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EXISTENCE RESULT FOR A MODEL COUPLING A
QUASI-LINEAR PARABOLIC EQUATION AND A LINEAR

HYPERBOLIC SYSTEM

DJAMEL AIT-AKLI

Abstract. We study a coupled Fluid - Structure system describing the motion of

an elastic solid interacting with an incompressible viscous fluid in two dimensions.

The behavior of the solid is described by the Lamé system of linear elasticity and the

fluid obeys the incompressible stokes equations. The quasi-linear nature of the con-

sidered Stokes equation is characterized by the nonlinear dependence of the stress

tensor on the gradient of the fluid velocity; this encompasses the case of Newtonian

as well as non-Newtonian fluids. At the Fluid Solid interface, natural conditions

are imposed, continuity of the velocities and of the Cauchy stress forces. The fluid

and the solid are coupled through these conditions. By this interaction, the fluid

deforms the boundary of the solid which in turn influences the fluid motion. We

prove the existence of globally-in-time solution for the problem coupling the linear

Lamé system and the quasi-linear Stokes equation. To achieve this, we interpret the

solution as the fixed point of some non-linear operator T associated to the global

problem. Then we construct, using a regularization procedure, a sequence (T ǫ)ǫ of

auxiliary compact operators that approximate T . Next we establish, using a com-

bination of Banach and Schaeffer fixed point theorems, the existence of fixed points

to every operator T ǫ, these auxiliary fixed point are actually solution of auxiliary

problems. Finally we prove that these fixed points converge to the fixed point of T .

1. Introduction

The mathematical and numerical analysis of Fluid—Structure interaction problems

have been an important area of research in the recent years, (cf. [5], [9]) and the
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references therein. In the sequel, the fluid-structure interaction problem is denoted

by FSI. Let us precisely describe the problem we are interested in. We study a

system modeling the interaction between a fluid flow obeying the incompressible

Stokes equations and an elastic solid obeying the Lamé system of linear elasticity.

Setting of the main problem. We address the issue of existence of solution for the

coupled system which reads:

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)










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
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
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


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


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















































∂tvf − diva(t,∇vf )− µ∆vf +∇π = F in ΩT
f ,

div vf = 0 in ΩT
f , vf = 0 on (0, T )× (∂Ωf − Σ),

vf(0, .) = v0f in Ωf ,
∫ t

0

vf (r)dr = us(t), (S(vf , π) + a(t,∇vf)) ·
−→n = σ(us) ·

−→n on ΣT ,

∂ttus − div σ(us) = 0 in ΩT
s ,

us = 0 on (0, T )× (∂Ωs − Σ),

us(0, .) = 0, ∂tus(0, .) = 0 in Ωs.

Let us interpret the symbols and the notations in system (1.1)-(1.7). We let T > 0

to be a positive real number. We have denoted ωT := (0, T ) × ω. The function us

denotes the displacement of the solid structure, the function vf denotes the velocity

of the fluid and π denotes its pressure. System (1.1)-(1.7) is formed out of:

• The parabolic Stokes equation with a quasi-linear diffusion term that describes

the motion of a fluid inside a fluid domain Ωf ⊂ R
2, cf. equations (1.1)-(1.3).

• The coupling condition, cf. equation (1.4).

• The second order linear hyperbolic Lamé system that describes the deforma-

tion, due to interaction with the fluid, of a structure occupying a solid domain

Ωs ⊂ R
2, cf. equations (1.5)-(1.7).

We assume that Ω := Ωs ∪ Ωf (t) ⊂ R
2, for all t ∈ (0, T ), that is the global domain

Ω doesn’t vary in time during the interaction. Moreover, the boundaries ∂Ωf resp.

∂Ωs of the fluid resp. the structure domains are both assumed to meet the minimal

C2−regularity.
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The solid domain Ωs and the fluid domain Ωf (t) share a common part of their

respective boundaries, this contact interface is denoted Σ i.e. ∂Ωs ∩ ∂Ωf (t) = Σ(t),

the variation in time of Σ isn’t taken into account, cf. the conclusive discussion at

the end of this paper. We assume furthermore that Σ is connected. The coupling

condition, relating the fluid and solid problems, is prescribed on (0, T )×Σ. It consists

of imposing, on the contact interface Σ, the two equalities:

(1.8)

∫ t

0
vf(r, x)dr = us(t, x)

(S(vf , π) + a(t,∇vf )) ·
−→n = σ(us) ·

−→n , (t, x) ∈ ΣT ,

where −→n denotes the exterior unit normal defined at each point of Σ. The term

S(vf , π) denotes the Cauchy stress tensor:

(1.9) S(vf , π) := −πI+ 2νε(vf),

where ν denotes the fluid viscosity and the function a : [0, T ] × R
2 → R

2 such that

a := (a1, a2) satisfy (3.2) and other assumptions that will be precised in section 3.

On the other hand, σ(us) ·
−→n denotes the normal component of the stress tensor:

(1.10) σ(u) = 2µε(u) + λTrε(u)Id, with ε(u) =
1

2

(

∇u+∇tu
)

,

the symbols µ and λ in (1.10) denotes the Lamé coefficients characteristic of the solid

medium. Unlike what is usually done regarding the coupling condition, we imposed

the equality of the displacements functions, us and uf , on the contact interface instead

of the equality of the velocities.

The condition (1.8) is completed by an homogeneous Dirichlet data (1.2), (1.6) on

the remaining part of the boundaries of the domain and by initial time conditions

(1.3) and (1.7). The fluid is assumed to be divergence-free, this translate the incom-

pressibility of the fluid. We emphasize that, except for the fluid initial condition,

(1.3), the restriction to homogeneous data for both Stokes and Lamé problems are

adopted only for the sake of simplicity of presentation, one can refer to [5] and the

references therein for the case where non homogeneous data are considered but with

restrictive assumption on the geometry of the domain, namely the flatness of the

contact interface.
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Application examples. The two equations involved in the coupled problem (1.1)-(1.7)

are the time-dependent Lamé system and the unsteady Stokes equations. It is well

known that the Lamé equation models the elastic behavior of materials by considering

their characteristic Lamé coefficients. The Lamé coefficients reflect the nature of

the material, this flexibility in the choice of these coefficients allows this model to

be applied to various situations. On the other hand, the Stokes or Navier-Stokes

equations model the flow of a varied number of fluids by considering the linear or

non-linear dependence of the viscosity on the strain, which makes it possible to include

the study of the Newtonian case or non-Newtonian fluid as in the present study.

The coupling problem has proven very efficient to model which part important

fluid-structure interaction phenomena that arise in many practical situations. This

is the case, for example, of a dam (concrete dam) which is subjected to water load.

In this case, the fluid is Newtonian (water). Another example is that of a high-speed

train; HST, subjected to the aerodynamic forces of the wind or an airplane that is

subjected to aerodynamic forces (the fluid in this case represents the air). Other

important situations can be considered, such as the circulation of blood in a vein, the

fluid in this case is non-Newtonian. One can also cite the example of pipelines such

as those of gas which exert a constraint on the parishes of the pipelines.

Motivation behind this study. Let’s take a closer look at some examples that reflect the

importance of the presently addressed study. The case when the structure represents

a dam occupying the solid domain Ωs that has, say, a trapezoidal shape. This dam is

subjected to a hydraulic load on its downstream face. The fluid in this case represents

water. Let us imagine that the whole of the structure and the hydraulic load are

subjected to a seismic excitation, this is interpreted by non-homogeneous boundary

conditions for both of the structure (displacement) and the fluid (velocity).

During earthquake exposure (or in the case of ordinary filling of the dam), the fluid

and the structure interact. This interaction takes the form of a physical exchange of

data. This transmission concerns on the one hand the velocity and on the other hand

the constraints. This transmission occurs at the level of the contact interface, this

interface is the part of the boundary which is shared by the structure and the fluid.

The existence of a solution allows us to proceed to the numerical study, but not only.
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Indeed, the idea used in the proof of existence of a solution to the coupled problem

is mainly based on the fixed point theory. This idea can be successfully adopted for

numerical purposes in that it suggests the method to be used in numerical simulation.

Once these numerical data are in hand, we can move on to a very important step,

that of adapting the geometry of the solid domain (dam). Indeed, the dam is made of

a reinforced concrete structure whose characteristics obey well-established standards,

it cannot support a hydraulic load beyond a certain critical threshold. So if the data

show that the standards are exceeded, it will be necessary to think of introducing

a reinforcement in order to guarantee the equilibrium. We can clearly see that the

issue of existence, in addition to being important in itself, it constitutes the support

of a numerical and optimization study that is both interesting and applicable.

Indeed, starting from these numerical results, we can decide on the relevance of

the model as well as the mechanical and dynamic characteristics of the materials to

be adopted. One of the goals of this kind of study is to seek and reach the state of

equilibrium during the interaction by adapting the characteristics of the materials,

which consists of the Lamé coefficients (for reinforced concrete, type of steel that

will be used for the manufacture of the airplane wings, the curvature of the shell,

the aircraft fuselage, etc.) These coefficients must be well adapted in order to avoid

cracks and overflows which can lead to disasters in the case of the hydraulic dam or

an airplane.)

The other type of coefficient to be adapted are the viscosity. For example that of

drugs or any other physiological fluids which are naturally dilating or pseudo-plastic.

These coefficients should be well suited for medical treatment in case of abnormali-

ties); or for medical reasons, in the case of blood and/or drugs which interact with the

the walls of blood vessels and tissues in order to avoid life-threatening or physiological

dysfunctions in general.

It should also be noted that the fluid in the example which has just been presented

is water, therefore the stress tensor involved in the equation which governs its flow is

a linear function of the strain. This being so, one can think of modeling an interaction

between a viscous fluid with a solid structure of another type, for example the blood
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which interacts with the walls of the vessels in human body. Since blood is a pseudo-

plastic fluid, a quasi-linear term should be introduced into the equation describing its

flow. This is the subject of the stokes equations which is part of the coupled problem

(1.1)-(1.7). One should note that what has just been stated for the case of the dam

with hydraulic loading is perfectly transposable for other situations of fluid-structure

interaction.

Relevance of the non-linearity in the Fluid equation. The new ingredient in the con-

sidered Stokes equation is the introduction of the quasi-linear term a. The principal

and widely used prototype for such a term is given by the p−laplacian:

a(t,∇v) = |∇v|p−2∇v.

The p-Laplacian operator arises in various fields, such as non-Newtonian fluids, non-

linear diffusion problems, filtration of fluids in porous medium. The quantity p is

a characteristic of the medium. Three cases can be distinguished. The first case

corresponds to p > 2: the fluid is called dilatant (like thick suspensions of particles in

a liquid). The second case corresponds to p ∈ (1, 2): the fluid is called pseudo-plastic

(like Ice and blood). The last case corresponds to p = 2: the fluid is Newtonian.

The present study encompasses all the Newtonian, non Newtonian fluid as well as

Generalized Newtonian fluid.

In the case p = 2, which represents Newtonian fluids, we recover the Stokes equation

that describes the flow of an incompressible Newtonian fluid, that is to say whose

equation is of the form

vt − divT (v, π) = 0

where

T (v, π) = νεjk(v)− δjkπ

is the usual Cauchy stress tensor and where εjk is the strain tensor given by (1.10)

and ν > 0 denote the fluid viscosity. That is, the stress tensor T depends linearly on

the symmetric part of the gradient (i.e. the strain tensor ε). Thus we have in this

case divT (v, π) = ∆v−∇π, cf. [6]. This yields the linear Stokes equation. However,
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in the case of a Non-Newtonian fluid we have

T (u, π) = ν(|∇v|p−2)εjk − δjkπ

i.e. the viscosity ν is a function of |∇v|. We can interpret this in the one-dimensional

case, that is to say in the case where the flow of the fluid is uni-directional, say in

the x−direction, by saying that the deformations in this case reduces to ε(v) = ∂xv.

So the stress tensor depends non-linearly on the strain via the nonlinear dependence

of the viscosity on the strain. Such quasi-linear Stokes Problems in one dimension

occur in some physical models such as non-Newtonian fluids and chemical reactions,

see e.g. [2], [6].

In dimensions two and above, it is possible to consider the nonlinear dependence

of the viscosity, and therefore also that of the stress tensor, on the strain tensor in

the following way:

a(t, ε(v)) = |ε(v)|p−2ε(v)

where ε(u) is the second order strain tensor. Such an operator is monotone, this

characteristic is very important because it will be the key ingredient to prove the

existence of a solution of the coupled problem (1.1)-(1.7) along with an appropriate

energy estimate. The term a(t, ε(v)) · −→n = |ε(v)|p−2ε(v) · −→n represents the normal

component of the tensor of the constraints whose value on the boundary constitutes

Neumann data.

The main result of the present work is stated in the following theorem:

Theorem 1.1. ∀T > 0, ∀F ∈ L2(0, T ;H−1(Ωf )) and ∀v0f ∈ L2(Ωf ), the coupled

problem (1.1)-(1.7) admits at least one solution:

(1.11)
(vf , π, us) ∈L

2
(

0, T,H1(Ωf )
)

∩H1(0, T ;H−1(Ωf )× L2
(

0, T ;L2(Ωf )/R
)

×
(

H1((0, T )× Ωs) ∩H
2(0, T ;H−1(Ωs))

)

.

The focus is on establishing existence of globally-in-time solution to the coupled

problem (1.1)-(1.7) which is analogous to problem [5, Problem 2.10, p.556]. The

interest in the regularity of the solutions is secondary in our current considerations.
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Novelty of the study. Our contribution to the analysis of FSI type problems can

be summarized by mean of two main ideas. The first one is to have included a

non-linear (or quasi-linear) term in the Stokes equation. This has the advantage,

as pointed out above, of encompassing non-Newtonian fluids (with a viscosity that

depends no linearly on the strain). To our knowledge, the present work is the first

to undertake the study of a coupled problem with a nonlinear term in the equation

of the fluid part, i.e., which considers a non-Newtonian fluid interacting with a solid

structure. Moreover, we prove the globally-in-time existence of at least one solution

to the coupled problem while dealing with this non-linearity. To achieve that, we view

the solution of (1.1)-(1.7) as a fixed point of some non-linear operator T and we use

a regularization method in order to apply fixed point theory. The key ingredient in

order to apply such a theory is the fact that the operator defined by the quasi-linear

term is monotone. This allows us to use the theory of monotone operator cf. [7], this

is the second new original feature of the present work.

Organization of the paper. In the second section we establish a well-posedness result

for the Dirichlet problem associated to the Lamé operator along with an inverse es-

timate for the solid displacement. In the third section we derive an energy estimate

for the quasi-linear Stokes system and we introduce the operator T : X → X whose

fixed point is a solution of problem (1.1)-(1.7), the space X is given by (2.6). Next we

apply the regularization method to construct a sequence of auxiliary compact opera-

tors (T ǫ)ǫ such that T = lim
ǫ→0

T ǫ, then we establish the boundedness and compactness

of T ǫ using the preceding estimates. In the fourth section, we prove the existence

of a fixed point uǫ to T ǫ by combining Banach and Schaeffer fixed point theorems.

Finally we conclude by showing that the fixed points uǫ converge to a fixed point u0

of T .

2. Inverse estimate for the Lamé system.

Throughout this section, we let Ωs ⊂ R
2 to be a bounded planar domain with

boundary ∂Ωs ∈ C2. We consider the auxiliary Dirichlet problem (2.2) associated to

the time dependent second order Lamé operator H given by:

(2.1) Hu := ∂ttu− divσ(u).
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We prescribe a non-homogeneous Dirichlet condition on (0, T )×Σ and a homogeneous

Dirichlet condition on the remaining part of the boundary:

(2.2)























∂ttus − divσ(us) = 0 in (0, T )× Ωs,

us = uds on (0, T )× Σ,

us = 0 on (0, T )× (∂Ωs − Σ) ,

where T > 0. Moreover, the following initial-time conditions are prescribed:

(2.3) us(0) = 0, ∂tus(0) = 0.

The Dirichlet data uds in (2.2) is assumed to be compatible with (2.3). Let us define

the space:

Ds := {v ∈ C∞(Ωs), suppv ∩ (∂Ωs − Σ̊) = ∅},

where Σ̊ denotes the topological interior of Σ. We set:

(2.4) U := Ds
H1

to be the completion of Ds with respect to the H1(Ωs)−norm. Consider the space:

(2.5) {γΣ(v) : v ∈ U} ≡ H
1

2

0 (Σ),

where γΣ(v) denotes the trace, on the boundary Σ, of the function v. The space

H
1

2

0 (Σ) is defined as the completion of C∞
0 (Σ) with respect to the H

1

2 (Σ)−norm.

Denote X to be the space:

(2.6) X := H
1

2

(

0, T ;L2(Σ)
)

∩ L2
(

0, T ; H
1

2

0 (Σ)
)

⊂ H
1

2 ((0, T )× Σ),

and denote [X ]∗ its topological dual space. Let us define the operator T1 by:

(2.7)
T1 : X → L2

(

0, T ;H−
1

2 (Σ)
)

uds 7→ gs = T1(u
d
s),

where H−
1

2 (Σ) denotes the dual of H
1

2

0 (Σ). The operator T1 associates to every

Dirichlet data uds ∈ X on the solid part of the contact interface, (0, T ) × Σ, the

uniquely determined Neumann data gs := σ(us) ·
−→n corresponding to the solution us

of the Dirichlet problem (2.2)-(2.3). In the sequel we will denote equally by us the

Dirichlet data uds. The main result of this section is given in the following proposition:
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Proposition 2.1. The operator T1, given by (2.7), is well defined and bounded i.e.

there exists a constant Cs > 0 such that:

(2.8) ||σ(us) ·
−→n ||

L2

(

0,T ; H−
1
2 (Σ)

) ≤ Cs||us||X

for all us ∈ X , where X is defined by (2.6).

Before passing on to the proof of Proposition 2.1, we give a remark stating a lifting

property within the context of the Bochner space L2(0, T ;U) :

Remark 1. Consider the map γΣ defined by:

γΣ : L2(0, T ;U) → L2
(

0, T ;H
1

2

0 (Σ)
)

v 7→ γΣv,

this map associates to every v ∈ L2(0, T ;U) its trace on (0, T )×Σ. We claim that γΣ

is onto. Indeed, let v ∈ L2
(

0, T ;H
1

2

0 (Σ)
)

. The function can be extended by zero to

the rest of the boundary. This results in a function belonging to L2
(

0, T ;H
1

2 (∂Ωs)
)

which we still denote by v. By using the lifting property, one can easily find a family of

functions (0, T ) ∋ t 7→ ṽ(t, .) ∈ H1(Ωs) such that γ∂Ωs
ṽ(t, .) = v(t, .), ∀t ∈ (0, T ), and

such that one also has: ||ṽ(t, .)||H1(Ωs) ≤ ||v(t, .)||
H

1
2 (Ωs)

, ∀t ∈ (0, T ). The existence of

a ṽ satisfying such estimate can be established, for instance, within the Banach space

{w(t, .) ∈ H1(Ωs) :
∫

Ωs
w(t, x)∆xφ(x)dx = 0, ∀φ ∈ C∞

c (Ωs), ∀t ∈ (0, T )}. Thus the

function ṽ satisfy:

||ṽ||L2(0,T ;U) ≤ ||v||
L2

(

0,T ;H
1

2

0
(Σ)

),

and moreover, by combining [3, Theorem 1, p.518] and [2, Theorem 2.1, p.731], we

have ṽ(t, .) ∈ U , ∀t ∈ (0, T ); we thus conclude the surjectivity of γΣ.

Let us state a lemma about a useful existence and regularity result:

Lemma 2.1. Consider the problem

(2.9)























∂ttφ− divσ(φ) = F in (0, T )× Ωs,

φ = 0 on (0, T )× ∂Ωs,

φ(0, .) = 0, ∂tφ(0, .) = 0,
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we claim that for every F ∈ L2(0, T ;H−1(Ωs)), problem (2.9) admits a unique solution

φ ∈ L2(0, T ;H1(Ωs)) and moreover σ(φ) · −→n ∈ L2(0, T ;H−
1

2 (∂Ωs)).

Proof. One can, by density, find a sequence (Fn)n of elements in L2(0, T ;L2(Ωs)) ⊂

L1(0, T ;L2(Ωs)) such that:

(2.10) ||F − Fn||L2(0,T ;H−1(Ωs)) → 0.

Next one can use [10, Theorem 2.1, p.151] to show the existence of a unique solution

φn ∈ L2(0, T ;H1(Ωs)) =: Λ to problem (2.9) with Fn as a right hand side instead of

F . Starting from the weak formulation of problem (2.9), one writes:

(2.11) < ∂tφn, ∂tψ > + < ε(φn), ε(ψ) >L2(0,T ;L2(Ωs))=< Fn, ψ >Λ∗,Λ

for all ψ ∈ L2(0, T ;H1
0(Ω)). Choosing ψ = φn and using (2.10) we infer easily that

(2.12) ||∂tφn||L2(0,T ;L2(Ωs)) + ||ε(φn)||L2(0,T ;L2(Ωs)) < C

for some C > 0, and deduce the existence of a unique solution limn φn := φ ∈ Λ to

problem (2.9). �

Now we pass into the proof of Proposition 2.1:

Proof. Define the subspace

(2.13) A :=























v ∈ H1((0, T )× Ωs) ∩H
2(0, T ;H−1(Ωs)) :

∫ T

0

∫

Ωs
vH(φ)dxdt = 0, ∀φ ∈ C∞

c ((0, T )× Ωs),

||v(0)||L2(Ωs) = ||∂tv(0)||H−1(Ωs) = 0,























where H is defined in (2.1). Recall that: H1(0, T ;L2(Ωs)) ∩ L2(0, T ;H1(Ωs)) =

H1((0, T )× Ωs). One sees that A is a Banach space when endowed with the norm:

||v||A := ||v||H1((0,T )×Ωs) + ||∂ttv||L2(0,T ;H−1(Ωs)),

moreover A is reflexive. The idea of the proof consists at writing T1 as a composition

T1 = N ◦ γ−1
0 of two linear operators and then establishing their boundedness. The
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rest of the proof is divided into two main steps:

Step 1: first inverse estimate. Consider the trace operator:

γ0 : A → H
1

2 ((0, T )× ∂Ωs)

us 7→ γ0us,

this operator associates to every function us ∈ A its trace on (0, T )× ∂Ωs, the space

A is given by (2.13). The linear operator γ0 is clearly one-to-one, we claim that it is

also onto. Indeed, let us ∈ H
1

2 ((0, T )× ∂Ωs). we show the existence of Us ∈ A such

that us = γ0Us. To do this, it suffices to prove that the problem:

(2.14)























∂ttUs − divσ(Us) = 0 in (0, T )× Ωs,

Us = us on (0, T )× ∂Ωs,

Us(0, .) = 0, ∂tUs(0, .) = 0,

admits a solution Us ∈ A. Let uns ∈ C∞((0, T )× ∂Ωs) be such that:

(2.15) ||uns − us||
H

1
2 ((0,T )×∂Ωs)

→ 0;

such functions do exist by a density argument. Denote Un
s to be the solution of

problem (2.14) corresponding to uns as a Dirichlet data, according to [10, Theorem

2.1, p.151], this problem admits a unique solution Un
s ∈ A . The first equation of

(2.14) yields us:

(2.16) < Un
s , ∂ttφ > − < Un

s , divσ(φ) >=< Un
s , σ(φ) ·

−→n >,

for all φ ∈ L2(0, T ;H1(Ωs)) that is solution of problem (2.9). Since, by Lemma 2.1,

σ(φ) · −→n ∈ L2(0, T ;H−
1

2 (∂Ωs)) then using the convergence (2.15) we have:

(2.17) < Un
s ,H(φ) >=< Un

s , σ(φ) ·
−→n >→< us, σ(φ) ·

−→n >,

for every φ ∈ L2(0, T ;H1(Ωs)) solution of problem (2.9) i.e.

(2.18) < Un
s , F > converges ∀F ∈ L2(0, T ;H−1(Ωs)).

Given that L2(0, T ;H−1(Ωs)) is reflexive, then (2.18) implies:

(2.19) ∃C > 0, ||Un
s ||L2(0,T ;H1(Ωs)) ≤ C, ∀n,
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and thus (Un
s )n converges weakly to limn→∞Un

s =: Us ∈ L2(0, T ;H1(Ωs)). Further-

more, we have:

(2.20) < ∂ttU
n
s , φ >=< Un

s , ∂ttφ >;

letting n→ ∞, we obtain

(2.21) < ∂ttUs, φ >=< Us, ∂ttφ >, < ∂tUs, ∂tφ >=< Us, ∂ttφ >,

for all φ ∈ A, which implies that Us ∈ A.

Following the continuity argument stated in [10, Theorem 2.3, p.153], we see that

||∂tU
n
s ||L2(0,T ;H−1(Ωs)) is uniformly bounded. Consequently, by combining this last fact

and (2.19) we deduce, by invoking the Aubin-Lions lemma and the continuity of the

trace operator, that ||uns − Us||L2(0,T ;L2(Σ)) ≤ ||Un
s − Us||

L2(0,T ;H
1

2 (Ωs))
→ 0, this show

that γ0(limUn
s ) = γ0(Us) = us, which concludes the surjectivity of γ0. We thus

infer that the operator γ0 is an isomorphism. Since the domain and codomain of

the operator γ0 are Banach spaces and since γ0 is bounded, then by applying the

Banach isomorphism theorem, we deduce that the inverse operator γ−1
0 is bounded

i.e. ∃Cγ−1

0

> 0 such that:

(2.22) ||us||A ≤ Cγ−1

0

||us||
H

1
2 ((0,T )×Σ)

,

for all us ∈ X ⊂ H
1

2 ((0, T )× Σ).

Step 2: second inverse estimate. Consider the following operator:

N : A → L2(0, T ;H−
1

2 (Σ))

us 7→ N(us) = gs,

where A is defined by (2.13). The operatorN associates to every displacement us ∈ A

the corresponding Neumann data, gs := σ(us) ·
−→n , on the boundary (0, T )× Σ. We

claim that N(A) ⊂ L2(0, T ;H−
1

2 (Σ)). Indeed, using the density of smooth functions

in the space
(

X , || ||
H

1

2 ((0,T )×Σ)

)

, we can construct with the aid of estimate (2.22) a

sequence (uns )n of elements in C∞((0, T )× Ω) ∩ A such that:

(2.23) ||uns − us||A → 0 as n→ ∞.
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Let φ ∈ L2(0, T ;U), where U is given by (2.4). We integrate by part the first equation

in (2.2) against the test function φ(t, .) ∈ U to obtain:

(2.24)

∫ T

0

< ∂ttu
n
s , φ >[1]∗,[1] dt +

∫ T

0

∫

Ωs

ε(uns )ε(φ) dxdt

=

∫ T

0

< gns , φ >[− 1

2
],[ 1

2
],Σ dt,

for every φ ∈ L2(0, T ;U), where gns := σ(uns ) ·
−→n ∈ C∞((0, T ) × Σ), the bracket

< ., . >[β]∗,β,E denotes the duality pairing between [Hβ(E)]∗ and Hβ(E). The tensor

ε is defined by (1.10). Using (2.23), the expression (2.24), the claim stated in Remark

1 and (2.5), we deduce that ∀φ ∈ L2
(

0, T ;H
1

2

0 (Σ)
)

:

(2.25)

(

|

∫ T

0

< gns , φ >−
1

2
, 1
2
,Σ dt|

)

n

is a Cauchy sequence,

the completeness of R yields supn |
∫ T

0
< gns , φ >−

1

2
, 1
2
,Σ dt| < ∞ for every φ ∈

L2
(

0, T ;H
1

2

0 (Σ)
)

. Using the uniform boundedness principle we infer that

(2.26) sup
n

||gns ||
L

(

L2

(

0,T ;H
1

2

0
(Σ)

)

,R

) <∞,

given the completeness and the separability of L2
(

0, T ;H
1

2

0 (Σ)
)

, we infer using the

fundamental theorem of weak∗ convergence and estimate (2.26) that the sequence

(g
α(n)
s )n converges weakly∗ to some gs ∈ L2

(

0, T ;H−
1

2 (Σ)
)

, for some subsequence

(α(n))n. Actually one can easily remark, using (2.25), that the whole sequence con-

verges to gs. We infer that the operator N is well defined. The reader should notice

that we have only proved: N(A) ⊂ L2
(

0, T ;H−
1

2 (Σ)
)

.

Moreover, the operator N is bounded. Indeed, considering (2.5), we easily infer

from the above arguments that the operator N sends every weakly convergent se-

quence in A into a weakly∗ convergent sequence in L2
(

0, T ;H−
1

2 (Σ)
)

. But given

the reflexivness of the space L2
(

0, T ;H
1

2

0 (Σ)
)

, the weak∗ convergence and the weak

convergence agree. This shows that N is sequentially weakly continuous. Since N is

linear, we deduce that it is bounded i.e. ∃CN > 0 such that:

(2.27) ||gs||
L2

(

0,T ;H−
1
2 (Σ)

) ≤ CN ||us||A,

for every us ∈ A.
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Finally, by combining (2.22) and (2.27), we infer that ∃Cs > 0 such that:

(2.28) ||σ(us) ·
−→n ||

L2

(

0,T ;H−
1

2 (Σ)
) ≤ Cs||us||

H
1

2 ((0,T )×∂Ωs)
,

for every us ∈ H
1

2 ((0, T )×Σ). Estimate (2.28) holds for every us ∈ X ⊂ H
1

2 ((0, T )×

Σ), thus we conclude immediately estimate (2.8). �

3. Estimates for the quasi-linear Stokes problem

Problem setting for the fluid part. Assume Ωf ⊂ R
2 to be a sufficiently smooth

domain, say with boundary ∂Ωf = Σ ∪ (∂Ωf − Σ) ∈ C2. We consider the unsteady

Stokes operator with a quasi-linear diffusion term appearing in the first equation

of (3.1). This operator is endowed, cf. system (3.1), with mixed boundary condi-

tions. We prescribe a non-homogeneous Neumann condition on the contact interface,

(0, T )×Σ, via the Cauchy stress tensor, and prescribe a homogeneous Dirichlet con-

dition on the remaining part of the boundary. The fluid is assumed to be divergence-

free. Let F ∈ L2(0, T ;H−1(Ωf)), gf ∈ L2(0, T ;H−
1

2 (Σ)) and v0f ∈ L2(Ωf ). The fluid

part of the coupled problem reads:

(3.1)



















































∂tvf − div a(t,∇vf )− µ∆vf +∇π = F in (0, T )× Ωf ,

divvf = 0 in (0, T )× Ωf ,

(a(t,∇vf) + S(vf , π)) ·
−→n = gf on (0, T )× Σ,

vf = 0 on (0, T )× (∂Ωf − Σ),

vf (0, .) = v0f in Ωf ,

where vf is the unknown fluid velocity vector, π denotes the unknown pressure and

S(vf , π) denotes the Cauchy stress tensor given by (1.9). Let the vector function

a := (a1, a2) be such that the functions aj : [0, T ] × R
2 → R, with j = 1, 2, satisfy

the assumptions stated in [7, Example 6.A, p.139] in the two dimensional case. One

easily sees that these assumptions imply the hypothesis of [7, Proposition 5.1, p.129].

Actually we assume a stronger condition than [7, Condition 6.6.c, p.139], that is:

∃cm > 0 such that:

(3.2) (a(t, ξ)− a(t, η))(ξ − η) ≥ cm|ξ − η|22, ∀ξ, η ∈ R
2, ∀t ∈ [0, T ].
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and

(3.3) a(t, 0) = 0, ∀t > 0

Consider the space:

(3.4) Df := {v ∈ C∞(Ωf ), div v = 0, supp v ∩ (∂Ωf − Σ) = ∅}.

Denote V to be the closure of Df with respect to the H1(Ωf )−norm i.e.

(3.5) V := Df
H1

,

the closed subspace V is endowed with the H1-norm and thus it is a Hilbert space.

Well-posedness and energy estimate.

Proposition 3.1. ∀F ∈ L2(0, T ;H−1(Ωf )), ∀v
0
f ∈ L2(Ωs) and ∀gf ∈ L2(0, T ;H−

1

2 (Σ)),

there exists a unique solution vf to problem (3.1) such that:

(3.6) vf ∈ L2 (0, T ;V) ∩H1(0, T ;H−1(Ωf));

moreover, one has the following energy estimate:

(3.7)

||∂tvf ||L2(0,T ;H−1(Ωf )) + ||vf ||L2(0,T ;V)

≤ Cf(|| (S(vf , π) + a(t,∇vf)) ·
−→n ||

L2

(

0,T ;H−
1

2 (Σ)
)

+ ||F ||L2(0,T ;H−1(Ωf )) + ||v0f ||L2(Ωs)).

The well-posedness result stated in Proposition 3.1 is rather classic. An equivalent

weak formulation of (3.1) can be derived by integrating the first equation in (3.1),

against φ ∈ L2 (0, T ;V), to obtain, cf. [11, Problem 3.15, p.371]:

(3.8) (∂tvf , φ) +A(vf)(φ)− < (a(t,∇vf) + S(vf , π)) ·
−→n , φ >[ 1

2
]∗,[ 1

2
],Σ=< F, φ >,

for a.e. time 0 ≤ t ≤ T , where

(3.9) A(vf)(φ) :=

∫

Ωf

a(t,∇vf )∇φdx+

∫

Ωf

ε(vf)ε(φ)dx.

We emphasize that, in order to obtain (3.8), we used the fact div(∇vf +∇tvf) = 0

which holds since divvf = 0, consequently one has divS(vf , π) = ∆vf − ∇π in this

case, cf. [6, Problem 1.1, p.237-240]. Given the assumption (3.2), the operator A is

strongly monotone. Problem (3.8) rewrites:
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Find vf ∈ L2 (0, T ;V) ∩H1 (0, T ;H−1(Ωf )) s.t.:

(3.10)

−

∫ T

0

(vf , ∂tφ)dt+

∫ T

0

A(vf)(t)(φ)(t)dt

=

∫ T

0

< (a(t,∇vf) + S(vf , π)) ·
−→n , φ(t) >−

1

2
, 1
2
,Σ dt +

∫ T

0

< F, φ > dt,

∀φ ∈ L2 (0, T ;V) with ∂tφ ∈ L2 (0, T ;H−1(Ωf )) and φ(T ) = 0. Problem (3.10) fits

in the class of quasi-linear parabolic problems. One deals with such a problem using

classical arguments, see for instance [7, Porposition 5.1, p.129] and [7, Example 6.A,

p.139]. Applying these last results we infer that problem (3.10) admits a unique

solution vf ∈ L2 (0, T ;V) for every gf ∈ L2
(

0, T ;H−
1

2 (Σ)
)

. Regarding the existence

issue, also cf. [9, Theorem 1.1, p.225]. Furthermore, one can derive the energy

estimate (3.7) by choosing as test function φ = vf ∈ L2(0, T ;V) in (3.10) and using

the assumptions (3.2) and (3.3).

Remark 2. Let vf ∈ L2
(

0, T ;H
1

2 (Σ)
)

→֒
continuous

L2 (0, T ;L2(Σ)). It is a classical fact

that vf can be arbitrarily approximated by an element vnf ∈ C∞
0

(

0, T ;H
1

2 (Σ)
)

w.r.t.

the norm of the space L2
(

0, T ;H
1

2 (Σ)
)

. On another hand, by applying the Poincaré

inequality in the time variable with vn, we can easily show that:

(3.11)

∫ t

0

||unf (r)||
2
L2(Σ)mdr ≤ Cp

∫ t

0

||vnf (r)||
2
L2(Σ)dr + ||unf(0)||L2(Σ).

On the other hand:

(3.12)

∫ T

0

|unf (t)|
2

H
1

2 (Σ)
dt :=

∫

Σ

∫

Σ

∫ T

0

|unf (t, x)− unf (t, y)|
2

|x− y|2
dtdxdy

≤ Cp

∫

Σ

∫

Σ

∫ T

0

|vnf (t, x)− vnf (t, y)|
2

|x− y|2
dtdxdy + T |unf (0)|

2

H
1

2 (Σ)
.

Combining estimates (3.11), (3.12) and using uf(0, x) = 0 for x ∈ Σ, then letting

n→ ∞:

(3.13)

∫ T

0

||uf(r)||
2

H
1

2 (Σ)
dr ≤ Cp

∫ T

0

||vf(r)||
2

H
1

2 (Σ)
dr.

The same conclusion holds in case of fractional Sobolev spaces Hs(Σ) with s ∈ R
∗
+.

We infer from Remark 2, that the fluid displacement uf satisfies:

(3.14) uf ∈ L2
(

0, T ;H
1

2 (Σ)
)

∩H1
(

0, T ;L2(Σ)
)

⊂ H
1

2 ((0, T )× Σ).
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The idea. Let us explain the main idea of this section. Define T2 to be the operator:

(3.15)
T2 : L

2
(

0, T : H−
1

2 (Σ)
)

→ X ⊂ H
1

2 ((0, T )× Σ)

gf 7→ T2(gf) = uf ,

this operator associates to every Neumann data, on the fluid part of the contact

interface, the displacement uf corresponding to the velocity vf which is a solution of

(3.1). It is easily seen, by combing (3.7), (3.13) and by applying (3.14), that:

(3.16)

||T2(g
1
f)− T2(g

2
f)||H 1

2 ((0,T )×Σ)

= ||u1f − u2f ||H 1

2 (0,T ;L2(Σ))
+ ||u1f − u2f ||L2(0,T ;H

1

2 (Σ))

≤ Cp||v
1
f − v2f ||L2(0,T ;H1(Ωf ))

≤ Cf ||g
1
f − g2f ||L2

(

0,T ;H−
1

2 (Σ)
)

for every g1f , g
2
f ∈ L2

(

0, T ;H−
1

2 (Σ)
)

, and thus the operator T2 is continuous. Let T1

and T2 be defined respectively by (2.7) and (3.15). Define the operator:

(3.17)
T : X → X ⊂ H

1

2 ((0, T )× Σ)

us 7→ T (us) := T2 ◦ T1(us) = uf ,

We remark that the global solution of the coupled problem (1.1)-(1.7) is a fixed point

of T , then to show existence of a solution to (1.1)-(1.7) it suffices to prove existence

of a fixed point of the of the operator T . To be able to use fixed point theory we need

some compactness. However, T sends solid displacements from : X ⊂ H
1

2 ((0, T )× Σ)

into no more spatial-regular fluid displacements, that is into: X ⊂ H
1

2 ((0, T )× Σ).

In order to recover some compactness we need to consider a sequence of auxiliary

operators T ǫ
2 . To achieve that, we proceed into a regularization of the Stokes problem

(3.10) i.e. to define a sequence of problems depending on a small real parameter,

ǫ > 0, in such a way that the new operator T ǫ
2 ◦T1 sends H

1

2 ((0, T )× Σ) into a more

regular space in the spatial variable, this will ensure the needed compactness. The

(solution of the) original problem will be recovered by letting ǫ→ 0.

Regularized problem. Consider the space:

(3.18) W := Df
H2
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to be the completion of Df , defined by (3.4), with respect to the Sobolev H2−norm.

It is indeed a Hilbert spaces. We denote by (., .)H2 its canonical inner product, and

by (., .)H2
sn

the part of (., .)H2 that involves only the second derivatives. We denote

W∗ its dual. Given gf ∈ L2
(

0, T ;H−
1

2 (Σ)
)

, consider the regularized problem:

Find vǫf ∈ L2 (0, T ;W) such that:

(3.19)

∫ T

0

(∂tv
ǫ
f , φ)L2dt+Aǫ(v

ǫ
f)(φ)

=

∫ T

0

< F (t), φ(t) >−1,1,Ωf
dt

∫ T

0

< gf(t), φ(t) >−
1

2
, 1
2
,Σ dt,

for all φ ∈ L2 (0, T ;W), where

Aǫ(v
ǫ
f )(φ) :=

∫ T

0

A(vǫf)(φ)dt+ ǫ

∫ T

0

∫

Ωf

(vǫf , φ)H2
sn

dxdt,

and where A is given by (3.9). It is easily seen that the quasi-linear elliptic operator

Aǫ : W → W∗ satisfy the assumptions of [7, Proposition 5.1, p.129] and that of [7,

Theorem 5.1, p.128]. Then for every gf ∈ L2
(

0, T ;H−
1

2 (Σ)
)

, problem (3.19) admits

a unique solution:

(3.20) vǫf ∈ L2 (0, T ;W)

for all ǫ > 0, where W is given by (3.18). An energy estimate can be derived by using

the strong monotony of the operator Aǫ. We thus obtain the estimate:

(3.21) ||v1,ǫf − v2,ǫf ||L2(0,T ;W) ≤ Cf ||g
1
f − g2f ||L2

(

0,T ;H−
1

2 (Σ)
).

Estimate (3.21) is obtained by choosing as test function φ = v1,ǫf − v2,ǫf , in (3.19),

corresponding to g1f , g
2
f . Using the continuity of the trace operator

γ0 : H
2(Ωf ) → H

3

2 (Σ),

we infer from (3.21):

(3.22)

||v1,ǫf − v2,ǫf ||
L2

(

0,T ;H
3

2 (Σ)
)

≤ Cf ||g
1
f − g2f ||L2

(

0,T ;H−
1

2 (Σ)
)
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Remark 3. The same fact that was stated in Remark 2 holds with uǫf and vǫf in the

space L2
(

0, T ;H
3

2 (Σ)
)

. Thus we obtain by combining (3.13) corresponding to the

space H
3

2 (Σ) and estimate (3.22):

(3.23)

||uǫ,1f − uǫ,2f ||L2(0,T ;H1(Σ)) + ||uǫ,1f − uǫ,2f ||H1(0,T ;L2(Σ))

≤ Cf ||g
1
f − g2f ||L2

(

0,T ;H−
1

2 (Σ)
),

for every g1f , g
2
f ∈ L2

(

0, T : H−
1

2 (Σ)
)

.

The auxiliary operator T ǫ. First define Z to be the space:

(3.24) Z := H1
(

0, T ;L2(Σ)
)

∩ L2
(

0, T ;H1
0(Σ)

)

⊂ H1((0, T )× Σ),

it is endowed with the standard H1((0, T )× Σ)−norm. Define the operator T ǫ
2 by:

(3.25)
T ǫ
2 : L2

(

0, T ;H−
1

2 (Σ)
)

→ Z ⊂ X

gf 7→ T ǫ
2(gf) = uǫf ,

i.e. it associates to every gf ∈ L2
(

0, T ;H−
1

2 (Σ)
)

, the trace on (0, T )×Σ of the fluid

displacement uǫf corresponding to the fluid velocity vǫf which is the solution of the

regularized problem (3.19) with gf as a Neumann data. Estimate (3.23) translates

the boundedness of T ǫ
2 . Let us introduce the auxiliary operator T ǫ := T ǫ

2 ◦T1, that is:

(3.26)
T ǫ : X → Z ⊂ X

us 7→ uǫf = T ǫ
2 ◦ T1(us),

where X and Z are respectively given by (2.6) and (3.24), moreover the operators T1

and T ǫ
2 are respectively defined by (2.7) and (3.25). The operator T ǫ associates to

every solid displacement us ∈ X , the fluid displacement uǫf ∈ X defined on the fluid

part of the contact interface (0, T )× Σ.

The auxiliary coupled problem is formed out of the Lamé solid problem (2.2) and

the quasi-linear Stokes regularized problem (3.19). By combining the estimates (2.8)

and (3.23) on one hand, and using the coupling condition (1.8) on the other hand,

we infer the estimate:

(3.27) ∀ǫ > 0, ||T ǫ(u1s)− T ǫ(u2s)||X ≤ CsCf ||u
1
s − u2s||X ,
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for all u1s, u
2
s ∈ X i.e. the non-linear operator T ǫ is Lipschitz for every ǫ > 0. One

should notice that the constant CsCf doesn’t depend on ǫ.

4. Existence of solution for the main coupled problem

4.1. Existence result for the auxiliary coupled problem. Let T ǫ be as defined

by (3.26) and X be as defined by (2.6). We propose to prove the following proposition:

Proposition 4.1. For every ǫ > 0, the operator T ǫ admits a fixed point uǫ ∈ X .

The idea for proving Proposition 4.1 is to combine the Banach and the Schaefer

fixed point theorems. Let us recall Schaefer’s theorem, cf. [8, Theorem 4.3.2, p.29]:

Theorem 4.1. (Schaefer). Let K be a Banach space. Let T : K → K be a continuous

and compact mapping. Assume that the set

{v ∈ K : v = ρTv for some ρ, 0 ≤ ρ ≤ 1}

is bounded, then T admits a fixed point in K.

We are going now to prove Proposition 4.1:

Proof. We deal at first with a contraction mapping. Fix ρ ∈ R such that ρCsCf < 1.

The coefficient ρ doesn’t depend on ǫ. Consider the operator ρT ǫ defined by:

ρT ǫ : X → X ∩Z ⊂ X

us 7→ uǫf = ρT ǫ
2 ◦ T1(us),

where Z is defined by (3.24). Applying estimate (3.27), we have:

(4.1) ||ρT ǫ(u1s)− ρT ǫ(u2s)||X ≤ ρCsCf ||u
1
s − u2s||X ,

for all u1s, u
2
s ∈ X . Let us note the following four facts:

• Continuity of the operators T ǫ. Estimate (3.27) means that T ǫ is Lipschitz and

thus continuous. Moreover, estimate (4.1) implies that ρT ǫ is a contraction

mapping for every ǫ > 0. Consequently, since X is a Banach space, we

deduce, by applying the Banach fixed point theorem, that ρT ǫ admits a unique

[0, T ]−globally defined fixed point uǫρ ∈ X .
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• Boundedness condition. We deduce from the preceding point that, ∀ǫ > 0,

the set {u ∈ X , u = ρT ǫu } reduces to the unique fixed point uǫρ, and thus it

is bounded.

• Stability of the operators T ǫ. According to definition (3.26), we have T ǫ (X ) ⊂

X , thus T ǫ is stable for every ǫ > 0.

• Compactness of the operator T ǫ. Let ǫ > 0. By combining estimates (2.8),

(3.23) and the boundedness of ||T ǫ(0)||Z , we remark that the operator T ǫ

sends every bounded subset E ⊂ X into an H1−bounded subset T ǫ(E) ⊂

H1((0, T )×Σ). Using the compact embedding H1((0, T )×Σ) →֒
compact

H
1

2 ((0, T )×

Σ), we deduce that T ǫ(E) is compact in X , thus T ǫ is compact ∀ǫ > 0.

Thus we checked for T ǫ the sufficient conditions of Theorem 4.1; this proves Propo-

sition 4.1. �

4.2. Existence of a solution to the coupled problem (1.1)-(1.7). We now

establish the existence of a solution for the global coupled problem which, as pointed

out above, amounts at establishing the existence of a fixed point of the operator T

given by (3.17). According to Proposition 4.1, ∀ǫ > 0, there exists uǫ ∈ X such that

(4.2) T ǫuǫ = uǫ,

where X is given by (2.6). Since (uǫ)ǫ>0 is an uncountable family of vectors belonging

to the separable normed vector space (X , || ||X ), then it must have a limit point with

respect to the topology induced by the norm of X i.e. there exists u0 ∈ X such that:

(4.3) ||uǫ − u0||X → 0,

as ǫ→ 0. To be able to pass to the limit ǫ→ 0 in (4.2), we need Lemma 4.1:

Lemma 4.1. Let T ǫ and T be respectively as defined by (3.26) and (3.17), then:

(4.4) T ǫu →
strongly in X

Tu, ∀u ∈ X .

Proof. Fix u ∈ X and pose gf = T1u, where T1 is given by (2.7). Choose in (3.19)

φ = uǫf where uǫf = T ǫ
2(gf) and where T ǫ

2 is given by (3.25). Using (3.23), we infer

immediately that T ǫu ⇀
weakly in X

Uf with Uf ∈ X , let us show that Uf = Tu.
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Denote vǫf to be the velocity vǫf := ∂tu
ǫ
f . It is clear, by using (3.21) with g2f = 0

and g1f = gf , that
(

||vǫf ||L2(0,T ;H1(Ωf ))

)

ǫ
is uniformly bounded, thus:

(4.5) vǫf ⇀
weakly

Vf in L2(0, T ;H1(Ωf )).

Moreover, by combining (3.21) and (4.5) we infer that both ǫ
∫ T

0
|vǫf(t)|

2
H2

sn(Ωf )
dt :=

ǫ
∫ T

0
(vǫf , v

ǫ
f)H2

sn
dt and ||∂tv

ǫ
f ||L2(0,T ;H−1(Ωf )) are also uniformly bounded with respect

to ǫ > 0, consequently:

(4.6)

∂tv
ǫ
f ⇀

weakly
∂tVf in L2(0, T ;H−1(Ωf )),

ǫ∂2xixj
vǫf ⇀

weakly
0 in L2(0, T ;L2(Ωf )).

Combining the weak problems (3.10), (3.19) and applying the last convergence in

(4.6) on one hand, and by considering the auxiliary function un corresponding to

problem (3.10) with fn an dgn as right hand sides such that ||fn − f || → 0 and

||gn − g|| → 0, we deduce that:

(4.7) ||∇vǫf −∇vf ||L2(0,T ;L2(Ωf )) → 0,

it follows that Vf = vf . Given that a is Lipschitz in the second variable, then (4.7)

yields:

(4.8) a(t,∇vǫf) → a(t,∇Vf ) converges strongly.

Finally, letting ǫ→ 0 in (3.19) by mean of combining (4.5), (4.6) and (4.8), one infers

that Vf is the fluid velocity field corresponding to the solid displacement u ∈ X .

Consequently we have ∂tu = Vf and Uf = Tu, this yields convergence (4.4). �

Proof of Theorem 1.1. Now we are ready to present a proof of the main result:

Proof. Let u0 be such as defined by (4.3), we have:

(4.9)
||T ǫuǫ − Tu0||X

≤ ||T ǫuǫ − T ǫu0||+ ||T ǫu0 − Tu0||.

On one hand we have:

||T ǫuǫ − T ǫu0||X

≤ CsCf ||u
ǫ − u0||X ,
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where we used (3.27). Applying (4.3), we infer:

(4.10) ||T ǫuǫ − T ǫu0||X → 0 as ǫ→ 0.

On another hand, using (4.4), we obtain:

(4.11) ||T ǫu0 − T 0u0|| → 0, ǫ→ 0.

Combining (4.10) and (4.11) it yields

(4.12) ||T ǫuǫ − Tu0||X , ǫ→ 0.

Combining (4.2), (4.3) and (4.12), we deduce:

(4.13) u0 = lim
ǫ→0

uǫ = lim
ǫ→0

T ǫuǫ = Tu0,

that is T has a fixed point u0 ∈ X . This completes the proof of Theorem 1.1.

Regarding the regularity claimed in Theorem 1.1, one can use estimate (2.22)

to infer the regularity of the solid displacement us ∈ X on Ωs. Furthermore, one

combines the estimates (3.6) and (2.8) to infer the regularity of the fluid velocity

vf on Ωf . The regularity of the pressure π can be inferred in the following fashion:

one considers the regularity of the solution u0 stated in (3.6), namely that ∂tu
0 ∈

L2 (0, T ;H−1(Ωf )) and then applies the energy estimate in [1, Theorem 25, p.226]

and thus infer that π ∈ L2 (0, T ;L2(Ωf)/R). �

5. Conclusion

According to the procedure adopted by the authors in [5], cf. the bottom of [5, Proof

of Theorem 5.1, p.571], they established the globally-in-time existence of a solution

by using an iterative method which is based on the linearity of the problem that was

considered in their paper. We emphasize that this method is no longer applicable

in the non-linear context of the present work. Indeed, it is always possible to prove

existence of a solution locally in time, i.e., given a non-linear problem consider on

the time interval [0, T ], fixed point theory can lead to the existence of a solution on

[0, Ti] ⊂ [0, T ]. Using the linearity of the differential equations, one can iterate the

process to obtain a global in time solution. Given that the problem considered in

this paper is non-linear, we had to combine two fixed point theorems, the Banach

and Schaeffer theorems.
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It should be noted that there is no memory effect in the (iterative) resolution of

the presently addressed coupled problem in the sense that the result (in particular

the displacement) obtained at a time t does not depend on the displacement at an

earlier time. This is notably due to the fact that the deformation of the geometry (in

particular that of the contact surface Σ), within time incrementing i.e. during the

coupling, is not taken into account, although we assumed in the introduction that

the domain Ωf (t) depends upon time.

That said, the main theorem established in this paper remains relevant. Indeed,

it can be incorporated as an auxiliary result to demonstrate a more complex well-

posedness result like for instance [5, Theorem 2.1, p.555]. If one is willing to prove a

result analogous to the later in the framework considered in this paper, then one has,

in a first step, to generalize Theorem 1.1 to the case when the data in system (1.1)-

(1.7) are non-homogeneous along with a non necessary free divergence condition. We

believe that this step can be achieved with some slight modification of the procedure

described in the present work, one obtains up to this step a result analogous to [5,

Theorem 5.1, p.570]. Then one should follow the same method as in the proof of [5,

Theorem 2.1, p.555] which deals with the well-posedness of system [5, Problem 2.1,

p.551-552] and which requires taking into account the deformation of the geometry

during the interaction, especially that of the contact interface.

Finally, a last perspective would be to improve the regularity of the solution of

the coupled problem. This has been successfully undertaken in other works assuming

that the contact interface ΣT is flat. This led the authors, by using Fourier analysis

techniques, to show a ”hidden” regularity. It would be interesting to establish such

an additional regularity without restrictive assumption on the shape of the contact

interface. This would be an interesting extension of our result.
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