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NEW FIXED-POINT THEOREMS ON PARTIALLY E-CONE
METRIC SPACES

ZAHIA DJEDID (1) AND SHARIFA ALSHARIF (2)

Abstract. In this paper, we extend the definition of partial metric space to a

partially E-cone metric space partially ordered with a non-normal positive cone E+

of a real normed space E having empty interior. We prove an extension of some

fixed point theorems of certain contractive maps in partially E-cone metric space

to a larger class of cone metric spaces. Moreover, we establish some convergence

properties of a sequence of elements in the sense partially E-cone metric space.

1. Introduction

Banach, 1922, [13], presented a method for finding the fixed point of a self operator

in complete metric spaces in a systematic manner. Later on, a lot of work on variants

and generalizations was published to improve the Banach Contraction Principle by

modifying the topology of the space or acting on the contraction requirement,[1]-

[14],[29]-[37], and references therein.

Over the past decades, nonlinear functional analysis, especially fixed point theory

in ordered normed spaces, had covered a large number of applications in optimiza-

tion theory, game theory, dynamical systems, fractals, models in economy, computer

science and many other fields. Among them a partial ordering, is given by utilizing

vector cones crude estimates via a norm by substituting an ordered Banach space

instead of the real line, see [30]-[38]. In 2007, Huang and Zhang, [2] introduced the
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notion of cone metric spaces and afterwards was characterized to what is called E-

normed metric spaces by Al-Rawashdeh-Shatanawi in [6]. Many mathematicians fol-

lowed Huang’s lead and focused on fixed point problems in such spaces (see, [[2]-[25]])

. Most fixed point issues in cone metric spaces are embedded in solid cones, which are

cones with non empty interior. Unfortunately there were just a few results that took

non-solid cones into account. Fortunately in 2017 Basile et al. [15] established the

concept of the semi-interior point which took fixed point results in E-metric spaces

into consideration by embedding non-solid cones that contain semi-interior points in

E-metric spaces. Embedding such cones in the setting of E−metric spaces, Mehmood

et al. [28] and Huang [21], obtained some fixed theorems in 2019.

In this paper we define the concept of partially E-cone metric space and prove some

fixed point results with reference to a class of cones in normed spaces, i.e. cones with

semi-interior points generalizing some of the existence results in [6, 28]. Our results

would constitute a base to develop the theory of non-solid cones in this direction in

mathematical analysis. The following definitions and results will be needed in this

paper.

Definition 1.1. [23] An ordered space E is a vector space over the real numbers,

with a partial order relation ” � ” such that

(1) for all x, y and z ∈ E, x � z implies x+ y � z + y.

(2) for all α ∈ R+ and for all x ∈ E with x � 0E , αx � 0E.

Moreover, if E is equipped with a norm ‖.‖, then E is called normed ordered space.

Definition 1.2. [21]. Let E be a real normed space, E+ be a non-empty closed and

convex subset of E, and 0E be a zero element in E. Then E+ is called a positive cone

if it satisfies

(1) x ∈ E+ and a ≥ 0 imply ax ∈ E+;

(2) x ∈ E+ and −x ∈ E+ imply x = 0E.

Definition 1.3. [23] Let E be a real normed space and E+ a positive cone in E. We

say � is a partial ordering relation on E if

x, y ∈ E, x � y if and only if y − x ∈ E+.
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Clearly,

x ∈ E+ if and only if 0E � x.

Definition 1.4. [28] Let E be a real normed space and E+ a positive cone in E.

Then E+ is called:

(1) a solid cone if intE+ 6= ∅;

(2) a normal cone if there exists an K > 0 such that

0E � x � y imply ‖x‖ ≤ K‖y‖, for all x, y ∈ E.

The least positive number satisfying the above is called the normal constant of

E+.

Definition 1.5. [17] The cone E+ is called regular if every increasing sequence which

is bounded from above is convergent.

That is, if {yn}n≥1 is sequence such that

y1 � y2 � ... � yn � ... � x, for some x ∈ E+,

then there is y ∈ E+ such that

‖yn − y‖ → 0 (n → ∞) .

Equivalently, the cone E+ is regular if and only if every decreasing sequence which

is bounded from below is convergent. It is well known that a regular cone is a normal

cone.

The following definition of an E-metric space defined in [6].

Definition 1.6. [6]. Let X be a non-empty set and let E be an ordered space over

the real scalars. An ordered E-metric on X is an E-valued function dE : X×X → E

such that for all x, y and z ∈ X, we have

(1) 0E � dE (x, y) , dE (x, y) = 0E if and only if x = y;

(2) dE (x, y) = dE (y, x) ;

(3) dE (x, y) � dE (x, z) + dE (z, y) .

Then the pair dE (X, d) is called E−metric space.
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Example 1.7. [7] Let E = R2, E+ = {(x, y) ∈ E : x, y ≥ 0} , X = R and d :

X ×X → E be defined by dE (x, y) = (|x− y| , α |x− y|) , where α ≥ 0 is a constant.

Then
(

X, dE
)

is an E-cone metric space.

2. Partially E-Cone Metric Space

Let E be an ordered normed space ordered by the positive cone E+, we shall denote

by 0E the zero of E. We say that

The closed unit ball of E is B = {x ∈ E : ‖x‖ ≤ 1} ,

and that

the positive part of B is B+ = B ∩ E+.

The point x0 ∈ E+ is called a semi-interior point of E+ if there exists a real number

λ > 0 such that

x0 − λB+ ⊆ E+.

Here and thereafter, denote by (E+)
⊘
the set of all semi-interior points of E+.

Any interior point of E+ is a semi-interior point. However, the converse is not true

as shown by the following (Example 2.5 in [15])

Example 2.1. Let Xn = R2 ordered point wise and endowed with norm ‖.‖n , where

||(x, y)||n =







|x|+ |y| if xy ≥ 0

max{|x|, |y|} − n−1
n
min{|x|, |y|}, if xy < 0

It is easy to show, that the unit ball of Xn is the polygon Dn with vertices,

(−n, n) , (−1, 0) , (0,−1) , (n,−n) , (1, 0) , (0, 1) . Let

E =







x = (xn)n∈N , xn = (x1
n, x

2
n) ∈ Xn

and ‖xn‖n ≤ mx, mx > 0 depends on x







.

Suppose that E is ordered by the use of E+ = {y = (yn) ∈ E : yn ∈ R2
+ for any n}

and normed by ‖y‖
∞

= sup
n∈N

‖yn‖n .

Let X = E+ − E+ be the subspace of E generated by E+ ordered by X+ = E+.

Now if 1 = (yn) ∈ X, yn = (1, 1) for every n, then 1 cannot be an interior point

of X+. In fact, if for any positive integer k, let x = (xn) of X with xm = (−2, 2)

and xn = (0, 0) for any n 6= m. It is easy to show that ‖x‖
∞

= 2
m

and 1 + x /∈ X+.
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Therefore, 1+ λB+ * X+, for any λ > 0. Hence, 1 is cannot be an interior point of

the space X+. Similarly one can show that int(X+) = φ and the point 1 = (yn) is a

semi interior point of X+.

Now, let E be a normed space ordered by its positive cone E+. For x, y ∈ E+,

x ≪ y if and only if y − x ∈ (E+)
⊘
.

It is clear that

x ∈
(

E+
)⊘

if and only if 0E ≪ x.

We shall give some topological properties relevant to semi-interior points in E-

metric spaces.

Proposition 2.2. [21]. If x, y ∈ E. Then y ≪ x implies y � x.

Proposition 2.3. Let x, y, z ∈ E. If 0 � z and x � y − z, then x � y.

Proof. Let x, y, z ∈ E and 0 � z, x � y − z, then

0 � z, y − z − x ∈ E+.

Noting that E+ is a positive cone, it follows that

y − x = (y − z − x) + z ∈ E+,

Thus, y − x ∈ E+, that is x � y. �

Proposition 2.4. Let x, y, z ∈ E. Then 0 � z, x ≪ y − z implies x ≪ y.

Proof. Let x, y, z ∈ E and x ≪ y − z, then

y − z − x ∈
(

E+
)⊘

.

Hence, there exists λ > 0 such that

y − z − x− λB+ ⊆ E+.

Noting that E+ is a positive cone and z − x ∈ E+, it follows that

y − x− λB+ = (y − z − λB+) + (z − x) ⊆ E+.

Thus, y − x ∈ (E+)
⊘
, that is x ≪ y. �

We now state the following definition of partially E-cone metric space.
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Definition 2.5. Let X 6= φ and E be an ordered space over the real scalars ordered

by its positive cone with the assumption that (E+)
⊘
is non-empty. A partially E-cone

metric on X is a function pE : X ×X → E+ such that for all x, y, z ∈ X ;

(p1): 0E � pE(x, x) � pE(x, y),

(p2): x = y ⇐⇒ pE(x, x) = pE(x, y) = pE(x, y),

(p3): p
E(x, y) = pE(y, x),

(p4): p
E(x, y) � pE(x, z) + pE(x, y)− pE(z, z).

A partial E-cone metric space is a pair (X, pE) such that X is non-empty set and

pE is a partially E-cone metric on the set X.

It is obvious that, if pE(x, y) = 0E, then from (p1) and (p2), x = y. But if x = y,

pE(x, y) may not be equal to 0E.

Example 2.6. Let E = R2, E+ = {(y, z) ∈ E : y, z ≥ 0}, X = R+ and pE : X×X →

E+ defined by

pE(y, z) = (max {y, z} , amax {y, z}) , where a ≥ 0 is a constant.

Then (X, pE) is a partially E-cone metric space.

Now we define the e-convergence and the e-Cauchy convergence criteria in the

ordered normed space E, with non-solid cone E+.

Definition 2.7. Let E be a ordered normed space with the assumption that (E+)
⊘

is non-empty and
(

X, pE
)

be a partially E-cone metric. Let (xn) be a sequence in X

and x ∈ X. Then

(i) A sequence (xn) is said to be e-converges to x if for every 0E ≪ e, there exists

a natural number n0 such that

pE (xn, x) ≪ e, for all n ≥ n0.

In this case, we write lim
n→∞

xn = x or xn
e
→ x.

(ii) A sequence (xn) is said to be e-Cauchy sequence if for every 0E ≪ e, there

exists a natural number n0 such that

pE (xn, xm) ≪ e, for all n,m ≥ n0.
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(iii)
(

X, pE
)

is e-complete if every e-Cauchy sequence is e-convergent.

Theorem 2.8. Let
(

X, pE
)

be a partially E-cone metric space and {xn} a sequence

in X satisfying

pE (xn, xn+1) � λpE (xn−1, xn) (n = 1, 2, ...) ,

where 0 ≤ λ < 1 is a constant. Then {xn} is an e-Cauchy sequence in X.

Proof. Suppose that xn is a contractive sequence in X. Then for some real number

λ ∈ [0, 1), we have

pE (xn, xn+1) � λpE (xn−1, xn) � λ2pE (xn−2, xn−1) � ... � λnpE (x0, x1) .

For any n,m ∈ N using Proposition 2.3, we have

pE (xm, xn) � pE (xm, xm−1) + pE (xm−1, xm−2) + ... + pE (xn+1, xn)

−
m−n−1
∑

r=1

pE (xm−r, xm−r)

� pE (xm, xm−1) + pE (xm−1, xm−2) + ... + pE (xn+1, xn)

�
(

λm−1 + λm−2 + ...+ λn
)

pE (x0, x1)

� λm

(

1− λn−m

1− λ

)

pE (x1, x0) .

Let 0E ≪ e be given, choose ρ > 0 such that e − ρB+ ⊆ E+ and a natural number

k1 such that λm
(

1−λn−m

1−λ

)

pE (x1, x0) ∈
ρ

2
B+ for any m,n ≥ k1. Therefore,

e− λm

(

1− λn−m

1− λ

)

pE (x1, x0)−
ρ

2
B+ ⊆ e− ρB+ ⊆ E+.

Hence,

pE (xm, xn) � λm

(

1− λn−m

1− λ

)

pE (x1, x0) ≪ e, for all n,m ≥ k1,

which implies (xn) is an e-Cauchy sequence in X. �

Theorem 2.9. Let
(

X, pE
)

be a partially E-cone metric space with closed positive

cone E+such that (E+)
⊘ 6= ∅. If (E, ‖.‖) is an e-complete space and {xn} , {yn} are

e-Cauchy sequences in X, then E+ is not normal cone provided that
{

pE (xn, yn)
}

is

not e-convergent in E.
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Proof. Assume that
{

pE (xn, yn)
}

is not e-convergent in E and E+ is a normal cone

with the normal constant K. As {xn} and {yn} are e-Cauchy sequences, for ε > 0

and e ∈ (E+)
⊘
with ‖e‖ < 2ε

2K+1
, there exist n1, n2 ∈ N such that

(2.1) pE (xn, xm) ≪
e

4
, for all n,m > n1,

(2.2) pE (yn, ym) ≪
e

4
, for all n,m > n2.

Let n = max {n1, n2} , then for all n,m > n,

pE (xn, yn) � pE (xn, xm) + pE (xm, ym) + pE (ym, yn)

−pE (xm, xm)− pE (ym, ym)(2.3)

≪ pE (xm, ym) +
e

2
,(2.4)

pE (xm, ym) � pE (xm, xn) + pE (xn, yn) + pE (yn, ym)

−pE (xn, xn)− pE (yn, yn)(2.5)

≪ pE (xn, yn) +
e

2
.(2.6)

Combing (2.4) and (2.6), we have

0E ≪ pE (xm, ym) +
e

2
− pE (xn, yn)

≪ pE (xn, yn) +
e

2
+

e

2
− pE (xn, yn) = e.(2.7)

By applying(2.7), we establish

(2.8) 0E ≪ pE (xm, ym) +
e

2
− pE (xn, yn) ≪ e.

Since E+ is a normal cone, then it may be verified from (2.8) that

(2.9)
∥

∥

∥
pE (xm, ym) +

e

2
− pE (xn, yn)

∥

∥

∥
≤ K ‖e‖ .

Hence, using (2.9), we obtain

∥

∥pE (xm, ym)− pE (xn, yn)
∥

∥ ≤
∥

∥

∥
pE (xm, ym) +

e

2
− pE (xn, yn)

∥

∥

∥
+
∥

∥

∥

e

2

∥

∥

∥

≤

(

K +
1

2

)

‖e‖ < ε,
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which means that
{

pE (xn, yn)
}

is an e-Cauchy in E. Since (E, ‖.‖) is an e-complete,

then
{

pE (xn, yn)
}

is e−convergent. This leads to a contradiction with the hypothesis.

�

3. Fixed Point Theorems In Partially E-Cone Metric Space

Now we present a generalization of Theorem 1 of [28] as follows:

Theorem 3.1. Let
(

X, pE
)

be an e−complete partially E-cone metric space ordered

by its closed positive cone E+such that (E+)
⊘ 6= ∅. If T : X → X is a mapping

satisfying

pE (Tx, Ty) � λpE (x, y) , for all x, y ∈ X and some λ ∈ [0, 1) ,

then T has a unique fixed point in X, and for each x ∈ X, the sequence (T nx)n≥0

converges to the fixed point of T.

Proof. For any x0 ∈ X, consider the iterative sequence

xn+1 = Txn = T nx0

with xn 6= xn+1 for n ∈ N. Using Theorem 2.8 we get (xn) is an e-Cauchy sequence.

But X is e-complete so there exists some x ∈ X such that xn
e
→ x. For a given

0E,
≪ e, choose k ∈ N, such that pE (x, xn) ≪

e
2
for all n ≥ k.

pE (x, Tx) � pE (x, xn) + pE (xn, Tx)− pE (xn, xn)

� pE (x, xn) + pE (xn, Tx)

� pE (x, xn) + λpE (x, xn−1)

� pE (x, xn) + pE (x, xn−1)

≪
e

2
+

e

2
= e.

Since pE (x, Tx) ≪ e for any 0E,
≪ e, therefore e − pE (x, Tx) ∈ E+ which implies

−pE (x, Tx) ∈ E+. But pE (x, Tx) ∈ E+. Therefore, pE (x, Tx) = 0E and hence,

x = Tx.

To prove that the fixed point x is unique, let y ∈ X be such that x 6= y = Ty, then

pE (x, y) = pE (Tx, Ty) � λpE (x, y) ,
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which implies pE (x, y) = 0E. This proves the theorem. �

Corollary 3.2. Let
(

X, pE
)

be an e-complete partially E-cone metric space with

closed positive cone E+such that (E+)
⊘ 6= ∅. For 0E ≪ e and x0 ∈ X, set B (x0, e) =

{

y ∈ X : pE (x0, y) ≪ e
}

. If T : X → X is a mapping such that

pE (Tx, Ty) � λpE (x, y) ,

for all x, y ∈ B (x0, e) , where λ ∈ [0, 1) is a constant and pE (x0, Tx0) ≪ (1− λ) e,

then T has a unique fixed point in B (x0, e) .

Proof. First we show that B (x0, e) as an e-complete space. Let {xn} be an e-Cauchy

sequence in B (x0, e) , then {xn} is also e-Cauchy sequence in the given e-complete

space X, therefore there exists some x ∈ X such that xn
e
→ x. as n → ∞.

Now we have

pE (x, x0) � pE (x, xn) + pE (xn, x0)− pE (xn, xn) .

� pE (x, xn) + pE (xn, x0)

≪ e.

Thus, x ∈ B (x0, e) .

To complete the proof, we have to show that T is a self mapping on B (x0, e) . Let

z ∈ B (x0, e) . Then

pE (x, Tz) � pE (x0, Tx0) + pE (Tx0, T z)− pE (Tx0, Tx0)

� pE (x0, Tx0) + pE (Tx0, T z)

≪ (1− λ) e+ λe = e.

Using Theorem 3.1, we conclude that T has a unique fixed point in B (x0, e) . �

Corollary 3.3. Let
(

X, pE
)

be an e-complete partially E-cone metric space ordered

by its closed positive cone E+such that (E+)
⊘ 6= ∅. If for some n ∈ N, the mapping

T : X → X satisfies

(3.1) pE (T nx, T ny) � λpE (x, y) ,

for all x, y ∈ X, where λ ∈ [0, 1) is a constant, then T has a unique fixed point in X.
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Proof. Let W = T n. Then from (3.1), we get

pE (Wx,Wy) � λpE (x, y) , for all x, y ∈ X.

So by Theorem 3.1, W has a unique fixed point x0. But

T n (Tx0) = T (T nx0) = Tx0.

So Tx0 is also a fixed point of W = T n. Hence Tx0 = x0 and x0 is a fixed point of T.

Since the fixed of T is also fixed point of T n, the fixed point of T is unique. �

Next we generalize Theorem 2 in [28] and Theorem 2.6 in [34] as follows:

Theorem 3.4. Let
(

X, pE
)

be an e-complete partially E-metric space with closed

positive cone E+such that (E+)
⊘ 6= ∅. Let T : X → X be mapping satisfying

pE (Tx, Ty) � λ
[

pE (Tx, x) + pE (Ty, y)
]

for all x, y ∈ X and some λ ∈
[

0, 1
2

)

. Then T has a unique fixed point in X, and for

any x ∈ X, the sequence (T nx)n≥0 e-converges to the fixed point of X.

Proof. For any x0 ∈ X, consider the interactive sequence (xn) such that

xn+1 = Txn with xn 6= xn+1 for n ∈ N.

Then,

pE (xn+1, xn) = pE (Txn, Txn−1) � λ
(

pE (Txn, xn) + pE (Txn−1, xn−1)
)

� λ
(

pE (xn+1, xn) + pE (xn, xn−1)
)

.

So,

pE (xn+1, xn) �
λ

1− λ
pE (xn, xn−1) = ηpE (xn, xn−1)

� ηnpE (x1, x0) , where η =
λ

1− λ
∈ [0, 1).

Now for n > m, using the same argument in Theorem 2.8, we obtain

pE (xn, xm) � ηm
(

1− ηn−m

1− η

)

pE (x1, x0) ,
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which implies that (xn) is an e-Cauchy sequence, as X is e-complete, there exists x ∈

X such that xn
e
→ x. For a given 0E,

≪ e, choose k ∈ N, such that pE (xn+1, xn) ≪

e(1−λ)
2λ

, and pE (xn+1, Tx) ≪
e(1−λ)

2
for all n ≥ k. Then,

pE (Tx, x) � pE (Txn, Tx) + pE (Txn, x)− pE (xn+1, xn+1)

� pE (Txn, Tx) + pE (Txn, x)

� λ
[

pE (Txn, xn) + pE (Tx, x)
]

+ pE (xn+1, Tx)

�
1

1− λ

[

λpE (xn+1, xn) + pE (xn+1, Tx)
]

≪ e, for all n � k.

Since, pE (x, Tx) ≪ e, therefore, e − pE (x, Tx) ∈ E+, which implies − pE (x, Tx) ∈

E+. But pE (x, Tx) ∈ E+. Hence pE (x, Tx) = 0E, and x = Tx.

To prove uniqueness, let y ∈ X be such that x 6= y = Ty, then

pE (x, y) = pE (Tx, Ty) � λ
[

pE (Tx, x) + pE (Ty, y)
]

= 0E,

which implies pE (x, y) = 0E. This proves the theorem. �

Now we present the generalized versions of the Theorem 3 in [28].

Theorem 3.5. Let
(

X, pE
)

be an e-complete partially E-cone metric space with closed

positive cone E+such that (E+)
⊘ 6= ∅. Let T : X → X be mapping satisfying

pE (Tx, Ty) � λ
[

pE (Tx, y) + pE (Ty, x)
]

for all x, y ∈ X and some λ ∈
[

0, 1
2

)

. Then T has a unique fixed point in X, and for

each x ∈ X, the sequence (T nx)n≥0 e-converges to the fixed point of T.

Proof. For any x0 ∈ X, consider the sequence (xn) such that

xn+1 = Txn with xn 6= xn+1 for n ∈ N.
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Then,

pE (xn+1, xn) = pE (Txn, Txn−1)

� λ
(

pE (Txn, xn−1) + pE (Txn−1, xn)
)

= λ
(

pE (xn+1, xn−1) + pE (xn, xn)
)

� λ
(

pE (xn+1, xn) + pE (xn, xn−1)− pE (xn, xn) + pE (xn, xn)
)

pE (xn+1, xn) �
λ

1− λ
pE (xn, xn−1)

�

(

λ

1− λ

)n

pE (x1, x0) .

For δ = λ
1−λ

∈ [0, 1), following a similar argument in Theorem 3.4, it is easy to see T

has a fixed point in X , and for each x ∈ X, the iterative sequence (T nx)n≥0 converges

to the fixed point of T.

To prove uniqueness, let x, y ∈ X be two fixed points of T such that x 6= y. Then,

pE (x, y) = pE (Tx, Ty) � λ
(

pE (Tx, y) + pE (Ty, x)
)

� λ





pE (Tx, x) + pE (x, y)− pE (x, x)

+pE (Ty, y) + pE (y, x)− pE (y, y)





� 2λpE (x, y) , for 2λ ∈ [0, 1) ,

which implies pE (x, y) = 0E. This proves the theorem. �

Following Reich type contraction mapping [33], we will prove another fixed point

theorem in partially E-cone metric space.

Theorem 3.6. Let
(

X, pE
)

be an e-complete partially E-cone metric space ordered

by its closed positive cone E+such that (E+)
⊘ 6= ∅. If T : X → X is a mapping

satisfying

pE (Tx, Ty) � α1p
E (Tx, x) + α2p

E (Ty, y) + α3p
E (x, y) ,

for all x, y ∈ X, where 0 ≤ α1 + α2 + α3 < 1 and α1, α2, α3 ≥ 0, then T has a

unique fixed point in X, and for each x ∈ X, the sequence (T nx)n≥0 e-converges to

the unique fixed point of T.
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Proof. Choose x0 ∈ X. Define (xn) as

xn+1 = Txn = T n+1x0.

Then,

pE (xn+1, xn) = pE (Txn, Txn−1)

� α1p
E (Txn, xn) + α2p

E (Txn−1, xn−1) + α3p
E (xn, xn−1)

� α1p
E (xn+1, xn) + α2p

E (xn, xn−1) + α3p
E (xn, xn−1) ,

which implies that

pE (xn+1, xn) �
α2 + α3

1− α1
pE (xn, xn−1) = γpE (xn, xn−1) ,

where γ = α2+α3

1−α1

< 1.

For n > m,

pE (xm, xn) � pE (xm, xm+1) + pE (xm+1, xm+2) + ... + pE (xn−1, xn)

−
n−m−1
∑

r=1

pE (xm+r, xm+r)

� pE (xm, xm+1) + pE (xm+1, xm+2) + ... + pE (xn−1, xn)

�
(

γm + γm+1 + ... + γn+m−1
)

pE (x1, x0)

� γm
(

1 + γ + γ2 + ... + γn−m−1
)

pE (x1, x0)

� γm

(

1− γn−m

1− γ

)

pE (x1, x0) .

Let e ≫ 0 be given, choose ρ > 0 such that e − ρB+ ⊆ E+ and a natural number

k1 ∈ N such that γm
(

1−γn−m

1−γ

)

pE (x1, x0) ∈
ρ

2
B+ for any m,n ≥ k1. Therefore,

e− γm

(

1− γn−m

1− γ

)

pE (x1, x0)−
ρ

2
B+ ⊆ e− ρB+ ⊆ E+, for all n,m ≥ k1.

Thus,

pE (xm, xn) � γm

(

1− γn−m

1− γ

)

pE (x1, x0) ≪ e, for all n,m ≥ k1,

which implies that (xn) is an e-Cauchy sequence, since X is e-complete so there exists

some x ∈ X such that xn
e
→ x.
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For a given e ≫ 0E , choose k2 ∈ N, such that pE (xn+1, xn) ≪
(1−α2)e

3α1

, pE (xn, x) ≪

(1−α2)e
3α3

and pE (xn+1, x) ≪
e
3
for all n ≥ k2. Then,

pE (Tx, x) � pE (Txn, Tx) + pE (Txn, x)− pE (Txn, Txn)

� pE (Txn, Tx) + pE (Txn, x)

� α1p
E (Txn, xn) + α2p

E (Tx, x) + α3p
E (xn, x) + pE (xn+1, x)

� α1p
E (xn+1, xn) + α2p

E (Tx, x) + α3p
E (xn, x) + pE (xn+1, x) .

Hence,

pE (Tx, x) �
1

1− α2

(

α1p
E (xn+1, xn) + α3p

E (xn, x) + pE (xn+1, x)
)

≪
e

3
+

e

3
+

e

3
= e, for all n ≥ k2.

Thus, pE (x, Tx) ≪ e for any e ≫ 0E. Therefore e − pE (x, Tx) ∈ E+ which implies

− pE (x, Tx) ∈ E+. Since pE (x, Tx) ∈ E+, it follows that pE (Tx, x) = 0E and hence

x is a fixed point of T.

To prove uniqueness, let y be another fixed point of T such that x 6= y = Ty and

0 ≤ α1 + α2 + α3 < 1. Then,

pE (x, y) = pE (Tx, Ty)

� α1p
E (Tx, x) + α2p

E (Ty, y) + α3p
E (Tx, y)

= α3p
E (x, y) ,

which implies that pE (x, y) = 0E and hence x = y. �

Theorem 3.7. Let
(

X, pE
)

be an e-complete partially E-cone metric space ordered

by its closed positive cone E+such that (E+)
⊘ 6= ∅. If T : X → X is a mapping

satisfying

(3.2) pE (Tx, Ty) � λmax
{

pE (x, y) , pE (x, Tx) , pE (y, Ty)
}

for all x, y ∈ X, where λ ∈ [0, 1) , then, T has a unique fixed point x ∈ X and

pE (Tx, x) = 0E.
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Proof. For the existence of fixed point, let x0 ∈ X be arbitrary and define a sequence

(xn) by

xn+1 = Txn for all n ≥ 0.

Now, for any n we obtain from (3.2) that

pE (xn+1, xn) = pE (Txn, Txn−1)

� λmax
{

pE (xn, xn−1) , p
E (xn, Txn) , p

E (xn−1, Txn−1)
}

= λmax
{

pE (xn, xn−1) , p
E (xn, xn+1) , p

E (xn−1, xn)
}

= λmax
{

pE (xn, xn−1) , p
E (xn, xn+1)

}

.

If max
{

pE (xn, xn−1) , p
E (xn, xn+1)

}

= pE (xn, xn+1) , then we obtain

pE (xn+1, xn) � λpE (xn, xn+1) � pE (xn+1, xn) ,

which is a contradiction. Therefore, we must have

max
{

pE (xn, xn−1) , p
E (xn, xn+1)

}

= pE (xn, xn−1) .

Consequently,

pE (xn+1, xn) � λpE (xn, xn−1) .

Following the argument in Theorem 3.1 It is easy to see that T has a fixed point in

X , and for each x ∈ X, the sequence (T nx)n≥0 e-converges to the fixed point of T.

To prove uniqueness of the fixed point, let x, y ∈ X be two fixed points of T such

that x 6= y. Then,

pE (x, y) = pE (Tx, Ty) � λmax
{

pE (x, y) , pE (x, Tx) , pE (y, Ty)
}

= λmax
{

pE (x, y) , pE (x, x) , pE (y, y)
}

= λpE (x, y) .

This is also a contradiction. Therefore, we must have pE (x, y) = 0E, that is, x = y.

This proves the theorem. �
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4. Conclusion

Some additional properties of partially E-cone metric space have been established

in this paper. We have generalized some more fixed theorems due to Kannan, Chat-

terjea and Reich in partially E-cone metric space with non solid and non-normal

cones. However, these results have vast potential in solving various nonlinear prob-

lems in functional analysis, integral and differential equations, computer science and

many other fields.
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