EXISTENCE RESULTS

In this section, we will establish the existence results for the boundary value prob-
lem (1.1)-(1.2) by using the following hybrid fixed point theorem for three operators
in a Banach algebra ) due to Dhage [15].

Lemma 3.1. Let Y be a Banach algebra and let A,C .Y — Y and B: Y —
Pep.c (V) be three operators satisfying:
(a1) A and C are Lipschitzian with Lipschitz constants vy and ry, respectively,

(ag) B is compact and upper semi-continuous,

(a3) 1M + 1y < 1, where M = ||B(Tp)]|73.

Then, either (i) the operator inclusion v € AvBuv + Cv has a solution, or

(i1) the set A={veY: pve AvBv+Cuv, o > 1} is unbounded.
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For convenience we put

)p+a—2

(3.1) Q=1- 2L (0_1)) (log 7y

F'p+o—1

Lemma 3.2. Let h € C ([1,¢],R). The solution function uy of the hybrid Hadamard

equation

v(r) =" I%y, (1,0 (T
(3.2) D"[ ( ;(7_%;?71_)[’;52)((7_))( >>] =h(r), 1<t<e 2<0<3,

subject to the boundary conditions

33) ( T )| L
— N 1%y (1, (T
(- <Z< )I,}iv(( 70|, =2,
if and only if the function vgy is a solution for the following Hadamard integral equa-
tion:
1 T T\~1 h(s)
v(r) =¥ (r,0(r), Do (7)) lm/l (1og ;) ds

[ (s S) )+ ix (t,0 (1))

Proof. Let vy be a solution for hybrid equation (3.2) By virtue of the lemma 2.2,

there exist constants ¢y, ¢a, c3 € R provided that

- T'(o)

+ ¢1 (log 7‘)0_1 + ¢ (log 7')0_2 + ¢3 (log 7)

S

v (1) =20 Iy (1,0(7)) ’ T\ h(s
W(T%(T)[,ffv(ﬂ) }_ 1 /1<1°g> hi)ds

Since x; (1,0) =0,7=1,2,...,m and ¥ (1,0,0) # 0, the use of boundary conditions

v(1) = 0 and D7 <v<r> S (ot )>)

T (r,0(r),170(7)) = 0 gives ¢; = ¢3 = 0. Applying

T=1

Hadamard fractional integral operator of order p > 0 on both sides of equality (3.5)
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and using Lemmas 2.1, we get that

7 <v(7) = TPy (T,U(T))) B 1 )/17 (10g7>p+a—1 h(s)ds

v (r,v (1), v (7)) [(o+p s
F(U_l) pto—2
+ CQF(p+ p— (logT)

By using the Hadamard integral boundary condition (v(T);g%&; ?Wf((:)’;j(T)))
A (IPv) (n), we get

e (i [ ) i [ sy 82,

where  is defined in (3.1).

T=e

By inserting the values ¢; for i = 1,2,3 in (3.5), we get

o (1) =W (1,00 (1), Mg (7)) [% /17 <log £>o—1 hgs) ds

T (v [ (el e

_ﬁ /16 (log S)q_l his)ds)} + gXi (t,v0 (1)) -

That is vg a solution for integral equation (3.4). Conversely, one can easily see that

vg is a solution function for the hybrid boundary value problem of fractional order

(3.2)-(3.3) whenever v, is a solution function for the fractional integral equation

(3.4). O

Definition 3.1. A function v € C([1,¢e],R) is called a solution for the problem
(1.1)-(1.2) if there exists a function xk € Sg,,, such that

T\°-1 H(S)d
s

v(r) =¥ (rv(r), v (7)) {ﬁ /lT (log?) 5
A (e [ o)

e [ () )] S

where Sg, = {rk € L'[1,¢]: k(1) € G(r,v (1), v (7)) for almost all T € [1,¢€]}.
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Theorem 3.1. Let us consider the continuous functions ¥ : [1,e] x RxR — R\ {0},
Xi: [1,e] x R — R with x; (1,0) =0 fori=1,2,...,m), and the measurable multi-
valued map 7 — G (1,21, 22) for all x1,x € R, such that the following assumptions
hold:

($1) There exist two positive functions @, A;, i = 1,2,...,m with bounds ||O||, || 4],

1=1,2,...,m respectively, such that

(36) |lp (7', Ul,Ug) - lp(t,ﬂl,ﬂg)‘ S ) (T) (‘Ul - Ul| + |U2 - @2‘),
and
(3.7) Xi (T,0) = xi (1, 0)] < Ai(7) [v =], i =1,2,...,m,

for T € [1,e] and v, T, vy, vy, U1, Uy € R.

($92) There exists a continuous function ¥ : [1,e] — (0,00) such that
G (7,0, 0)[ <O (7),

for almost all 7 € [1,¢e] and v, T € R.

If
1 1 1 A (log )"
N el (HW) 191 {m (H@) T o+ 1)
(38) o3n Al
—~TI0;+1)

Then the problem (1.1)-(1.2) has at least one solution on [1,e].

Proof. Let Y = C ([1,€],R) and consider three operators A: Y — ) by

(3.9) Av (1) =V (v (1), v (7)), T € [1,€],
B:Y—Yby

o 6
520 A (e | )

_ﬁ /16 <log S)q_l His)ds) K E SG,U} ;
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and C: Y — Y by

Cvu(r) = Z 1%y (1,0 (7))
(3.11) =

S

= i/oT (logT)ei_IXi (s,v(s)) %, T€[l,€l.

Therefore, the problem (1.1)-(1.2) is equivalent to the problem
(3.12) v e AvBv + Cu.

We will prove that the operators A, B and C satisfy the assumptions of Lemma 3.1.
We will divide the rest of the proof into five steps.

Step 1. We show that the opertors A,C define single-valued operators A,C :
Y—Yand B: Y — P, (V).

The operators A, C are well defined because the functions ¥ and y;, i = 1,2, ...,m
are continuous on [1,e] x R x R and [1,e] x R respectively. For this step, it only
remains to prove the claim for the multi-valued operator B. Note that, the operator
B is equivalent to the composition QoS¢ ,,, where Q is the continuous linear operator

on L' ([1,€],R) into C ([1, €] ,R) defined by

N (log;)o_ (P(UA+ . /177 <log g)p-l-o—l niS)dS

—% /16 <log S)U_l Kis)ds) :

Let us consider an arbitrary element v in Y and {s,} a sequence in Sg,. Then,

kn € G(T,v(7), "0 (7)) for almost 7 € [1,e]. Since G (1,v (7),["v (7)) is compact
for all 7 € [1,¢], there exists a convergent subsequence of {x,, (7)}(we denote it again
{kn (7)}) to some & (7) € S The continuity of Q gives that Ok, (7) converges to
Ok (1) pointwise on [1,¢]. To show that this convergence is uniform, we must show

that {Qk,} is an equi-continuous sequence. Let 71,75 € [1,€] with 77 < 7. So, we
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have

|QF (2) = Qr (12)] <

X (ﬁ /177 (1og g)’w—l il is)ds

o) () )|

The right hand of the above inequality tends to zero when 7, tends to 77. Then,
the sequence {Qk,} is equi-continuous. From Arzela-Ascoli, it follows that there is a
uniformly convergent subsequence. Thus, there is a subsequence of {x,} ( we show it
again by {k,}) such that Ox,, — Qr. Note that Ox € Q (Sg,). Then B = Q (S¢..)

is compact for all v € Y.

Now, we shall show that B (v) is convex for allv € Y. Let v € Y and vy, vs € B (v).

Select K1, k2 € Si,, such that

v (1) = ﬁ /17 (log 2)0_1 Kis(s)ds
+ (log;) <F<O_A+p> / ! (1og g)w_l Kiis)ds

o1
/ i (S)ds) i=1,2,
S

for almost all 7 € [1,e]. Let 0 < . Then, we have

[wvy 4+ (1 —w) ve] (T)

=i [ (esT) Lo (0) + (=) 0],

i S =

Q oc+p s

_ﬁ /16 <1og g)a—l [wry () + (18 — W) Ky (s)]ds) .
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Since G has convex valued, Sg , is convex, so wky (7) + (1 —w) ke (T) € Sg.. Hence
wu + (1 —w) vy € Qu.

This means that B is convex-valued.

Step 2. In this part, we show that A and C are Lipschitz on Y.
Let v,0 € ). Then by ($;), for 7 € [1, €] we have

|Av (1) — AT (7)| = |¥ (1,0 (1), "0 (1)) =¥ (1,0 (1), ["T(1))|

=0 (1) (lv(r) =T (n)| 1+ 17 (1))
<161 (1+ gy ) I -l

which implies || Av — A7|| < [|O]| (1 + ﬁ) |lv =] for all v,T € Y. Hence, A a
Lipschitzian on Y with with Lipschitz constant [|©.

<O(7)(jv(r) —v(r)|+ Mo (1) = D (7)])

Analogously, for any v, € ), we have

ICv(r) = Co(7)] =

Then

Which means that C is a Lipschitzian on Y with Lipschitz constant » ", %

Step 3. Now, we show that B is compact and upper semi-continuous.
We will show that B maps bounded sets into bounded sets in V. Let T, be a bounded
subset of ). Then, there is a constant p > 0, such that ||v| < p for all v € T,,. Then
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for g € B, v € T, there exists k € Sg,,, such that
O’ 1 k(s
(s) ;.

(1 :(—/ log .
- 2 é : (wﬁp) [ (s ) s

S

log7)7 A " mypret [k (s)]
* 1] (F(U+p)/1 <10g8> s o

—i—ﬁ /16 (log S)J_l |Kis)|ds)
ri ), () e

(10g|;-2)| (F (U>\+ p) /177 (log g)erU_l @ds

+ﬁ /16 (log S)J_l ﬁfﬁds)

91 < gy [ (10w 7)™ s

| /\

(log 7)™ A /’7 n\Pro-1 ds
log il
g e (eel) 3

where

1 1 Alogn)™™ 7
(3.13) 19] [m (1 * |Q|) T o+ 1)} o

for all 7 € [1,e]. Hence, ||g|| < L4, this means that B (7,) is uniformly bounded on Y.
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Now, we will prove that B (7)) is an equicontinuous set in ). Suppose that ¢, €

[1,e] with t; <ty and v € T,. Then, we have

[ ) e [ o) 0]

 (log 1) — (log11)"" (P( - JNCH . Ly

S

b
(o)

g (t2) —g(t1)] =

o—1 o—1
<<log t—2) — <log t—l) ) ‘ Mals
s s s
to o—1
+/ (log t—2) Mds]
t1 S S

logt 772 logt o2 n +o—1
+‘(Og 2) (logt1)”""| A / <logﬂ>p [C4IP
) 1 S

1] C(o+p S

1 [ e\~ [[Y]]
+F(U)/1 (1°g§> )

which is independent of v. Then, the right-hand side of the above inequality tends

to zero when t; — t5. Hence, by using the Arzela-Ascoli theorem, B is completely

continuous operator on 7.

Here, we show that B has a closed graph. Suppose that v, € T, and g¢,, € Bv, for
all n such that v, — v* and ¢, — ¢g*. We show that ¢g* € Bv*. For each natural

number n, select &, € Sg,,, such that for each 7 € [1, €],
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In (T)

Il
Pj
—~
S
~—
»—\
/N
fa—
o
0Q
[
N——
Q
L
=
3
CID/—\
V)
N~—
QU

Consider the linear operator L : L' ([1,¢],R) — ) defined by

T\~ K (s)

/ﬁ»—)L(/{)(T):m/lTOogg) .
(e [ ety

—i—ﬁ /16 (log S)J_l K(ss)ds> .

Note that

b
(o)

lgn (7) = g™ (7)|| =

ds

as n — Q.
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Thus, it follows by Lemma 2.3 that L o .S is a closed graph operator. Further, we

have g, (7) € L (Sg,). As v, — v*, we get

g (1) = ﬁ /IT (log 90_1 K*s(s)ds
+ (log;) <F(a)\+p) /1 ! (1o g)w_l K*s(s)ds

_ﬁ /1 (0s)T S%) ,

for some k* € Sg .+ Hence B has a closed graph. Consequently, the operator B is

upper semi-continuous.

Step 4. We show that the condition (a3) of Lemma 3.1 holds. Since

M = ||B(T,)|| = sup { sup (Bv (T))}

(3 14) veT, | T7€[1,€]
1 1 (1 pto
< 9 [ — (1+—) o Alogn)™” |
T (c+1) 12 QT (p+o+1)]
as

1 1 1 A (log n)?*?
lel| (1 + m) S Py (1 + @) TG ror ]

— Al
+;r(9-+1) <1

)

where 71 = [|O|| (1 + ﬁ) and ro = > " M””) Then condition (az) of Lemma
3.1 is satisfied. So, A, B and C satisfy the conditions of Lemma 3.1.

Step 5. In this last step, we show that the conclusion (ii) of Lemma 3.1 is unachiev-
able.

Let v any solution of the problem (1.1)-(1.2) such that gv € AvBv + Cv for some
o > 1. Then there exists x € S, such that

v(r) =€V (r,v (1), "V (1)) lﬁ /1T <log g)a_l @ds

+(loggf2>"_ (F(Uﬁp) /1 ! <log g)w_l @ds
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where € = % < 1. Therefore, we have

v ()] < W (r,0 (7), T (7)) {% /1 (1og 90_1 LIQIFN

s
(log )" A /" m\Prot |k (s)]
log -
- Q I'(oc+p) i <0gs> s ds

_ z)/ (logff)q—l \mis)\ds)]

< (o (). 10 (1) =¥ (100 + 12 (00D ] |5 [ (e D) 2
U e [ ) [ )

0; ' .
+ Z T (92,1+ 1) /1 (log %) (Ixi (s,v(s)) = xi (s,0)] + |x: (s,0)]) d?

i=1

1 S H—/1 H
<1|e|ll1+ ———- + | L1 + (JJv + Xo E

where L; defined in (3.13), ¥y = sup,¢p ¢ [¥ (7,0,0)] and Xo = sup,¢p ¢ [xi (7, 0)],
1 =1,2,...,m, this gives that

m A;
WoLn + Xo X, mass

L= (Ll (1 + i) + S

lo]l <

Consequently, the conclusion (ii) of Lemma 3.1 does not hold. Thus, the conclusion (i)

holds and consequently the problem (1.1)-(1.2) has at least one solution on [1,e]. O
In order to illustrate the obtained results, we give an example in the next.

Example 3.1. Consider the following hybrid fractional differential inclusion

2i—1

v(r) =S I xi (v (1)
v <7’,U(7’),Ig’v(7')>

wjo

(3.15) D eG(T,U(T),f%U(T)), refl,d,
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with the boundary conditions

v (1) =0,
o ( (1) = S, I (v <f>>> L
(3.16) v (r,v(r), v (T)) -
—_Nm b ;
U(T) Zz:l >§ (T7U(T)) 20702 ([2’5?)) (n)7
v (v (r), 1o (r)
where
1— v (1) .
i\ T = . ) :1a273747
e = s arpen
9 sin v (7)] 1 3
w( NE: ): 3
v (7), 12V (7) l14cosh(v7) 12(7+1) | 1 4 I%U(T)’_‘_
G 12 = [ aeostunt (2 e)
an (T’U(T’ 2)_ cosh(v(7))(24+73)7  2y/7+1
Here,a:g,mzll,(?l:%,92:%,93:%94:%,7:%,]9:%cmd)\:O,02.
We obtain
W (0 1) = ¥ (7,00,7)| € 5 (fon — el + (71— T
T —U(r - -
, U1, U1 , U2, U2 =20+ 1) Uy — U2 U1 — U2
and
i (r.0) = X (7)) < e =] i = 1,2,3,4
i\T,U) = Xi\T,U)| > 577 IV =V, 1= 1,4,9,4
X X 3(6+i+T7)
for v,0,v;,U; € R, j = 1,2. Set O(1) = ﬁ and A; (1) = m
16 =1 and ||A;]| = ﬁ, i=1,2,3,4. For g € G, we have
. 9
1+ cos |v (7)] SH1(12U(T)) 1

9] < max

Then

HG@wﬁ%ﬁwﬂw <9(r),

P

cosh (v (7)) (24 73)" 2T +1 = 2/T+ 1

227

I (7).,

, we get
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where U (1) = ﬁ, thus ||9] = ﬁ

By direct computation, we have

1 1 1 A (log n)P™
ol (” F(7+1)) 121 [r<q+1> (”5) M TPy

— Al
—— =0,3113141 < 1.
R (A

By Theorem 3.1, we claim that problem (3.15)-(5.16) has at least one solution on
1, €.

4. CONCLUSION

In this article, we study a class of hybrid integro-differential inclusions involving
Hadamard-type derivative supplemented with hybrid Hadamard integral boundary
conditions. We investigate the existence results of the suggested problem by means
of hybrid fixed point theorem of Schaefer type for three operators in Banach algebra

due to Dhage. We justify our obtained results by giving an example.
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