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SOME RESULTS ON APPROXIMATIONS USING BOAS

TRANSFORM OF WAVELETS

LEENA KATHURIA (1), SHASHANK GOEL(2), NIKHIL KHANNA (3) AND S. K. KAUSHIK (4)

Abstract. The present paper aims to approximate functions belonging to the class

L2(R), using Boas transform of wavelets. We exhibit that Hölder continuity of a

function plays a crucial role in the decay of wavelet coefficients and thus assists in

approximating it. Further, we give sufficient conditions for uniform approximation

of wavelet coefficients of square integrable function.

1. Introduction

Over the past two decades, the theory of wavelets has developed itself as one of

the most efficient mathematical instruments for the reach of signal-processing appli-

cations, such as compression of data and images, transient detection, reduction of

noise, texture analysis, identification of patterns and detection of singularities. In

1984, the notion of wavelet was proposed by Grossmann and Morlet [7]. However,

the credit for the construction of multiresolution analysis (MRA), an analysis tool to

study a signal from a coarser approximation to a higher resolution approximation,

goes to both Mallat [20] and Meyer [21]. Their combined efforts was the reason be-

hind the rise of wavelets to great heights. In wavelet analysis, a varying window called

the mother wavelet is considered. Translated and dilated forms of mother wavelet

are used to generate other wavelets which creates the foundation of wavelet analysis.

A detailed study of the topic can be found in [3, 8].

Wavelets are of fundamental importance in the field of nonlinear approximation

theory. The nonlinear approximation has a rich history, dating back to Schmidt’s
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work [22] in 1907, and has been studied in various contexts. DeVore [5] published

a comprehensive analysis that examines the advantages of nonlinear approximation

over linear approximation. This supremacy of nonlinear approximation can be ex-

amined in terms of the rate of decay of the approximation error with regard to the

number of terms in the approximate representation. In the early 1960s, French math-

ematician Céa realized that error estimation of finite elements is nothing more than

an approximation problem in Sobolev spaces. Approximation of an arbitrary func-

tion by wavelet polynomials is a recent advancement in approximation theory. In this

context, Islam et al. [11] discussed linear and nonlinear approximation of a function

by Haar wavelet in different smoothness spaces. There are several types of wavelets

such as Haar wavelet, Mexican-Hat wavelet, Shannon wavelet, Daubechies wavelet,

Meyer wavelet and so forth. For further details on wavelets, see [4].

Coifman et al. [2] proposed wavelet packets to ameliorate the poor frequency

localization of high frequency wavelet basis and so delivered a more appropriate

decomposition of signals (or functions) incorporating both temporal and stationary

components. The viability of wavelet packets gives the freedom in determining the

suitable basis function for representing a given function. For more details on wavelet

packets, one may refer to [8, 17].

Some approximation properties of wavelet bases plays a crucial role in analysis.

The analysis of the decay of approximation error on the basis of resolution is an

important concern in wavelet theory. In this context, Khanna et al. [16] approximated

functions in L2(R) using Hilbert transform of wavelets. In 2016, Khanna et al. [17]

proposed the orthogonal Coifman wavelet packet systems and biorthogonal Coifman

wavelet packet systems with the vanishing moments distributed equally between the

scaling function and the wavelet packet functions and thereby gave wavelet packet

approximation theorem. These systems have good approximation properties with

exponential decay. The wavelet packet approximation theorem illustrates the different

roles of the vanishing moments of the wavelet packet functions.
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The Boas transform of a function f ∈ L2(R), denoted by Bf , in terms of principal

value integral is defined as

Bf(x) =
1

π
P

∫ ∞

0

f(x+ z)− f(x− z)

z2
sin(z) dz =

1

π
P

∫ ∞

−∞

f(x+ z)

z2
sin(z) dz

for any x for which the integral exists.

The relationship between the Boas transform (BT) and the Hilbert transform (HT)

is given by

(1.1) (Bf)(x) = (Hf)(x)− {Hf ∗ g}(x),

where

g(x) =

(
2

π

) 1

2

(
1− cos(x)

x2

)
,

and Hf(·) denotes the Hilbert transform of f .

The following equivalence specifies the Hilbert transform on L2(R),

(1.2) Hf(x)
F
←→ −i sgn(γ)f̂(γ),

where the signum function sgn(γ) is defined by γ/|γ|, for γ 6= 0 and takes the value

zero for γ = 0.

Taking Fourier transform on both sides of (1.1), we have

(1.3) B̂f(γ) = Ĥf(x)− F{Hf ∗ g}(γ),

where f̂(·) (orFf(·)) denotes the Fourier transform of f .

If Hf(x) ∈ L1(R), then using (1.1), (1.2) and (1.3), we get

B̂f(γ) = −i sgn(γ)f̂(γ)(1− ĝ(γ)),

where

ĝ(γ) =




0, if |γ| > 1,

1− |γ| , if |γ| ≤ 1.

Boas [1] characterized the Boas transform by analyzing functions whose Fourier trans-

form vanishes on a finite interval. A significant contribution in this field can be seen

in the work of Goldberg [6], Heywood [9] and Zaidi [24]. For further details on Boas

transforms, one may read [25].
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(a)

Daubechies

wavelet

(b)

HT of

Daubechies

wavelet

(c)

BT of

Daubechies

wavelet

Figure 1. Daubechies wavelet and its Hilbert transform and Boas

transform

In [15], Khanna et al. studied Boas transform of wavelets and attained various

results related to their vanishing moments. In Figure 1, one may observe the tran-

sition in the Daubechies wavelet when two different transforms are applied which is

actually one of the reason for exploring the properties of Boas transform of wavelets

in this work. Recently, Khanna et al. [18] proposed fractional Boas transforms and

the associated wavelets which are more efficient than the Boas transforms of wavelets

due to an additional degree of freedom in context of fractional order. Recently, pa-

rameter (p, q)-Boas transform are introduced in [14], where parameter (p, q)-Boas

transform of a signal in linear canonical transform domain is studied. Further, the

recent introduction of Fourier-Boas-Like wavelets [12] has improved the inability of

original wavelets to study both the symmetries of an asymmetric signal. Very re-

cently, Zothansanga et al. [19] introduced some new generalized wavelets based on

the Hartley kernel and Boas transforms.

This paper’s intent is to approximate functions lying in the class L2(R), using Boas

transform of wavelets, where vanishing moments play a vital role in approximating

smooth functions in L2(R). We employ Hölder continuity of a function in order to

reduce the number of wavelet coefficients, generated by Boas transform of wavelets.

Finally, we obtain sufficient conditions for uniform approximation of wavelet coeffi-

cients of square integrable function based on modulus of continuity and boundedness

of higher derivatives.
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2. Main Results

Khanna et al. [15] presented Boas transform of wavelets and delivered various

results associated with their vanishing moments. Later, Khanna and Kathuria [13]

discussed the convolution of the wavelets introduced in [15] to analyze the Boas

transform of convolution of signals. Further, Khanna et al. [16] furnished various

results to approximate the functions in the L2(R) space. In [15], sufficient conditions

for the higher order vanishing moments of Boas transform of wavelets are obtained.

The result is given below.

Theorem 2.1. Let ψ, ψ(1), ψ̂ ∈ L1(R) be such that for some n ∈ N, xn−1ψ(x),

γnψ̂(γ) ∈ L1(R), xnψ(x) ∈ L2(R), and
∫
R
xq G(x) dx = 0, for 0 ≤ q ≤ n,where

G(x) =

∫ 1

−1

(
1−

1

|γ|

)
e−2πiγx ψ̂(1)(−γ) dγ. If {ψj,k}j,k∈Z is an orthogonal system on

R, then ∫

R

xq Bψ(x) dx = 0, for 0 ≤ q ≤ n.

In [16], the authors proved that wavelet coefficients of a square integrable function

decay fast as j → +∞ subject to the number of vanishing moments and smoothness

of f . The result is stated below.

Theorem 2.2. Given p ∈ N, suppose that the function f ∈ L2(R) is Cp on R and

that f (p) ∈ L∞(R). Let ψ ∈ L2(R) be a function with compact support such that

xp−1ψ(x) ∈ L2(R),

and ∫

R

xp ψ(x) dx = 0 0 ≤ m ≤ p− 2.

Then, there exists a constant K > 0 depending on p and f(x) such that for every

j, k ∈ Z, |〈f,Hψj,k〉| ≤ K 2−j(p+ 1

2
), where Hψj,k denotes the Hilbert Transform of

wavelet ψj,k given by ψj,k(x) = 2
j

2ψ(2jx− k), where j, k ∈ Z.

Now, we recall from [18] the notion of G-function of order n.

Definition 2.1. Let f be a function such that f , f (1), f̂ ∈ L1(R).Then, f is

said to be G-function of order n if
∫
R
xq G(x) dx = 0 for 0 ≤ q ≤ n, where

G(x) =

∫ 1

−1

(
1−

1

|γ|

)
e−2πiγx ψ̂(1)(−γ) dγ.
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Further, recall from [16] that the moment formula for Hilbert transform is given

by

(2.1) H{xsf(x)} = xsHf(x)−
1

π

s−1∑

m=0

xm
∫

R

qs−1−mf(q) dq, s ≥ 0.

Note that the above formula holds if xsf(x) ∈ Lq(R), 1 < q <∞.

Next result generalizes Theorem 2.2 for Boas transform of wavelets.

Theorem 2.3. Let f ∈ L2(R)∩Cp(R) (p ∈ N) be a function such that f (p) ∈ L∞(R).

Let ψ be a wavelet with compact support such that

(i) xp−1 ψ(x) ∈ L2(R),

(ii)
∫
R
xl ψ(x) dx = 0 for l = 0, 1, ....., p− 1,

(iii) ψ is a G-function of order p

Then there exists a constant M > 0 depending on p and f(x) such that for every

j, k ∈ Z,

|〈f,Bψj,k〉| ≤M 2−j(p+ 1

2
),

where Bψj,k denotes the Boas transform of wavelet ψj,k(x) = 2
j

2 ψ(2jx− k), j, k ∈ Z.

Proof. Let ψ be supported in the interval I = I0,0 = [0, b] for b > 0. Then ψj,k(x) =

2
j

2 ψ(2jx− k) will be supported in the interval Ij,k = [2−jk, 2−j(k + b)] of length 2−jb

denoted by |Ij,k|. Let us denote the center of Ij,k by bj,k = 2−(j+1)b+ 2−jk. Since

f ∈ C(R), it follows that for each j, k ∈ Z, f(x) can be represented by its Taylor

polynomial plus a remainder term. That is

f(x) = f(bj,k) + (x− bj,k)f
(1)(bj,k) + . . .

+
1

(p− 1)!
(x− bj,k)

p−1f (p−1)(bj,k) +R(x),(2.2)
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where R(x) = 1
p!
(x− bj,k)

pf (p)(z) for some z between bj,k and x.

Note that

〈f,Bψj,k〉 =

∫

R

f(x)Hψj,k(x) dx−

∫

R

f(x) (Hψj,k ∗ g)(x) dx

=

∫

R

f(x)Hψj,k(x) dx−

∫

R

f(x)

∫

R

T−x Hψ(−t) g(t) dt dx

=

∫

R

f(x)Hψj,k(x) dx−

∫

R

f(x)

∫

R

ĤT−xψ(−γ) ĝ(γ) dγ dx

=

∫

R

f(x)Hψj,k(x) dx+ i

∫

R

f(x)

∫ 1

−1

sgn(−γ) T̂−xψ(−γ)(1− |γ|) dγ dx.

Since ψ, ψ(1), ψ̂ ∈ L1(R), we have

〈f,Bψj,k〉 =

∫

R

f(x)Hψj,k(x) dx−
1

2π

∫

R

f(x)

∫ 1

−1

(
1−

1

|γ|

)
e−2πiγx ψ̂(1)(−γ) dγ dx

=

∫

R

f(x) (Hψj,k(x)−
1

2π
G(x)) dx.(2.3)

Also, since ψ(x), xp−1 ψ(x) ∈ L2(R), it follows that xl ψ(x) ∈ L2(R) for all l =

0, 1, . . . , p− 1.

Thus, using the moment formula for Hilbert transforms and (2.3), we have

〈f,Bψj,k〉 =

∫

R

R(x)

(
Hψj,k(x)−

1

2π
G(x)

)
dx

=

∫

R

R(x)Bψj,k(x) dx

=
1

p!
f (p)(z)

∫

R

(x− bj,k)
pBψj,k(x) dx.

This gives

|〈f,Bψj,k〉| =
|f (p)(z)|

p!

∣∣∣∣
∫

R

(x− bj,k)
pBψj,k(x) dx

∣∣∣∣ .
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Since

∫

Ij,k

|(x− bj,k)
p|

2
dx < +∞, and using the compact support of ψj,k, it follows

that

|〈f,Bψj,k〉| =

∣∣f (p)(z)
∣∣

p!

∣∣∣∣
∫

R

F{(x− bj,k)
p}(γ)F{Bψj,k(x)}(γ) dγ

∣∣∣∣

=

∣∣f (p)(z)
∣∣

p!

∣∣∣∣
∫

R

F{(x− bj,k)
p}(γ) ψ̂j,k(γ) (1− ĝ(γ)) dγ

∣∣∣∣

=

∣∣f (p)(z)
∣∣

p!

∣∣∣∣
∫

|γ|>1

F{(x− bj,k)
p}(γ) ψ̂j,k(γ) (1− ĝ(γ)) dγ

+

∫

|γ|≤1

F{(x− bj,k)
p}(γ) ψ̂j,k(γ) (1− ĝ(γ)) dγ

∣∣∣∣∣

=

∣∣f (p)(z)
∣∣

p!

∣∣∣∣
∫

|γ|>1

F{(x− bj,k)
p}(γ) ψ̂j,k(γ) dγ

+

∫

|γ|≤1

F{(x− bj,k)
p}(γ) ψ̂j,k(γ) |γ| dγ

∣∣∣∣∣

≤

∣∣f (p)(z)
∣∣

p!

∣∣∣∣
∫

R

F{(x− bj,k)
p}(γ) ψ̂j,k(γ) dγ

∣∣∣∣

=

∣∣f (p)(z)
∣∣

p!

∣∣∣∣
∫

R

(x− bj,k)
p ψj,k(x) dx

∣∣∣∣

≤
1

p!
max
x∈Ij,k

∣∣f (p)(x)
∣∣
∫

Ij,k

|(x− bj,k)
p ψj,k(x)| dx

≤
1

p!
max
x∈Ij,k

∣∣f (p)(x)
∣∣
[ ∫

Ij,k

|(x− bj,k)
p|2 dx

] 1

2

[∫

Ij,k

|ψj,k(x)|
2 dx

] 1

2

.

Since ψ ∈ L2(R), there exists a constant K > 0 such that

[∫

Ij,k

|ψj,k(x)|
2 dx

] 1

2

≤ K.
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Therefore

|〈f,Bψj,k〉| ≤
K

p!
max
x∈Ij,k

∣∣f (p)(x)
∣∣
[ ∫

Ij,k

2−2p(j+1)b2p dx

] 1

2

=
K

p!
max
x∈Ij,k

∣∣f (p)(x)
∣∣ 2−p(j+1)bp |Ij,k|

1

2

=
K

p!
‖f (p)‖∞ 2−pb

1

2
+p 2−pj 2−

j

2

=M2−j(p+ 1

2
),

where M = K
p!
‖f (p)‖∞ 2−pb

1

2
+p.

Thus, the wavelet coefficients of such a function decays rapidly as j → +∞. �

An important characteristic of wavelet function is its regularity. Regularity is

linked with how many continuous derivatives a function has. Possibly, regularity can

be considered as a measure of smoothness. Holschneider and Tchamitchian [10] used

the wavelet transform to examine the local regularity of functions in general. The

Hölder spaces permit us to define a notion of smoothness or regularity for a function

and, in particular, they roughly provide an intermediate level between continuity and

differentiability. Khanna et al. [16] obtained sufficient conditions to decrease the

wavelet coefficients of a function by employing uniform Hölder continuity. The result

is stated below.

Theorem 2.4. Let f ∈ L2(R) be n-times continuously differentiable function such

that f (n) is Hölder continuous with exponent β for 0 < β < 1 and let ψ ∈ L2(R) be

a wavelet satisfying the following conditions

xn+1 ψ(x) ∈ L1(R) ∩ L2(R),

∫

R

xp ψ(x) dx = 0 for p = 0, 1, ....., n+ 1.

Then |〈f,Hψj,k〉| ≤ C 2−j(n+β+ 1

2
).

Following result is a generalized version of Theorem 2.4 in terms of Boas transform

of wavelets.
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Theorem 2.5. Let f ∈ Cp be such that f (p) is Hölder continuous with exponent

δ (0 < δ < 1) and let ψ ∈ L1(R) be a wavelet such that ψ(1), ψ̂ ∈ L1(R) satisfying

the following conditions

(i) xp+1 ψ(x) ∈ L1(R) ∩ L2(R),

(ii)
∫
R
xm ψ(x) dx = 0 for m = 0, 1, ....., p+ 1,

(iii) xp+1G(x) ∈ L1(R),where G(x) =

∫ 1

−1

(
1−

1

|γ|

)
e−2πiγx ψ̂(1)(−γ) dγ.

Then |〈f,Bψj,k〉| ≤ K 2−j(p+δ+ 1

2
).

Proof. Since f ∈ Cp(R), f(x) can be expanded by using Taylor’s expansion about the

point b as

f(x) = f(b) + (x− b)f (1)(b) +
(x− b)2

2!
f (2)(b) + . . .

+
(x− b)p−1

(p− 1)!
f (p−1)(b) +R(x),

where

R(x) =
1

(p− 1)!

∫ x

b

(x− z)p−1f (p)(z) dz.

This gives

f(x) = P b
p−1(x) +R(x),

where P b
p−1(x) is a polynomial of degree (p− 1) given by

P b
p−1(x) =

p−1∑

r=0

(x− b)r

r!
f (r)(b).

Note that

f(x)− P b
p (x) = R(x)−

(x− b)p

p!
f (p)(b)

=
1

(p− 1)!

∫ x

b

(x− z)p−1f (p)(z) dz −
1

(p− 1)!

∫ x

b

(x− z)p−1f (p)(b) dz

=
1

(p− 1)!

∫ x

b

(x− z)p−1
[
f (p)(z)− f (p)(b)

]
dz

≤
(x− b)p−1

(p− 1)!

∫ x

b

[
f (p)(z)− f (p)(b)

]
dz.

This gives
∣∣f(x)− P b

p (x)
∣∣ ≤ (x− b)p−1

(p− 1)!

∫ x

b

∣∣f (p)(z)− f (p)(b)
∣∣ dz.
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Since f (p) is Hölder continuous with exponent δ (0 < δ < 1), there exists a constant

M such that

|f (p)(z)− f (p)(b)| ≤M |z − b|δ.

So, we compute

|f(x)− P b
p (x)| ≤M

|x− b|p−1

(p− 1)!

∫ x

b

|z − b|δ dz

=M
|x− b|p−1

(p− 1)!

(z − b)δ+1

δ + 1

∣∣∣∣∣

x

b

=
M

(δ + 1)(p− 1)!
|x− b|p−1 |x− b|δ+1

=M ′ |x− b|p+δ ,

where M ′ = M
(δ+1)(p−1)!

.

Since ψ, ψ(1), ψ̂ ∈ L1(R), and xp+1 ψ(x) ∈ L2(R), we have

〈f,Bψj,k〉 =

∫

R

[
f(x)− P b

p (x)
]
2

j

2 Bψ(2jx− k) dx.

Taking b = 2−jk gives

|〈f,Bψj,k〉| ≤ K 2−j(p+δ) 2
j

2

∫

R

∣∣2jx− k
∣∣p+δ ∣∣Bψ(2jx− k)

∣∣ dx.

Put 2jx− k = v. Then

|〈f,Bψj,k〉| ≤ K 2−j(p+δ+ 1

2
)

∫

R

∣∣vp+δBψ(v)
∣∣ dv

≤ K 2−j(p+δ+ 1

2
)

[∫

R

∣∣vp+δ Hψ(v)
∣∣ dv +

∫

R

∣∣vp+δ(Hψ ∗ g)(v)
∣∣ dv

]

≤ K 2−j(p+δ+ 1

2
)

[∫

R

∣∣vp+δ Hψ(v)
∣∣ dv +

∫

R

∣∣vp+δG(v)
∣∣ dv

]
.

Using (i), (ii) and (iii) and moment formula for the Hilbert Transform, we have

|〈f,Bψj,k〉| ≤ K 2−j(p+δ+ 1

2
),

where K is a constant independent of j. �

Note that modulus of continuity is a traditional way used for describing smoothness

of functions. This idea of modulus of continuity is found in a variety of applications in
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theory of approximation, functional spaces and different fields of present day analysis.

Recall from [23] that modulus of continuity of a function f is given by

wf = sup{|f(r)− f(s)| : |r − s| ≤ δ} for each δ > 0.

In the given result, we give a sufficient condition for uniform approximation of wavelet

coefficients of function f ∈ L2(R) by means of modulus of continuity and prove that

it decays fast as j →∞.

Theorem 2.6. Let ψ ∈ L1(R) be a wavelet such that ψ̂ ∈ L1(R) and ψ̂(0) = 0. Let

Boas transform of wavelet ψ be of compact support and let ‖Hψ‖1 be bounded.

Also, let |G(x)| < ∞, where G(x) =

∫ 1

−1

(
1−

1

|γ|

)
e−2πiγx ψ̂(1)(−γ) dγ. Then

‖〈f,Bψj,k〉‖∞ = 2
−j

2 O(wf(2
−jL)), where wf represents the modulus of continuity

of a function f .

Proof. We have

2
j

2 |〈f,Bψj,k〉| = 2
j

2

∣∣∣∣
∫

R

f(x)Bψj,k(x) dx

∣∣∣∣

=

∣∣∣∣
∫

R

f
(
2−j(k + x)

)
Bψ(x) dx

∣∣∣∣

=

∣∣∣∣
∫

R

(
f
(
2−j(k + x)

)
− f(2−jk)

)
Bψ(x) dx

∣∣∣∣

≤

∫ b

a

∣∣f
(
2−j(k + x)

)
− f(2−jk)

∣∣ |Hψ(x)− (Hψ ∗ g)(x)| dx

≤ wf

(
2−j(b− a)

)(∫ b

a

|Hψ(x)| dx+

∫ b

a

|Hψ ∗ g(x)| dx

)

= wf

(
2−j(b− a)

)
(b− a) (|Hψ(x)|+ |G(x)|)

≤ wf

(
2−j(b− a)

)
(b− a) (‖Hψ‖∞ +K1)

< wf

(
2−j(b− a)

)
(b− a) (K2 +K1)

= wf

(
2−jL

)
LK ,

where L = b− a and K = K2 +K1. This gives

‖〈f,Bψj,k〉‖∞ = sup
k∈Z
|〈f,Bψj,k〉| = 2

−j

2 O(wf(2
−jL)).

�



SOME RESULTS ON APPROXIMATIONS USING BOAS TRANSFORM OF WAVELETS 281

Finally, we give a sufficient condition for uniform approximation of wavelet coef-

ficients of function f ∈ L2(R) with bounded pth derivative and prove that it decays

fast as j →∞.

Theorem 2.7. Let ψ be such that for some m ∈ N, xp−2ψ(x),

γp−1ψ̂(γ) ∈ L1(R), xp−1ψ(x) ∈ L2(R), and ψ is a G-function of order p with

‖G‖2 < +∞. Let {ψj,k}j,k∈Z be an orthogonal system on R such that Boas transform

of ψ be of compact support. Then for a function f ∈ L2(R) with a bounded pth

derivative, we have ‖〈f,Bψ〉‖∞ = 2
−j

2 O(2−jp).

Proof. We have

2
j

2 |〈f,Bψ〉| = 2
j

2

∣∣∣∣
∫

R

f(x) Bψj,k(x) dx

∣∣∣∣

=

∣∣∣∣
∫

R

f(2−j(k + x)) Bψ(x) dx

∣∣∣∣

=

∣∣∣∣
∫

R

[f(2−j(k + x))− q(2−j(k + x))] Bψ(x) dx

∣∣∣∣,

where q(·) is a Taylor polynomial of degree at most p − 1 which matches f and its

first p− 1 derivatives at 2−j(k + x) and let K = supp(Bψ). This yields

2
j

2 |〈f,Bψ〉| =

∣∣∣∣
∫

K

R(x) Bψ(x) dx

∣∣∣∣,

where R(x) = 1
p!
(x− 2−jk) f (p)(ξ) and for each x ∈ K, there exists ξ lying between

x and 2−j(k + x). This gives

2
j

2 |〈f,Bψ〉| ≤

∣∣∣∣
∫

K

R(x) (Hψ(x)− (Hψ ∗ g)(x)) dx

∣∣∣∣

≤

∣∣∣∣
∫

K

R(x) Hψ(x)

∣∣∣∣ dx+
∣∣∣∣
∫

K

R(x) (Hψ ∗ g)(x) dx

∣∣∣∣

≤

∣∣∣∣
∫

K

R(x) Hψ(x)

∣∣∣∣ dx+
∣∣∣∣
∫

K

R(x) G(x) dx

∣∣∣∣.
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Using Cauchy-Schwarz inequality, we have

2
j

2 |〈f,Bψ〉| ≤ ‖R‖2(‖Hψ‖2 + ‖G‖2)

≤M2 sup
x∈K
|R(x)|

≤M2
1

p!
‖f (p)‖∞ 2−jp

=M 2−jp,

where M2 = ‖Hψ‖2 + ‖G‖2 and M =M2
1
p!
‖f (p)‖∞. This gives

sup
k∈Z
|〈f,Bψ〉| = 2

−j

2 O(2−jp).

�

3. Conclusion

In this work, finite energy signals are approximated using Boas transform of wavelets.

Certain sufficient conditions are imposed in order to minimize the wavelet coefficients.

Finally, uniform approximation of wavelet coefficients of finite energy signals is stud-

ied.
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