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ORTHOGONAL CONE METRIC SPACES WITH BANACH

ALGEBRAS AND FIXED POINT THEOREMS OF GENERALIZED

LIPSCHITZ MAPPINGS

M.H.M. RASHID (1), P.P NOUSHIDA(2), V. ANIL KUMAR(3) AND T. PRASAD (4)

Abstract. In this paper, we impose weaker restriction on generalized Lipschitz

constants to prove existence and uniqueness of fixed points in the setting of orthog-

onal cone metric spaces. Our results extend many of previously obtained findings

in literature. Furthermore, we provide two example to support and illustrate the

usability of the main results.

1. Introduction

The concept of cone metric spaces was first introduced by Huang and Zhang [10].

Observe that cone metric space is a generalization of a metric space in which the

underlying space of the metric is replaced by a real Banach space. Then many re-

searchers are established fixed point theorems on cone metric spaces.(see [1],[2],[12],

[13],[18],[21]).

Recently, Liu and Xu [14] developed the notion of cone metric spaces over Banach

algebras (also known as cone metric spaces over Banach algebras in [14], which re-

placed Banach spaces as the underlying spaces of cone metric spaces with Banach

algebras). They created the notion of cone metric spaces over Banach algebras by

replacing the Banach space E with a Banach algebra A. They used spectral radius

to show various fixed point theorems of generalized Lipschitz mappings with weaker

and natural constraints on the generalized Lipschitz constant k. It’s worth noting

that introducing the idea of cone metric spaces with Banach algebras is important
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since one can show that they’re not comparable to metric spaces in terms of the pres-

ence of the fixed points of the generalized Lipschitz mappings. In particular, Liu and

Xu demonstrated that using the methods in the literature, the primary conclusions

established in [14] could not be reduced to a consequence of similar results in metric

spaces. This is beneficial to the field of cone metric spaces research.

Gordji et al [5], on the other hand, defined the idea of orthogonal sets and orthog-

onal metric spaces in 2017. In certain research works, theorems in this topic have

been extended. (see [3],[15], [16]).

Orthogonal completeness, a new notion of orthogonal cone metric space, was pre-

sented lately, and orthogonal continuity is described in [6].

Orthogonal contractive mappings were suggested by the authors of [20] and several

fixed point theorems for them were shown. They demonstrated their results in orthog-

onal bounded complete metric spaces using the idea of τ -distances. In contrast, they

defined the idea of generalized orthogonal sets in [19] by expanding orthogonal sets.

they also present the generalization of ⊥F -contractions known as ⊥ψF -contractions.

Some fixed point theorems are demonstrated for these contractions.

This new set of concepts is accompanied by examples. An example of orthogonal

complete cone metric space, which is not complete cone metric space, is also pre-

sented. On orthogonal cone metric spaces, fixed point theorems and their corollaries

are also established.

The existence and uniqueness of the fixed point for generalized Lipschitz mappings

in the context of orthogonal cone metric spaces over Banach algebras are obtained

in this study. The methodologies and approaches employed in this work are not the

same as those used in previous research. We’ll also demonstrate the existence and

uniqueness of solutions to the initial value problem.

Throughout this paper F will denote either the real field, R, or the complex field C.
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2. Preliminaries

An algebra over a field F is a vector space A over F that also has a multiplication

defined on it that makes A into a ring such that if α ∈ F and a, b ∈ A, α(ab) =

(αa)b = a(αb) (see [4]).

Definition 2.1. [4] A Banach algebra is an algebra A over F that has a norm ‖.‖

relative to which A is a Banach space and such that for all a, b ∈ A,

‖ab‖ ≤ ‖a‖ ‖b‖ .

If A has an identity, e, then it is assumed that ‖e‖ = 1. That is, A is called a Banach

algebra (with unit) if:

(i) A is a Banach space;

(ii) There is a multiplication A× A → A that has the following properties:

(xy)z = x(yz) =, (x+y)z = xz+yz, x(y+z) = xy+xz, α(xy) = (αx)y = x(αy)

for all x, y, z ∈ A and α ∈ F. Moreover, there is a unit element e: ex = xe = x

for all x ∈ A;

(iii) ‖e‖ = 1;

(iv) ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A.

An element x in a Banach algebra A is said to be invertible if there exists y ∈ A

such that xy = yx = e, the inverse of x is denoted by x−1. Let A be a Banach algebra

and x ∈ A, then the spectrum of x is given by σ(x) : = {λ : x− λe is singular}, the

spectral radius r of x is defined as r(x) = sup{|λ| : λ ∈ σ(x)} = lim
n→∞

‖ xn ‖
1

n . Let

A be a Banach algebra with identity e, and x ∈ A. If the spectral radius r(x) of x is

less than 1, then e−x is invertible and (e−x)−1 =
∑∞

i=1 x
i ( see [17] for more details).

Remark 1. From [4], we see that the spectral radius r(x) of x satisfies r(x) ≤ ‖x‖

for all x ∈ A, where A is a Banach algebra with a unit e.

In the following we always suppose A is a Banach algebra with a unit, P is a cone

in A with int(P ) 6= ∅ and � is partial ordering with respect to P .
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Definition 2.2. [9] Let A be a Banach algebra and P a subset of A. P is called a

cone if and only if

(i) P is closed, nonempty, P 6= {0A},

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P =⇒ ax+ by ∈ P ,

(iii) x ∈ P and −x ∈ P =⇒ x = 0A.

Given a cone P ⊂ A, we define a partial ordering � with respect to P by x � y

if and only if y − x ∈ P . We shall write x ≺ y to indicate that x � y but x 6= y

while x ≺≺ y will stand for y − x ∈ int(P ), int(P ) denotes the interior of P and if

int(P ) 6= ∅, then P is called a solid cone. The cone P is called normal if there is a

number K > 0 such that for all x, y ∈ A, 0A � x � y implies ‖x‖
A
≤ K ‖y‖

A
. The

least positive number K satisfying above is called the normal constant of P (see [9]).

Definition 2.3. [7] Let X be a nonempty set and ⊥ ⊆ X×X be a binary operation.

If ⊥ satisfies the following condition:

(2.1) ∃x0 ∈ X ; (∀y ∈ X, y⊥x0) ∨ (∀y ∈ X, x0⊥y),

it is called an orthogonal set (shortly O-set). And (X,⊥) is called O-set. And the

element x0 is called an orthogonal element.

Example 2.1. [8] Let X = Z. Define m⊥n if there exists k ∈ Z such that m = kn.

It is easy to see that 0⊥n for all n ∈ Z. Hence (X,⊥) is an O-set.

By the following example, we can see that x0 is not necessarily unique.

Example 2.2. [8] Let X = [0,∞), we define x⊥y if xy ∈ {x, y} then by setting

x0 = 0 or x0 = 1, (X,⊥) is an O-set.

Definition 2.4. [7] Let (X,⊥) be an orthogonal set (O-set). Any two elements

x, y ∈ X are said to be orthogonally related if x⊥y.

Definition 2.5. [7] Let (X,⊥) be an orthogonal set. A sequence (xn) in X is called

an orthogonal sequence (O-sequence) if

(2.2) xn⊥xn+1 ∨ xn+1⊥xn, ∀n ∈ N.



ORTHOGONAL CONE METRIC SPACES WITH BANACH ALGEBRAS 289

Similarly, a Cauchy sequence {xn} is said to be an orthogonally Cauchy sequence

(shortly O-Cauchy sequence) if

(2.3) xn⊥xm ∨ xm⊥xn, ∀n,m ∈ N such thatn ≥ m.

Definition 2.6. [5, 7] A mapping d : X × X → A is called a cone metric on the

orthogonal set (X, d), if the following conditions are satisfied:

(OC1) 0A ≤ d(x, y) for any x, y ∈ X such that x⊥y and y⊥x,

(OC2) d(x, y) = 0 if and only if x = y for any x, y ∈ X such that x⊥y and y⊥x,

(OC3) d(x, y) = d(y, x) for any x, y ∈ X such that x⊥y and y⊥x,

(OC4) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X such that x⊥y, y⊥z and x⊥z.

Then the ordered triple (X,⊥, d) is called an orthogonal cone metric space.

Example 2.3. Let A = R2, P = {(x, y) ∈ A : x, y ≥ 0} ⊂ R2, X = Z and

d : X × X → A such that d(x, y) = (|x − y|, α|x − y|), where α is a nonnegative

constant. Assume that binary relation ⊥ on X = Z as Example 2.1, then (X,⊥, d)

is orthogonal cone metric space.

Let X be an orthogonal set and d : X ×X → A be a mapping. For every x ∈ X

we define the set

(2.4) O(X, d, x) = {(xn) ⊂ X : lim
n→∞

d(xn, x) = 0 and xn⊥x, n ∈ N}.

Definition 2.7. [11] Let (X,⊥, d) be an orthogonal cone metric space. A sequence

(xn) in X is said to be

(i) an orthogonal convergent (in short O-convergent) to x if and only if (xn) ∈

O(X, d, x),

(ii) an orthogonal Cauchy (in short O-Cauchy) if and only lim
n,m→∞

d(xn, xm) = 0

and xn⊥xm or xm⊥xn, ∀n,m ∈ N.

Remark 2. In orthogonal cone metric space (X,⊥, d), an orthogonal convergent

sequence may be not an orthogonal Cauchy.

Definition 2.8. [11] An orthogonal cone metric space (X,⊥, d) is said to be an

orthogonal complete (O-complete)if every orthogonal Cauchy sequence converges in

X .
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Remark 3. It is easy to see that every complete cone metric space is orthogonal cone

complete but the converse is not true. For this remark, see the following examples.

Example 2.4. [11] Let X = Q and P = {x ∈ Q : x ≥ 0}. Define x⊥y if and only

if x = 0 or y = 0. Then (X,⊥) is an orthogonal set. It is clear that Q is not a

complete cone metric space with respect to the Euclidean metric, but it is orthogonal

cone complete. If (xn) is any orthogonal Cauchy sequence in Q, then there exists a

subsequence (xnk
) of (xn) for which xnk

= 0 for all k ∈ N. Then (xnk
) converges

to 0 ∈ X. We know that every Cauchy sequence with a convergent subsequence is

convergent, so (xn) is convergent.

Example 2.5. [11] Let X = [0, 1) and define the orthogonal relation on X by

x⊥y ⇐⇒ x ≤ y ≤
1

4
∨ x = 0.

Then (X,⊥) is an orthogonal set. We have X is not a complete metric space with

respect to the Euclidean metric but it is orthogonal metric. Consider (xn) is an

orthogonal Cauchy sequence in X. Then there exists a subsequence (xnk
) of (xn) for

which xnk
= 0 for all k ∈ N, or there exists a monotone subsequence (xnk

) of (xn)

for which xnk
≤ 1

4
. We see that (xnk

) converges to a point [0, 1
4
] ⊆ X. We know

that every Cauchy sequence with a convergent subsequence is convergent, so (xn) is

convergent in X.

Definition 2.9. [11] Let (X,⊥, d) be an orthogonal metric space. A function f :

X → X is said to be an orthogonal continuous (O-continuous or ⊥-continuous) at a

point x0 in X if for each orthogonal sequence (xn) in X converging to x0 such that

f(xn) → f(x0). Also f is said to be orthogonal continuous on X if f is orthogonal

continuous at each point in X .

Remark 4. It is easy to see every continuous mapping is orthogonal continuous. The

following examples show the converse is not true in general.

Example 2.6. [11] Let X = R. Define the orthogonality relation on X by x⊥y if

and only if x = 0 or y 6= 0 in Q. Then (X,⊥) is an orthogonal set. Define a function
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f : X → X by

f(x) =







2, if x ∈ Q;

0, if x ∈ Qc.

Then f is an orthogonal continuous but is not continuous on Q.

Example 2.7. [11] Let X = R. Define x⊥y if x, y ∈ (q+ 1
7
, q+ 2

7
) for some q ∈ Z or

x = 0. Then (X,⊥) is an orthogonal set. Define a function f : X → X by f(x) = [x].

Then f is an orthogonal continuous on X. Because for an orthogonal sequence (xn)

in X converging to x ∈ X, then we have

Case-I: If xn = 0 for all n, then x = 0 and f(xn) = 0 = f(x).

Case-II: If xn0
6= 0 for some n0, then there exists k ∈ Z such that xn ∈

(k+ 1
7
, k+ 2

7
) for all n ≥ n0. Then x ∈ [q+ 1

7
, q+ 2

7
] and f(xn) = k = f(x). It

follows that f is orthogonal continuous on X but it is not continuous on X.

Definition 2.10. [11] Let (X,⊥, d) be an orthogonal metric space and 0 < K < 1.

A mapping T : X → X is called an orthogonal contraction (O-contraction or ⊥-

contraction) with Lipschitz constant K, if for all x, y ∈ X with x⊥y then d(Tx, Ty) ≤

Kd(x, y).

Remark 5. It is clear that every contraction is orthogonal contraction but the con-

verse is not true.

Example 2.8. Let X = [0, 20) and d be the Euclidean metric on X. Define x⊥y if

xy ≤ x ∨ y. Let F : X → X be a map defined by

F (x) =







x
8
, if x ≤ 8;

0, if x > 4.

Let x⊥y and x ≤ y then we have

Case I: If x = 0 and y ≤ 8 then F (x) = 0 and F (y) = y

8
.

Case II: If x ≤ 8 and y > 8 then F (x) = x
8
and F (y) = 0.

Case III: If x ≤ 8 and y ≤ 8 then F (x) = x
8
and F (y) = y

8
.

Case IV: If x > 8 and y ≤ 8 then F (x) = 0 and F (y) = y

8
.
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Therefore we have |F (x)−F (y)| ≤ 1
8
|x−y|, and hence, F is an orthogonal contraction.

But F is not a contraction, because for each K < 1 then |F (9)− F (8)| = 1 > K =

K|9− 8|.

Example 2.9. [11] Let X = [0, 1) and d be the Euclidean metric on X. Define x⊥y

if xy ∈ {x, y} for all x, y ∈ X. Let F : X → X be a mapping defined by

F (x) =







x
2
, if x ∈ Q ∩X;

0, if x ∈ Qc ∩X.

Then F is an orthogonal contraction on X but it is not a contraction.

Definition 2.11. Let (X,⊥, d) be an orthogonal cone metric space. A mapping

T : X → X is said to be an orthogonal preserving (O-preserving or ⊥-preserving)if

x⊥y implies Tx⊥Ty for all x, y ∈ X .

Definition 2.12. [11] Let (X,⊥, d) be an orthogonal cone metric space. A mapping

T : X → X is said to be a weakly orthogonal preserving (weakly O-preserving or

weakly ⊥-preserving)if x⊥y implies Tx⊥Ty or Ty⊥Tx for all x, y ∈ X .

Example 2.10. [11] Let X be the set of all peoples in the world. We define x⊥y if

x can give blood to y. According to the following table, if x0 is a person such that

his/her blood type is O−, then we have x0⊥y for all y ∈ X. Then (X,⊥) is an

orthogonal set. In the following, we see that in this orthogonal set x0 is not unique.

Type You can give blood to You can receive blood from

A+ A+, AB+ A+, A−, O+, O−

O+ O+, A+, B+, AB+ O+, O−

B+ B+, AB+ B+, B−, O+, O−

AB+ AB+ Everyone

A− A+, A−, AB+, AB− A−, O−

O− Everyone O−

B− B+, B−, AB+, AB− B−, O−

AB− AB+, AB− AB−, B−, O−, A−

Remark 6. We have every orthogonal preserving mapping is weakly preserving, but

the converse is not true.



ORTHOGONAL CONE METRIC SPACES WITH BANACH ALGEBRAS 293

For this let (x,⊥) be an orthogonal set defined in the Example 2.10. Let O1 in

X be a person with blood type O−; P1 be a person with blood type A+. Define a

mapping F : X → X by

F (x) =







P1, if x = O1;

O1, if x ∈ X \ {O1}.

Let O2 ∈ X \ {O1} be a person with blood type O−. Then we get O1⊥O2 but we do

not have F (O1)⊥F (O2). Therefore F is not an orthogonal preserving but it is weakly

orthogonal preserving.

Finally, let us recall the concept of generalized Lipschitz mapping defining on the

cone metric spaces over Banach algebras, which is introduced in [14].

Definition 2.13. [14] Let (X, d) be a cone metric space over a Banach algebra A. A

mapping T : X → X is called a generalized Lipschitz mapping if there exists a vector

k ∈ P with r(k) < 1 and for all x, y ∈ X , one has

d(Tx, Ty) � kd(x, y).

Remark 7. In Definition 2.13, we only suppose the spectral radius of k is less than 1,

while ‖k‖ < 1 is not assumed. Generally speaking, it is meaningful since by Remark

1, the condition r(k) < 1 is weaker than that ‖x‖ < 1.

Remark 8. If r(k) < 1, then ‖kn‖ → 0(n → ∞).

To arrive at our primary conclusions, it is crucial to first understand the facts

regarding spectral radius.

Lemma 2.1. [22] Let A be a Banach algebra and let x, y be vectors in A. If x and y

commute, then the following hold:

(i) r(xy) ≤ r(x)r(y);

(ii) r(x+ y) ≤ r(x) + r(y);

(iii) |r(x)− r(y)| ≤ r(x− y).

Lemma 2.2. [22] Let A be a Banach algebra and let (xn) be a sequence in A. Suppose

that (xn) converges to x in A and that xn and x commute for all n, then we have

r(xn) → r(x) as n → ∞.
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Lemma 2.3. [22] Let A be a Banach algebra and let k be a vector in A. If 0 ≤ r(k) <

1, then we have

r((e− k)−1) ≤ (1− r(k))−1.

3. Examples

In this section we give some examples for orthogonal cone metric spaces with

Banach algebras.

Example 3.1. [5] Let A = R2, with ‖ (x1, x2) ‖= |x1| + |x2|. The multiplication is

defined by

xy = (x1, x2)(y1, y2) = (x1y1, x2y1 + x1y2).

Then A is a Banach algebra with unit (1, 0).

Let P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0}, then P is a normal cone with normal constant

M = 1.

Let X = R2, the metric d be defined by

d((x1, x2), (y1, y2)) = (|x1 − y1|, α|x2 − y2|), α ∈ R, α > 0.

Then (X, d) is a complete cone metric space with Banach algebra.

Now consider the binary relation on X by,

x ⊥ y if and only if 〈x, y〉 = 0.

Then by setting x0 = (0, 0), we get x0 ⊥ (x1, x2) for all (x1, x2) ∈ R2, and so X is an

orthogonal set, (X,⊥, d) is an O-complete cone metric space with Banach algebra.

Example 3.2. Let A = R2, with

‖ (x1, x2) ‖= max
i=1,2

|xi|.

The multiplication is defined by

xy = (x1, x2)(y1, y2) = (x1y1, x2y2).

Then A is a Banach algebra with unit (1, 1).

Let P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0}, then P is a normal cone with normal constant

M = 1.

(1) Let X = [0, 1)× [0, 1) ⊆ R2, the metric d be defined by

d((x1, x2), (y1, y2)) = (|x1 − y1|, |x2 − y2|),
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then (X, d) is a non complete cone metric space with Banach algebra.

Now consider the binary relation defined on X by

x ⊥ y if and only if x.y ∈ {x, y}.

Then (0, 0) ⊥ (x1, x2) for all (x1, x2) ∈ X, so (X,⊥, d) is an O-complete cone

metric space with Banach algebra.

(2) Consider Z with the binary relation

m ⊥ n if there is k ∈ Z with m = kn.

Then if we define the metric d : Z× Z → A by

d(x, y) = (|x− y|, |x− y|),

then (Z,⊥, d) is a O-complete cone metric space with Banach algebra.

Example 3.3. Let A = C[0, 1], be the space of all real valued continuous functions

on [0, 1], with pointwise multiplication and

‖ x ‖= sup
t∈[0,1]

|x(t)|,

then it is known that A is a commutative unital Banach algebra with this norm and

P = {x : x(t) ≥ 0}, is a normal cone in A with normal constant 1. Let X = {f ∈

C[0, 1] : f(x) ≥ 1}, consider the binary relation on X by

x ⊥ y if and only if x(t).y(t) ≥ x(t)or y(t).

Then (X,⊥) is an orthogonal set. Define a metric d : X ×X → A by

d(f, g) = |f(t)− g(t)|.

Then (X,⊥, d) is an orthogonal cone metric space with Banach algebra.

Example 3.4. Let A = Mn(R) = {a = (aij)n×n|aij ∈ R, ∀1 ≤ i, j ≤ n} be the algebra

of all n-square real matrices, and define the norm

‖a‖ =
∑

1≤i,j≤n

|aij|.

Then A is a real Banach algebra with the unit e the identity matrix.

Let P = {a ∈ A|aij ≥ 0, ∀1 ≤ i, j ≤ n}. Then P ⊂ A is a normal cone with normal

constant M = 1. Now we define a binary relation ⊥ on A as a⊥b if a−b ≥ 0. Clearly
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for all a ∈ P , a⊥0.

Let X = Mn(R), and define the metric d : X ×X → A by

d(x, y) = d((xij)n×n, (yij)n×n) = (|xij − yij|)n×n ∈ A.

Then (X,⊥, d) is a cone metric space over Banach algebra A with normality.

4. Main Results

The following results, which extend the theorems in cone metric spaces [9], to

orthogonal cone metric spaces with Banach algebras, are proved in this section. Other

fixed point theorems of generalized Lipschitz mappings in the case of an orthogonal

cone metric space over Banach algebra will be presented in the following sections.

Definition 4.1. Let (X,⊥, d) be an orthogonal cone metric space over a Banach

algebra A. A mapping T : X → X is called a generalized Lipschitz mapping if there

exists a vector k ∈ P with r(k) < 1 and for all x, y ∈ X with x⊥y, one has

d(Tx, Ty) � kd(x, y).

Theorem 4.1. Let (X,⊥, d) be an O-complete cone metric space with Banach algebra

A and P is a normal cone in A with normal constant M , let f : X → X be a

mapping which is ⊥-preserving, ⊥-continuous and satisfies the generalized orthogonal

contraction condition,

d(fx, fy) � ad(x, y), if x ⊥ y,

where a ∈ P with r(a) < 1. Then f has a unique fixed point in X.

Proof. Since X is an orthogonal set, there exists x0 in X such that

x ⊥ x0 or x0 ⊥ x for all x ∈ X .

So we have x0 ⊥ f(x0) or f(x0) ⊥ x0. Let

x1 := f(x0), x2 := f(x1) = f 2(x0), ..., xn+1 := f(xn) = fn(x0), for n ≥ 1.

Since f is ⊥-preserving we have {xn} is an O-sequence and

d(xn+1, xn) � ad(xn, xn−1) � ... � and(x1, x0)
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So for n > m,

d(xn, xm) � d(xn, xn−1) + d(xn−1, xn−2) + ...+ d(xm+1, xm)

� (an−1 + an−2 + ...+ am)d(x0, x1)

� (

∞
∑

i=0

ai)amd(x1, x0)

= (e− a)−1amd(x1, x0).

Since P is a normal cone with normal constant M , and ‖ an ‖→ 0 as n → ∞, we

have

‖ d(xn, xm) ‖→ 0 as n → ∞.

Hence the O-sequence {xn} is a Cauchy O-sequence and by the O-completeness of

X , there exists x ∈ X such that xn → x as n → ∞. Now since f is ⊥-continuous

f(xn) → f(x) as n → ∞, and

f(x) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x.

Therefore x is a fixed point of f in X .

Now we prove the uniqueness of the fixed point. Let y ∈ X be another fixed point

of f . Then we have fn(y) = y for all n ∈ N, and X is an O-set implies,

x0 ⊥ y or y ⊥ x0.

As f is ⊥-preserving, we have

fn(x0) ⊥ fn(y) or fn(y) ⊥ fn(x0), for all n ∈ N, and

fn(x0) ⊥ fn(x) or fn(x) ⊥ fn(x0), for all n ∈ N.

Since f is a ⊥ − contraction

d(x, y) = d(fn(x), fn(y))

� d(fn(x), fn(x0)) + d(fn(x0), f
n(y))

� an[d(x0, x) + d(y, x0)].

As P is a normal cone with normal constant M and r(a) < 1, we have

‖ d(x, y) ‖≤ M(‖ an ‖ [‖ d(x, x0) ‖ + ‖ d(x0, y) ‖]) → 0,
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and x = y as n → ∞. Hence the fixed point of f is unique. �

Example 4.1. Let A = R2, with ‖ (x1, x2) ‖=
|x1|+|x2|

2
. The multiplication is defined

by

xy = (x1, x2)(y1, y2) = (x1y1, x2y2).

Then A is a Banach algebra with unit (1, 1).

Let P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0}, then P is a normal cone with normal constant

M = 1.

Let X = {(x, 0) : 0 ≤ x ≤ 1, x ∈ R}. Define a binary relation on X by

(x, 0) ⊥ (y, 0) if xy ≤ min{x, y},

setting x0 = (0, 0) we get (X,⊥) is an orthogonal set.

Define d : X ×X → A by

d((x, 0), (y, 0)) = (|x− y|, α|x− y|), α ∈ R, α > 0.

Then (X,⊥, d) is an O-complete cone metric space with Banach algebra.

Consider the map f : X → X defined by

f((x, 0)) = (arctan(x+ 1
2
), 0),

then f is ⊥-preserving, ⊥-continuous and satisfies the generalized orthogonal con-

tractive condition

d(f((x, 0)), f((y, 0))) � (4
5
, 4
5
)d((x, 0), (y, 0))

where k = (4
5
, 4
5
) ∈ P ,with r(k) < 1 and ‖ k ‖> 1. Hence we can apply the Theorem

4.1 to guarantee the existence of a fixed point for f in X.

Theorem 4.2. Let (X,⊥, d) be an O-complete cone metric space with Banach algebra

A and P is a normal cone in A with normal constant M , let f : X → X be ⊥-

preserving, ⊥-continuous satisfying the following generalized orthogonal contraction

type condition

d(fx, fy) � a[d(x, fx) + d(y, fy)],

where x, y ∈ X with x ⊥ y and a ∈ P with r(a) < 1
2
. Then f has a fixed point in X.

Proof. As in Theorem 4.1 we get an O-sequence by

x0, x1 := f(x0), x2 := f(x1) = f 2(x0), .., xn := f(xn−1) = fn(x0), and
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d(xn+1, xn) = d(fxn, fxn−1)

� a[d(xn, fxn) + d(xn−1, fxn−1)] = a[d(xn, xn+1) + d(xn−1, xn)]

d(xn+1, xn) � (e− a)−1ad(xn, xn−1).

Take h = a(e− a)−1, then we prove that r(h) < 1. Since 0 ≤ r(a) < 1
2
< 1,

(e− a)−1 = e +
∑∞

i=0 a
i = e + lim

n→∞

n
∑

i=0

ai

Then by lemma(2.2) and lemma(2.3), we have

r((e− a)−1) ≤ r(e) + r( lim
n→∞

n
∑

i=0

ai)

≤ r(e) + lim
n→∞

n
∑

i=0

r(a)i

= 1 +

∞
∑

i=0

r(a)i = (1− r(a))−1.

In fact, a and (e− a)−1 commutes and r(a) < 1
2
gives

r(a(e− a)−1) ≤ r(a)r((e− a)−1)

≤
r(a)

1− r(a)
< 1.

So we have d(xn+1, xn) � hd(xn, xn−1), where r(h) < 1, then by the proof of Theorem

4.1, we can see that the O-sequence {xn} is Cauchy. since X is O-complete there is

x ∈ X such that xn → x as n → ∞. Next, we prove that x is a fixed point of f .

Consider

d(fx, x) � d(fx, fxn) + d(fxn, x)

� k[d(fx, x) + d(fxn, xn)] + d(xn+1, x)

� (e− k)−1[kd(xn, x) + (e + k)d(xn+1, x)].

Since P is a normal cone with normal constant M , in the light of the above inequality,

d(fx, x) ≤ M ‖ (e− k)−1 ‖ [‖ k ‖ (‖ d(x, xn) ‖ + ‖ e + k ‖‖ d(x, xn+1) ‖)] → 0 as

n → ∞.
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Hence x is a fixed point of f . �

Next by modifying the generalized contractive condition of the mapping, we prove

the following fixed point result.

Theorem 4.3. Let (X,⊥, d) be an O-complete cone metric space with Banach algebra

A and P is a normal cone in A with normal constant M , let f : X → X be ⊥-

preserving, ⊥-continuous and satisfying the following generalized contraction type

condition

d(fx, fy) � ad(x, y) + b[d(x, fx) + d(y, fy)] + c[d(y, fx) + d(x, fy)],

where x, y ∈ X with x ⊥ y and a, b, c are commuting elements in P with r(a) +

2[r(b) + r(c)] < 1. Then f has a fixed point in X.

Proof. As in Theorem 4.1, we get an O-sequence:

x0, x1 = f(x0), x2 = f(x1) = f 2(x0), .., xn = f(xn−1) = fn(x0), and

d(xn+1, xn) = d(fxn, fxn−1)

� ad(xn, xn−1) + b[d(xn, fxn) + d(xn−1, fxn−1)] + c[d(xn−1, fxn) + d(xn, fxn−1)]

= ad(xn, xn−1) + b[d(xn, xn+1) + d(xn−1, xn)] + c[d(xn−1, xn+1) + d(xn, xn)]

� (e− b− c)−1(a + b+ c)d(xn, xn−1).

Take h = (e− b− c)−1(a+ b+ c), then we prove that r(h) is less than 1. By Lemma

3.1 and Lemma 3.2 , we have

r((e− b− c)−1(a+ b+ c)) ≤ r(a+ b+ c)r((e− b− c)−1)

≤
r(a+ b+ c)

1− r(b+ c)

≤
r(a) + r(b) + r(c)

1− r(b)− r(c)
< 1.

Thus we have d(xn+1, xn) � hd(xn, xn−1) with r(h) < 1, then by the proof of theorem

4.1, we can see that the O-sequence {xn} is Cauchy. Since X is O-complete there is

x ∈ X such that xn → x as n → ∞. Next, we prove that x is a fixed point of f ,
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consider

d(fx, x) � lim
n→∞

d(fx, fxn) + d(fxn, x)

� lim
n→∞

[ad(x, xn) + bd[d(fx, x) + d(fxn, xn)] + c[d(fx, xn) + d(fxn, x)] + d(xn+1, x)]

� (b+ c)d(fx, x), as n → ∞.

Observe that b+ c ∈ P with r(b+ c) < 1, implies d(fx, x) = 0A and hence x is a fixed

point of f . �

Here we prove fixed point result for mapping satisfying generalized Hardy Rogers

contraction type conditions in O-complete cone metric spaces.

Theorem 4.4. Let (X,⊥, d) be an O-complete cone metric space over Banach algebra

with normal cone P , f : X → X be ⊥- preserving, ⊥-continuous mapping and

satisfying the following condition:

d(fx, fy) � a1d(x, y) + a2d(x, fx) + a3d(y, fy) + a4d(y, fx) + a5d(x, fy),

where x, y ∈ X with x ⊥ y and a1, a2, a3, a4, a5 are commuting elements in P with

r(a1) + r(a5) + r(a3) + 2r(a2) + 2r(a4) < 1. Then f has a fixed point in X.

Proof. As in Theorem 4.1, we get an O-sequence:

x0, x1 = f(x0), x2 = f(x1) = f 2(x0), .., xn = f(xn−1) = fn(x0), and

d(xn+1, xn) = d(fxn, fxn−1)

� a1d(xn, xn−1) + a2d(xn, fxn) + a3d(xn−1, fxn−1)

+ a4d(xn−1, fxn) + a5d(xn, fxn−1)

= a1d(xn, xn−1) + a2d(xn, xn+1) + a3d(xn−1, xn)]

+ a4d(xn−1, xn+1) + a5d(xn, xn)

� (e− a2 − a4)
−1(a1 + a2 + a3 + a4)d(xn, xn−1).
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Take h = a(e− a2 − a4)
−1(a1 + a2 + a3 + a4), then we prove that r(h) is less than 1.

We have

r(e− a2 − a4)
−1(a1 + a2 + a3 + a4) ≤ r((e− a2 − a4)

−1)r(a1 + a2 + a3 + a4)

≤
r(a1 + a2 + a3 + a4)

1− r(a2 − a4)

≤
r(a1) + r(a2) + r(a3) + r(a4)

1− r(a2)− r(a4)
< 1.

Thus we have d(xn+1, xn) � hd(xn, xn−1) with r(h) < 1, then by the proof of Theorem

4.1, we can see that the O-sequence {xn} is Cauchy. Since X is O-complete there is

x ∈ X such that xn → x as n → ∞. Next, we prove that x is a fixed point of f ,

consider

d(fx, x) � lim
n→∞

d(fx, fxn) + d(fxn, x)

� lim
n→∞

[a1d(x, xn) + a2d(fx, x) + a3d(fxn, xn)

+ a4d(fx, xn) + a5d(fxn, x) + d(xn+1, x)]

� (a2 + a4)d(fx, x), as n → ∞.

Observe that a2 + a4 ∈ P with r(a2 + a4) < 1, implies d(fx, x) = 0A and hence x is

a fixed point of f . �

Definition 4.2. Let (X,⊥, d) be an orthogonal cone metric space over the Banach

algebra A with cone P . We say F : X → X is α-admissible if there is α : X×X → P

such that

α(x, y) � e implies α(Fx, Fy) � e, for x, y ∈ X.

Next we prove a fixed point result for mappings satisfying α-admissible contraction

condition in O-complete cone metric space over Banach algebra.

Theorem 4.5. Let (X,⊥, d) be an O-complete cone metric space over Banach algebra

A with normal cone P , f : X → X be ⊥- preserving, ⊥-continuous, α-admissible

mapping and satisfying the following conditions:

(i) α(x, y)d(fx, fy) � ad(x, y), if x ⊥ y, where a ∈ P with r(a) < 1;
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(ii) There exists x0 ∈ X such that x0 ⊥ fx0 and α(x0, fx0) � e.

Then f has a fixed point in X.

Proof. By condition (ii) there exists x0 ∈ X such that x0 ⊥ fx0 and

α(x0, fx0) � e. Take xn = fn(x0), since f is ⊥-preserving we have {xn} is an orthog-

onal sequence and the α-admissibility of f gives;

α(xn, xn+1) � e, for n ≥ 0.

Also {xn} satisfies:

d(x1, x2) � α(x0, fx0)d(x1, x2) = α(x0, fx0)d(fx0, fx1)

� ad(x0, x1).

Similarly

d(x2, x3) � α(x0, fx0)d(x2, x3) = α(x0, fx0)d(f(fx0), f(f
2(x0))

� ad(fx0, fx1) = ad(x1, x2)

� a2d(x0, x1).

Then by continuing this process we see that

d(xn, xn+1) � and(x0, x1).

Now for n > m, we have

d(xn, xm) � d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm+1, xm)

� (an + an+1 + ...+ am−1)d(x0, x1)

� an((e− a)−1)d(x0, x1).

Take h = an(e − a)−1, then r(an(e − a)−1) < 1, hence {xn} is a Cauchy sequence.

Then by the O-completeness of X , there exists x ∈ X such that lim
n→∞

xn = x. Now

since f is ⊥-continuous we have x is a fixed point of f . �
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5. Application

In this section, we give a simple application of Theorem 4.1.

Let A = C[0, 1], be the space of all real valued continuous functions on [0, 1], with

pointwise multiplication and

‖ x ‖= sup
t∈[0,1]

|x(t)|,

then A is a commutative unital Banach algebra with this norm and

P = {x : x(t) ≥ 0}, is a normal cone in A with normal constant 1.

Now consider the initial value problem:

(5.1)







y′ = g(t, y(t)); t ∈ I = [0, 1]

y(0) = y0, y0 ≥ 1,

where g : I × A → A be continuous and satisfies the following

(1) g(s, x) ∈ P for all x ∈ P and s ∈ I.

(2) g satisfies:

|g(s, x)− g(s, y)| � f(s)|x(s)− y(s)|

where f(s) = 1+s3

3
, s ∈ I and x, y ∈ P with xy − x ∈ P or xy − y ∈ P. Note that f

need not be a generalized Lipschitz mapping under the given conditions.

Here we prove the existence of a solution for the above initial value problem by

applying theorem 4.1.

Let X = {x ∈ C[0, 1] : x(t) > 0, ∀t ∈ I}. Then define d : X × X → A by

d(x, y) = supt∈I |x(t) − y(t)|et for all x, y ∈ X . Then (X, d) is a cone metric space

over the Banach algebra A. Now consider the orthogonality relation on X by

x ⊥ y if and only if x(t)y(t) ≥ x(t) or y(t),

then (X,⊥, d) is an O-complete cone metric space with Banach algebra.

Note that the initial value problem 5.1 is equivalent to the integral equation

x(t) = y0 +
∫ t

0
g(s, x(s)) ds.

Define a map G : X → X by

(Gx)(t) = y0 +
∫ t

0
g(s, x(s)) ds.
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Note that the fixed points of G are the solutions of equation 5.1. To prove this we

need the following steps;

(1) G is ⊥-preserving: Let x, y ∈ X with x ⊥ y, then

(Gx)(t) = y0 +
∫ t

0
g(s, x(s)) ds ≥ 1.

Thus (Gx)(t)(Gy)(t) ≥ (Gy)(t), and hence Gx ⊥ Gy.

(2) G is a generalized ⊥-contraction: Let x, y ∈ X with x ⊥ y, then

|(Gx)(t)− (Gy)(t)| ≤

∫ t

0

|g(s, x(s))− g(s, y(s))| ds

≤

∫ t

0

|f(s)||x(s)− y(s)| ds

= F (t)|x(t)− y(t)|,

where F (t) =
∫ t

0
|f(s)| ds, for t ∈ I, then

d(Gx,Gy) = sup
t∈I

|(Gx)(t)− (Gy)(t)|et

� sup
t∈I

F (t)|x(t)− y(t)|et � kd(x, y).

where k ∈ P with r(k) < 1, then G is a generalized orthogonal contraction.

(3) G is ⊥-continuous: Let {xn} be an O-sequence in X , and let xn → x in X .

As xn(t) ≥ 1, we have x(t) ≥ 1. Hence xn ⊥ x, and as in step.2, we get

d((Gxn)(t)− (Gx)(t)) � kd(xn, x),

then as r(k) < 1, we have Gxn → Gx as n → ∞.

So G satisfies all the conditions in Theorem 4.1, hence the existence and uniqueness

of solution to the initial value problem has been guaranteed by Theorem 4.1.
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