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NEW FIXED-POINT THEOREMS ON PARTIALLY E-CONE
METRIC SPACES

ZAHIA DJEDID () AND SHARIFA ALSHARIF (?

ABSTRACT. In this paper, we extend the definition of partial metric space to a
partially E-cone metric space partially ordered with a non-normal positive cone E+
of a real normed space E having empty interior. We prove an extension of some
fixed point theorems of certain contractive maps in partially E-cone metric space
to a larger class of cone metric spaces. Moreover, we establish some convergence

properties of a sequence of elements in the sense partially E-cone metric space.

1. INTRODUCTION

Banach, 1922, [13], presented a method for finding the fixed point of a self operator
in complete metric spaces in a systematic manner. Later on, a lot of work on variants
and generalizations was published to improve the Banach Contraction Principle by
modifying the topology of the space or acting on the contraction requirement,[1]-
[14],[29]-[37], and references therein.

Over the past decades, nonlinear functional analysis, especially fixed point theory
in ordered normed spaces, had covered a large number of applications in optimiza-
tion theory, game theory, dynamical systems, fractals, models in economy, computer
science and many other fields. Among them a partial ordering, is given by utilizing
vector cones crude estimates via a norm by substituting an ordered Banach space

instead of the real line, see [30]-[38]. In 2007, Huang and Zhang, [2] introduced the
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notion of cone metric spaces and afterwards was characterized to what is called E-
normed metric spaces by Al-Rawashdeh-Shatanawi in [6]. Many mathematicians fol-
lowed Huang’s lead and focused on fixed point problems in such spaces (see, [[2]-[25]])
. Most fixed point issues in cone metric spaces are embedded in solid cones, which are
cones with non empty interior. Unfortunately there were just a few results that took
non-solid cones into account. Fortunately in 2017 Basile et al. [15] established the
concept of the semi-interior point which took fixed point results in E-metric spaces
into consideration by embedding non-solid cones that contain semi-interior points in
FE-metric spaces. Embedding such cones in the setting of F—metric spaces, Mehmood
et al. [28] and Huang [21], obtained some fixed theorems in 2019.

In this paper we define the concept of partially E-cone metric space and prove some
fixed point results with reference to a class of cones in normed spaces, i.e. cones with
semi-interior points generalizing some of the existence results in [6, 28]. Our results
would constitute a base to develop the theory of non-solid cones in this direction in

mathematical analysis. The following definitions and results will be needed in this
paper.
Definition 1.1. [23] An ordered space E is a vector space over the real numbers,

with a partial order relation” <7 such that

(1) for all x,y and z € E, x < z implies x +y < z + y.
(2) for all « € RT and for all x € E with x = 0 , ax > Og.

Moreover, if E is equipped with a norm ||.||, then E is called normed ordered space.

Definition 1.2. [21]. Let E be a real normed space, E™ be a non-empty closed and
convez subset of E, and O be a zero element in E. Then ET is called a positive cone
if it satisfies

(1) x € ET and a > 0 imply ax € E™;

(2) x € ET and —x € E* imply x = Op.

Definition 1.3. [23] Let E be a real normed space and E* a positive cone in E. We

say = 1s a partial ordering relation on E if

v, yE€E, =y ifand onlyif y—x € E™.
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Clearly,

x € ET if and only if O =< x.

Definition 1.4. [28] Let E be a real normed space and E* a positive cone in E.
Then ET is called:
(1) a solid cone if intE* # &;

(2) a normal cone if there exists an K > 0 such that
Op 2z =y imply |zf < Kllyll, forallz,ycFE.

The least positive number satisfying the above is called the normal constant of

E*.

Definition 1.5. [17] The cone E™T is called regular if every increasing sequence which
s bounded from above is convergent.

That is, if {Yn},>, is sequence such that

Yi 2 Y = . 2 yp = ... 2z, for somex € BT,

then there is y € ET such that
[y —yll =0 (n — o0).

Equivalently, the cone ET is reqular if and only if every decreasing sequence which
1s bounded from below is convergent. It is well known that a regular cone is a normal

cone.
The following definition of an E-metric space defined in [6].

Definition 1.6. [6]. Let X be a non-empty set and let E be an ordered space over
the real scalars. An ordered E-metric on X is an E-valued function df : X x X — E

such that for all x,y and z € X, we have
(1) 0p = d” (z,y), d” (z,y) = Og if and only if v = y;

(2) d¥ (z,y) = d” (y,x);
(3) dP (z,y) = d¥ (x,2) +d¥ (z,y).

Then the pair d¥ (X, d) is called E—metric space.
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Example 1.7. [7] Let E = R?, BT = {(z,y) € E:2,y >0}, X = R and d :
X x X — E be defined by d¥ (x,y) = (|xr — y|,a |z —y|), where a > 0 is a constant.

Then (X, d”) is an E-cone metric space.

2. PARTIALLY E-CONE METRIC SPACE

Let E be an ordered normed space ordered by the positive cone Et, we shall denote

by Og the zero of E. We say that

The closed unit ball of Eis B={z € E: |z|| < 1},

and that
the positive part of Bis B, = BN E™.
The point xy € ET is called a semi-interior point of E7 if there exists a real number
A > 0 such that
19— A\B, C ET.
Here and thereafter, denote by (ET)? the set of all semi-interior points of £+,

Any interior point of E7 is a semi-interior point. However, the converse is not true

as shown by the following (Example 2.5 in [15])

Example 2.1. Let X,, = R? ordered point wise and endowed with norm |||, , where

|| + [y] if xy>0

.l = o |
max{|zl], [y} — *=minf|z], [y}, if xy <0

It is easy to show, that the unit ball of X,, is the polygon D,, with vertices,

(—n,n),(-1,0),(0,—1),(n,—n),(1,0),(0,1). Let

E— X = (xn)nGvin = (l’iaxi) € Xn

and ||z, < mg,my >0 depends on

Suppose that E is ordered by the use of ET = {y = (yn) € E : y, € R for any n}
and normed by ||y|| . = sup ||ya.ll,, -
Let X = Et — E* be nt?zjz subspace of E generated by ET ordered by X+t = E™T.
Now if 1 =(y,) € X,y, = (1,1) for every n, then 1 cannot be an interior point
of XT. In fact, if for any positive integer k, let x = (x,) of X with z,, = (—2,2)
and x, = (0,0) for any n # m. It is easy to show that ||z]|, =2 and 1+x ¢ XT.
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Therefore, 1 + ABy € X, for any A > 0. Hence, 1 is cannot be an interior point of
the space Xt. Similarly one can show that int(X™) = ¢ and the point 1 = (y,) is a

semi interior point of X.

Now, let F be a normed space ordered by its positive cone E*. For x,y € ET,
z < y if and only if y—x € (E+)?.
It is clear that
€ (E+)® if and only if 0p <« .

We shall give some topological properties relevant to semi-interior points in FE-

metric spaces.
Proposition 2.2. [21]. Ifz,y € E. Then y < x implies y < x.
Proposition 2.3. Let x,y,z € E. If 0 Xz and x <y — z, then x < y.
Proof. Let x,y,z € E'and 0 < z, x <y — 2, then

0<z,y—z—x€kET,
Noting that E* is a positive cone, it follows that

y—r=y—2—1)+2€ET,
Thus, y —x € ET, that is z < y. O
Proposition 2.4. Let x,y,z € E. Then 0 <Xz, ©* <Ky — z implies v <K y.
Proof. Let x,y,z € E and © << y — 2, then
y—z—1x € (E+)®.

Hence, there exists A > 0 such that

y—z—x—\B, CE™T.
Noting that ET is a positive cone and z — x € E™, it follows that

y—r—AB,=(Wy—2—-AB,)+(z—z)C E".

Thus, y — z € (E1)?, that is << y. O

We now state the following definition of partially E-cone metric space.
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Definition 2.5. Let X # ¢ and E be an ordered space over the real scalars ordered
by its positive cone with the assumption that (E+)® is non-empty. A partially E-cone
metric on X is a function p® : X x X — ET such that for all z,y,z € X;

(P1): Op = pP(z,2) = p¥(2,y),

(P2): @ =y <= p(z,2) =p"(z,y) =p

(P3): p(z,y) = p"(y, 2),

Bz, y),

(pa): P"(z,y) 2 pP(x,2) +p"(2,y) — p"(2, 2).

A partial E-cone metric space is a pair (X, p¥) such that X is non-empty set and
pP is a partially E-cone metric on the set X.
It is obvious that, if p¥(z,y) = Og, then from (p;) and (p3),z = y. But if x = y,

pP(z,y) may not be equal to 0.

Example 2.6. Let E =R?* ET ={(y,2) € E:y,2 >0}, X =R" andp® : XxX —
E* defined by

p"(y,2) = (max {y, z},amax {y, z}), where a >0 is a constant.

Then (X, p?) is a partially E-cone metric space.

Now we define the e-convergence and the e-Cauchy convergence criteria in the

ordered normed space F, with non-solid cone E™.

Definition 2.7. Let E be a ordered normed space with the assumption that (E*)?

is non-empty and (X, pE) be a partially E-cone metric. Let (x,) be a sequence in X

and x € X. Then

(1) A sequence (x,,) is said to be e-converges to x if for every Op << e, there exists

a natural number ng such that
PP (z,,7) < e, for alln > ny.

In this case, we write lim x,, = & or x, — .
n—oo
(i) A sequence (x,) is said to be e-Cauchy sequence if for every Op << e, there

exists a natural number ng such that

pF (2, 1) <K e, for all n,m > ny.
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(131) (X, pE) s e-complete if every e-Cauchy sequence is e-convergent.

Theorem 2.8. Let (X, pE) be a partially E-cone metric space and {x,} a sequence

in X satisfying
pE (zna xn-{—l) = )\pE (zn—la zn) (n = 1,2, ) )
where 0 < X\ < 1 is a constant. Then {x,} is an e-Cauchy sequence in X.

Proof. Suppose that x,, is a contractive sequence in X. Then for some real number

A € [0,1), we have
pE (I'n, xn—l—l) j )‘pE (xn—17 xn) j )‘2pE (In—27 xn—l) j j >\an (.flf(], xl) .
For any n,m € N using Proposition 2.3, we have

pE (xma xn) j pE L, xm—l) +pE (xm—lu xm—2) + ... _'_pE (In—l—lv xn)

m—n—1

- Z pE (xm—raxm—r>

r=1

A

pE (T Trp1) + pE (Trm—1, Tm—2) + ... +pE (Tnt1, Tn)

= (WP AT L+ A P (o, 21)
1— A
A" <ﬁ) PE (36’1, xo) .

Let 0p < e be given, choose p > 0 such that e — pB, C ET and a natural number
ky such that \™ (%) p¥ (x1,20) € 8B, for any m,n > k. Therefore,

A

1_)\n—m
e— A" (7) p" (1, 20) — gB+ Ce—pBy CE".

1—A
Hence,
E m (L=A""\ g
P (T, ) <A — 5 )P (x1,70) < e, forall n,m > ky,
which implies (z,) is an e-Cauchy sequence in X. O

Theorem 2.9. Let (X, pE) be a partially E-cone metric space with closed positive
cone Etsuch that (ET)? # 0. If (E,|.||) is an e-complete space and {x,},{y.} are
e-Cauchy sequences in X, then ET is not normal cone provided that {pE (T, yn)} is

not e-convergent in E.
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Proof. Assume that {pE (T, yn)} is not e-convergent in £ and E7 is a normal cone

with the normal constant K. As {z,,} and {y,} are e-Cauchy sequences, for ¢ > 0

and e € (ET)? with ||e|| < 52—, there exist ny,ny € N such that

2K 1
(2.1) PE (T, ) K Z, for all n,m > nq,
(2.2) PE (Y, ym) <K Z, for all n,m > ns.

Let n = max {ny,ns}, then for all n,m > n,

PP (@, yn) =X DF (@ny ) + D (@, Ym) + DT (Yn, Un)

(2'3) _pE (Imv xm) - pE (yma ym)
(2.4) & PP (T Ym) + g
pE (:Em, ym) = pE (zrm ZEn) + pE (:L’n, yn) + pE (ym ym)
(2.5) —0" (20, 20) = DT (Yns Un)
(2.6) < PP (2n,yn) + g

Combing (2.4) and (2.6), we have

e

OE K PE (xma ym) + 5 - pE (ZL’n, yn)

(& (&
(2.7) & PP (wns ) + 5+ 5 =07 () = €

By applying(2.7), we establish
(2.8) 0 << P (s ) + 5 = P (0 ) < e
Since ET is a normal cone, then it may be verified from (2.8) that

€
(2.9) [P ) + 5 =97 @0 )| | < K el

2

Hence, using (2.9), we obtain

105 @y ) = 7 @) | < ([0 @) + 5 = 0

1
<K+ 5) lle]| < e,

T, Yn)

+ 2l
2

IA
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which means that {p” (2,,y,)} is an e-Cauchy in E. Since (E, ||.||) is an e-complete,
then { ¥ (2, yn)} is e—convergent. This leads to a contradiction with the hypothesis.
O

3. FIXED POINT THEOREMS IN PARTIALLY E-CONE METRIC SPACE

Now we present a generalization of Theorem 1 of [28] as follows:

Theorem 3.1. Let (X, pE) be an e—complete partially E-cone metric space ordered
by its closed positive cone E*such that (ET)? # 0. If T : X — X is a mapping
satisfying

E(Tx, Ty) = \p® (z,y), forall z,y € X and some X € [0,1),

then T has a unique fized point in X, and for each x € X, the sequence (1"z),,
converges to the fixed point of T.

Proof. For any zy € X, consider the iterative sequence
L+l = TLUn = Tnflf()

with z, # x,.1 for n € N. Using Theorem 2.8 we get (z,,) is an e-Cauchy sequence.
But X is e-complete so there exists some x € X such that x, - x. For a given

0p, << e, choose k € N, such that p” (z,z,) < & for all n > k.

pE (Ia TI) = (:L’ In) (zm Tx) - pE (xna xn)
= p"(x,20) +p” (w0, Tx)
j (Zlﬁ',l’n) +)\p (xazn—l)
=< PP (z,2,) + 0¥ (2, 201)
<Y ¢ + - e
2 2 7

Since p¥ (z,Tz) < e for any Op << e, therefore e — p¥ (z,Tx) € ET which implies
—pP (z,Tx) € E*. But p¥ (x,Tz) € E*. Therefore, p¥ (z,Tx) = 0 and hence,
z="Tx.

To prove that the fixed point x is unique, let y € X be such that x # y = Ty, then

PP (z,y) = p* (Tz, Ty) < W (z,y),
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which implies pZ (x,y) = 0g. This proves the theorem. O

Corollary 3.2. Let (X,pE) be an e-complete partially E-cone metric space with
closed positive cone Etsuch that (ET)° # 0. For Op << e and xy € X, set B (xg,¢) =
{y € X :p¥ (20,y) K e} LAf T X — X is a mapping such that

p” (T, Ty) < \p” (z,y),

for all x,y € B (xg,¢€), where A € [0,1) is a constant and p® (zg, Txe) <K (1 — A)e,
then T has a unique fized point in B (g, €) .

Proof. First we show that B (x¢, e) as an e-complete space. Let {z,} be an e-Cauchy
sequence in B (zg,e), then {z,} is also e-Cauchy sequence in the given e-complete
space X, therefore there exists some x € X such that z, = z. as n — 00,

Now we have

A

p” (2, %0) pY (@, @) +p” (w0, 20) = ¥ (w0, ) -
= p" (2 2) +p (24, 20)
K e
Thus, x € B(zo,e).
To complete the proof, we have to show that 7" is a self mapping on B (xg,e). Let
z € B(xg,e). Then
pP (2, Tz) = p* (20, Txo) + p” (Txo, T2) — p* (Txo, T0)
=< pP (2o, Txo) + p*¥ (Txo, T2)
& (I-XNe+re=ce.
Using Theorem 3.1, we conclude that T has a unique fixed point in B (zg, e) . O

Corollary 3.3. Let (X, pE) be an e-complete partially E-cone metric space ordered
by its closed positive cone Etsuch that (ET)° # 0. If for some n € N, the mapping
T: X — X satisfies

(3.1) p" (T"z, T"y) = Ap” (z,y),

for all z,y € X, where A € [0,1) is a constant, then T' has a unique fized point in X.
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Proof. Let W = T™. Then from (3.1), we get
p? Wz, Wy) < \pP (2,y), for all 2,y € X.
So by Theorem 3.1, W has a unique fixed point zy. But
T" (Txg) =T (T"xo) = Txo.

So T'xg is also a fixed point of W = T". Hence T'zy = xg and zg is a fixed point of T

Since the fixed of T is also fixed point of T, the fixed point of T" is unique. O

Next we generalize Theorem 2 in [28] and Theorem 2.6 in [34] as follows:

Theorem 3.4. Let (X,pE) be an e-complete partially E-metric space with closed
positive cone ETsuch that (ET)° # 0. Let T : X — X be mapping satisfying

p” (Tx,Ty) 2\ [p” (Tz,x) + p” (Ty,y)]

for all x,y € X and some \ € [0, %) . Then T has a unique fized point in X, and for

any v € X, the sequence (T"a:)nZO e-converges to the fized point of X.

Proof. For any z € X, consider the interactive sequence (z,) such that
Tni1 = Tx, with z,, # x,,1 forn € N.

Then,

pE (xn-i-lu xn) = pE (Txn7 Txn—l) j )\ (pE (TITH xn) + pE (Txn—h xn—l))

A

)\ (pE (xn-i-l’ xn) + pE (xn7 xn—l)) .

So,

A
T—\

A

pE (xn—l—lu xn) pE (xn7 xn—l) == an (xn7 xn—l)

A
= 0"p” (x1,20), where = T € [0,1).

Now for n > m, using the same argument in Theorem 2.8, we obtain

. 1— ,r]n—m
pE (ITH xm) j n (777) pE (xlv LUO) )
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which implies that (x,) is an e-Cauchy sequence, as X is e-complete, there exists = €

X such that z,, = z. For a given 0p < e, choose k € N, such that pF (Tngr, 1) K

6(12;A)= and p* (2,41, T7) K @ for all n > k. Then,

pP (Tz,x) = p¥ (T, Tx)+p" (Txy, 1) — p¥ (Tpit, Tny1)
< pF (Tx,,Tx) + p¥ (Tx,, )
= A p" (Twn, 2) +p® (T, 2)] + p* (2041, T2)
< D ) 7 (i, T)]

& e, foralln>k.

Since, p¥ (x, Tx) < e, therefore, e — p¥ (z,Tx) € ET, which implies — p¥ (z,Tz) €
E*. But p¥ (z,Tx) € E*. Hence p” (z,Tz) = 0, and x = Tx.

To prove uniqueness, let y € X be such that = # y = Ty, then
P (x,y) = p® (Tx,Ty) < X [p® (Tz,z) + p® (Ty,y)] = O,
which implies pZ (x,y) = 0g. This proves the theorem. O

Now we present the generalized versions of the Theorem 3 in [28].

Theorem 3.5. Let (X, pE) be an e-complete partially E-cone metric space with closed

positive cone ETsuch that (ET)° # 0. Let T : X — X be mapping satisfying
p? (Tx, Ty) < A [p® (T, y) +p® (Ty, )]

for all x,y € X and some \ € [0, %) . Then T has a unique fized point in X, and for

each v € X, the sequence (T"a:)nzo e-converges to the fived point of T.

Proof. For any z, € X, consider the sequence (z,) such that

Tpy1 = Tx, with x,, # x,,1 for n € N.
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Then,
p” (Tnt1,Tn) = p” (Txp, Tn1)

= A" (Tzn, x0-1) + 9" (Tap_1,32))

= A" (@nt1, Tno1) + 7 (20, 22))

= AP (zps1, n) + 07 (@0, 0e1) — PP (2, ) + D7 (20, 20))
P (st = o ()

)\ n
f (m) pE (SL’l,xo).

For § = ﬁ € [0,1), following a similar argument in Theorem 3.4, it is easy to see T’
has a fixed point in X, and for each x € X, the iterative sequence (T":L’)nzo converges
to the fixed point of T.

To prove uniqueness, let z,y € X be two fixed points of T such that x # y. Then,

pP(xy) = p" Tz, Ty) 2 X(p" (Tz,y) +p” (T'y, x))
+p* (Ty,y) + " (v, z) = 0" (v, )
=< 2\p” (z,y), for2X2¢€[0,1),

IA
>

which implies p¥ (x,y) = Og. This proves the theorem. O

Following Reich type contraction mapping [33], we will prove another fixed point

theorem in partially E-cone metric space.

Theorem 3.6. Let (X, pE) be an e-complete partially E-cone metric space ordered
by its closed positive cone E*such that (ET)? # 0. If T : X — X is a mapping
satisfying

B (Tl’, Ty) j alpE (TZIZ', I) + a2pE (Tya y) + CVSPE (ZIZ’, y) ;

for all x,y € X, where 0 < a1 +as + a3 < 1 and oy, a9, a3 > 0, then T has a
unique fixed point in X, and for each x € X, the sequence (T”l’)nzo e-converges to

the unique fized point of T.
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Proof. Choose xy € X. Define (z,,) as
Tpp1 = T, = T .
Then,

pE (xn—i-lu xn) = pE (TLU”, Ta:n—l)

A

alpE (TLU”, xn) + Oész (Txn—lv xn—l) + a3pE (ZL’n, xn—l)

j alpE (xn-i-lu xn) + a2pE ('TTH xn—l) + 053pE (xn7 xn—l) )

which implies that

where v = e < 1.

For n > m,
B (LUm, $m+1> +pE (xm—l—l; Zl,’m+2) + .. _'_pE (xn—lv In)
n—m—1

- pE (xm—l-rv xm+r>

r=1

PP (T, 20) <X p

A

pE (:Em, zm-ﬁ-l) + pE (xm—i-l, :L’m+2) + .. +pE (zn—b ZEn)

A

(V" A 4 ) PP (21, 20)

A

YLy 7+ ey T ) " (21, 20)
1 —Anm
" (%) pF (21, 20) -

Let e >> 0 be given, choose p > 0 such that e — pB, C ET and a natural number

n—m

k1 € N such that 4™ (1_77

- )pE (w1,70) € 5B, for any m,n > k;. Therefore,

1 — An—m
e_fym(%)pE(xl’xo)_gB_l_ge—pB+gE+, for all n,m > ky.

Thus,

1—~""

PE (T, ) <A™ ( . )pE (x1,70) K e, for all n,m > ky,
-

which implies that (z,) is an e-Cauchy sequence, since X is e-complete so there exists

some z € X such that z, — .
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For a given e >> 0, choose ko € N, such that p¥ (2,41, 1,) K (1%12)6, PP (z,, 1) K

(1-az)e and pE (xn+1,x) K g fOl" all n Z k2- Then?

3as

p¥ (Tx,x) =< pP (Tx,, Tx) + p¥ (Tx,,x) — pP (Txp, Txy)

< p" (Tzy, Tx) + p® (Txy, )

=< ap? (Tan, 2,) + aop® (T, ) + asp® (2, ) + pP (2pg1, 2)
j alpE ($n+1a xn) + a2pE (TZL’, ZL’) + ang (xrw ZL’) + pE ($n+1a ZL’) .

Hence,
1
PP (T0a) 2 (G, ) + asp” (5, 2) + 9 (11, 0)
— Qg
& §+§+§:€’ for all n > ks.

Thus, p¥ (z, Tx) < e for any e >> 0. Therefore e — p¥ (z, Tz) € ET which implies
— pP (2, Tx) € ET. Since p¥ (z,Tx) € ET, it follows that p¥ (T'z,x) = Op and hence
x is a fixed point of T.

To prove uniqueness, let y be another fixed point of 7' such that x # y = Ty and
0 <oy + as+ as < 1. Then,

PP (z,y) = p" (Tx,Ty)
=< ap” (T, ) + asp” (Ty,y) + asp” (Tx,y)

= a3pE (QU, y) )
which implies that p” (z,y) = 0 and hence z = y. O

Theorem 3.7. Let (X, pE) be an e-complete partially E-cone metric space ordered
by its closed positive cone E*such that (ET)? # 0. If T - X — X is a mapping
satisfying

(3.2) p¥ (T, Ty) 2 Amax {p” (z,y),p" (x,Tx),p" (y, Ty)}

for all x,y € X, where A\ € [0,1), then, T has a unique fized point x € X and
pP (Tz,x) = 0p.
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Proof. For the existence of fixed point, let zq € X be arbitrary and define a sequence

(zn) by

Tpi1 = Tx, foralln>0.
Now, for any n we obtain from (3.2) that
PP (Tns1,mn) = p* (T, Ty
j Amax {pE (ZL’n, zn—l) >pE (ZL’n, Txn) apE (zn—1> Txn—l)}

= Amax {pE (Zlﬁ'n, In—l) >pE (Zlﬁ'n, In—i—l) >pE (xn—la zn)}

= Amax {pE (T, Tp1) >pE (Tn, zn-i-l)} :

If max {p* (1, Tn-1) , PF (#n, Tns1) } = P (@n, Tni1) , then we obtain

pE (In—i-lv xn) j )‘pE (ZL’n, xn—i—l) j pE (In—i-lv xn) )

which is a contradiction. Therefore, we must have

max {pE (l’n, xn—l) >pE (Zlfn, xn-i—l)} - pE (l’n, zn—l) .

Consequently,
pE (In—i-la xn) j )\pE (zna zn—l) .

Following the argument in Theorem 3.1 It is easy to see that T" has a fixed point in
X, and for each x € X, the sequence (1"z),, e-converges to the fixed point of T.

To prove uniqueness of the fixed point, let z,y € X be two fixed points of T" such
that = # y. Then,

pP (x,y) = p¥ (Tx,Ty) 2 Amax {p” (z,y),p" (z,Tx),p" (y, Ty)}
= Amax {p” (z,y),p" (z,2),p" (y.y)}

This is also a contradiction. Therefore, we must have p” (z,y) = O, that is, z = y.

This proves the theorem. U
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4. CONCLUSION

Some additional properties of partially F-cone metric space have been established

in this paper. We have generalized some more fixed theorems due to Kannan, Chat-

terjea and Reich in partially E-cone metric space with non solid and non-normal

cones. However, these results have vast potential in solving various nonlinear prob-

lems in functional analysis, integral and differential equations, computer science and

many other fields.
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