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EXISTENCE RESULT FOR A MODEL COUPLING A
QUASI-LINEAR PARABOLIC EQUATION AND A LINEAR
HYPERBOLIC SYSTEM

DJAMEL AIT-AKLI

ABSTRACT. We study a coupled Fluid - Structure system describing the motion of
an elastic solid interacting with an incompressible viscous fluid in two dimensions.
The behavior of the solid is described by the Lamé system of linear elasticity and the
fluid obeys the incompressible stokes equations. The quasi-linear nature of the con-
sidered Stokes equation is characterized by the nonlinear dependence of the stress
tensor on the gradient of the fluid velocity; this encompasses the case of Newtonian
as well as non-Newtonian fluids. At the Fluid Solid interface, natural conditions
are imposed, continuity of the velocities and of the Cauchy stress forces. The fluid
and the solid are coupled through these conditions. By this interaction, the fluid
deforms the boundary of the solid which in turn influences the fluid motion. We
prove the existence of globally-in-time solution for the problem coupling the linear
Lamé system and the quasi-linear Stokes equation. To achieve this, we interpret the
solution as the fixed point of some non-linear operator 1" associated to the global
problem. Then we construct, using a regularization procedure, a sequence (7€), of
auxiliary compact operators that approximate T'. Next we establish, using a com-
bination of Banach and Schaeffer fixed point theorems, the existence of fixed points
to every operator T°¢, these auxiliary fixed point are actually solution of auxiliary

problems. Finally we prove that these fixed points converge to the fixed point of T

1. INTRODUCTION

The mathematical and numerical analysis of Fluid—Structure interaction problems

have been an important area of research in the recent years, (cf. [5], [9]) and the
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references therein. In the sequel, the fluid-structure interaction problem is denoted
by FSI. Let us precisely describe the problem we are interested in. We study a
system modeling the interaction between a fluid flow obeying the incompressible

Stokes equations and an elastic solid obeying the Lamé system of linear elasticity.

Setting of the main problem. We address the issue of existence of solution for the

coupled system which reads:

(1.1)  (Owy —diva(t, Voy) — pAvy 4+ Vo = F in QF,

(1.2) divey =0in Qf, vy=0 on (0,7) x (09 — %),

(1.3) vr(0,.) =v} in Qy,

(1.4) Aﬁwmm:wuw,<awnw+Muvw»~ﬁ=aw»vﬁ on X7
(1.5) Ouus — divo(u,) =0 in QF,

(1.6) |us=0 on(0,7)x (89, — %),

(1.7)  |us(0,) =0, 8uy(0,.)=0in €.

Let us interpret the symbols and the notations in system (1.1)-(1.7). We let T'> 0
to be a positive real number. We have denoted w? := (0,T) x w. The function u
denotes the displacement of the solid structure, the function vy denotes the velocity

of the fluid and 7 denotes its pressure. System (1.1)-(1.7) is formed out of:

e The parabolic Stokes equation with a quasi-linear diffusion term that describes
the motion of a fluid inside a fluid domain Q; C R?, cf. equations (1.1)-(1.3).
e The coupling condition, cf. equation (1.4).
e The second order linear hyperbolic Lamé system that describes the deforma-
tion, due to interaction with the fluid, of a structure occupying a solid domain
Q, C R?, cf. equations (1.5)-(1.7).
We assume that Q := Q, U Q,(¢) C R?, for all ¢ € (0,T), that is the global domain
(2 doesn’t vary in time during the interaction. Moreover, the boundaries d€1; resp.

0€), of the fluid resp. the structure domains are both assumed to meet the minimal

C? —regularity.
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The solid domain €2, and the fluid domain €(¢) share a common part of their
respective boundaries, this contact interface is denoted X i.e. 99 N 0Qs(t) = X(t),
the variation in time of ¥ isn’t taken into account, cf. the conclusive discussion at
the end of this paper. We assume furthermore that ¥ is connected. The coupling
condition, relating the fluid and solid problems, is prescribed on (0,7") x 3. It consists

of imposing, on the contact interface ¥, the two equalities:

~—

fot vy(r,z)dr = ug(t,

(1.8)
(S(vs,m) +alt, Vo)) -7 =o(us) -7, (t,z) €T,

where 70 denotes the exterior unit normal defined at each point of ¥. The term

S(vg, ) denotes the Cauchy stress tensor:
(1.9) S(vp,m) = —ml+ 2ve(vy),

where v denotes the fluid viscosity and the function a : [0,7] x R? — R? such that
a = (a1, az) satisfy (3.2) and other assumptions that will be precised in section 3.

On the other hand, o(us) - 7 denotes the normal component of the stress tensor:

(1.10) o(u) = 2ue(u) + ANTre(u)ld, with e(u) = = (Vu+ V'u),

N —

the symbols p and A in (1.10) denotes the Lamé coefficients characteristic of the solid
medium. Unlike what is usually done regarding the coupling condition, we imposed
the equality of the displacements functions, u, and u¢, on the contact interface instead
of the equality of the velocities.

The condition (1.8) is completed by an homogeneous Dirichlet data (1.2), (1.6) on
the remaining part of the boundaries of the domain and by initial time conditions
(1.3) and (1.7). The fluid is assumed to be divergence-free, this translate the incom-
pressibility of the fluid. We emphasize that, except for the fluid initial condition,
(1.3), the restriction to homogeneous data for both Stokes and Lamé problems are
adopted only for the sake of simplicity of presentation, one can refer to [5] and the
references therein for the case where non homogeneous data are considered but with
restrictive assumption on the geometry of the domain, namely the flatness of the

contact interface.
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Application ezamples. The two equations involved in the coupled problem (1.1)-(1.7)
are the time-dependent Lamé system and the unsteady Stokes equations. It is well
known that the Lamé equation models the elastic behavior of materials by considering
their characteristic Lamé coefficients. The Lamé coefficients reflect the nature of
the material, this flexibility in the choice of these coefficients allows this model to
be applied to various situations. On the other hand, the Stokes or Navier-Stokes
equations model the flow of a varied number of fluids by considering the linear or
non-linear dependence of the viscosity on the strain, which makes it possible to include
the study of the Newtonian case or non-Newtonian fluid as in the present study.
The coupling problem has proven very efficient to model which part important
fluid-structure interaction phenomena that arise in many practical situations. This
is the case, for example, of a dam (concrete dam) which is subjected to water load.
In this case, the fluid is Newtonian (water). Another example is that of a high-speed
train; HST, subjected to the aerodynamic forces of the wind or an airplane that is
subjected to aerodynamic forces (the fluid in this case represents the air). Other
important situations can be considered, such as the circulation of blood in a vein, the
fluid in this case is non-Newtonian. One can also cite the example of pipelines such

as those of gas which exert a constraint on the parishes of the pipelines.

Motiwvation behind this study. Let’s take a closer look at some examples that reflect the
importance of the presently addressed study. The case when the structure represents
a dam occupying the solid domain €2, that has, say, a trapezoidal shape. This dam is
subjected to a hydraulic load on its downstream face. The fluid in this case represents
water. Let us imagine that the whole of the structure and the hydraulic load are
subjected to a seismic excitation, this is interpreted by non-homogeneous boundary
conditions for both of the structure (displacement) and the fluid (velocity).

During earthquake exposure (or in the case of ordinary filling of the dam), the fluid
and the structure interact. This interaction takes the form of a physical exchange of
data. This transmission concerns on the one hand the velocity and on the other hand
the constraints. This transmission occurs at the level of the contact interface, this
interface is the part of the boundary which is shared by the structure and the fluid.

The existence of a solution allows us to proceed to the numerical study, but not only.
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Indeed, the idea used in the proof of existence of a solution to the coupled problem
is mainly based on the fixed point theory. This idea can be successfully adopted for
numerical purposes in that it suggests the method to be used in numerical simulation.
Once these numerical data are in hand, we can move on to a very important step,
that of adapting the geometry of the solid domain (dam). Indeed, the dam is made of
a reinforced concrete structure whose characteristics obey well-established standards,
it cannot support a hydraulic load beyond a certain critical threshold. So if the data
show that the standards are exceeded, it will be necessary to think of introducing
a reinforcement in order to guarantee the equilibrium. We can clearly see that the
issue of existence, in addition to being important in itself, it constitutes the support
of a numerical and optimization study that is both interesting and applicable.

Indeed, starting from these numerical results, we can decide on the relevance of
the model as well as the mechanical and dynamic characteristics of the materials to
be adopted. One of the goals of this kind of study is to seek and reach the state of
equilibrium during the interaction by adapting the characteristics of the materials,
which consists of the Lamé coefficients (for reinforced concrete, type of steel that
will be used for the manufacture of the airplane wings, the curvature of the shell,
the aircraft fuselage, etc.) These coefficients must be well adapted in order to avoid
cracks and overflows which can lead to disasters in the case of the hydraulic dam or
an airplane.)

The other type of coefficient to be adapted are the viscosity. For example that of
drugs or any other physiological fluids which are naturally dilating or pseudo-plastic.
These coefficients should be well suited for medical treatment in case of abnormali-
ties); or for medical reasons, in the case of blood and/or drugs which interact with the
the walls of blood vessels and tissues in order to avoid life-threatening or physiological
dysfunctions in general.

It should also be noted that the fluid in the example which has just been presented
is water, therefore the stress tensor involved in the equation which governs its flow is
a linear function of the strain. This being so, one can think of modeling an interaction

between a viscous fluid with a solid structure of another type, for example the blood
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which interacts with the walls of the vessels in human body. Since blood is a pseudo-
plastic fluid, a quasi-linear term should be introduced into the equation describing its
flow. This is the subject of the stokes equations which is part of the coupled problem
(1.1)-(1.7). Omne should note that what has just been stated for the case of the dam
with hydraulic loading is perfectly transposable for other situations of fluid-structure

interaction.

Relevance of the non-linearity in the Fluid equation. The new ingredient in the con-
sidered Stokes equation is the introduction of the quasi-linear term a. The principal

and widely used prototype for such a term is given by the p—laplacian:
a(t, Vv) = |Vv|P~2Vu.

The p-Laplacian operator arises in various fields, such as non-Newtonian fluids, non-
linear diffusion problems, filtration of fluids in porous medium. The quantity p is
a characteristic of the medium. Three cases can be distinguished. The first case
corresponds to p > 2: the fluid is called dilatant (like thick suspensions of particles in
a liquid). The second case corresponds to p € (1,2): the fluid is called pseudo-plastic
(like Ice and blood). The last case corresponds to p = 2: the fluid is Newtonian.
The present study encompasses all the Newtonian, non Newtonian fluid as well as
Generalized Newtonian fluid.

In the case p = 2, which represents Newtonian fluids, we recover the Stokes equation
that describes the flow of an incompressible Newtonian fluid, that is to say whose

equation is of the form
v — divl(v,m) =0
where
T(v,m) = vej(v) — dj,m
is the usual Cauchy stress tensor and where ¢j;, is the strain tensor given by (1.10)
and v > 0 denote the fluid viscosity. That is, the stress tensor 7" depends linearly on

the symmetric part of the gradient (i.e. the strain tensor ). Thus we have in this

case divl'(v, ) = Av — V, cf. [6]. This yields the linear Stokes equation. However,
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in the case of a Non-Newtonian fluid we have
T(u,7) = 1/(|Vv|p_2)5jk — 0T

i.e. the viscosity v is a function of |[Vv|. We can interpret this in the one-dimensional
case, that is to say in the case where the flow of the fluid is uni-directional, say in
the x—direction, by saying that the deformations in this case reduces to £(v) = 0,v.
So the stress tensor depends non-linearly on the strain via the nonlinear dependence
of the viscosity on the strain. Such quasi-linear Stokes Problems in one dimension
occur in some physical models such as non-Newtonian fluids and chemical reactions,
see e.g. [2], [6].

In dimensions two and above, it is possible to consider the nonlinear dependence
of the viscosity, and therefore also that of the stress tensor, on the strain tensor in

the following way:
a(t,e(v)) = |e(v)["%e(v)

where e(u) is the second order strain tensor. Such an operator is monotone, this
characteristic is very important because it will be the key ingredient to prove the
existence of a solution of the coupled problem (1.1)-(1.7) along with an appropriate
energy estimate. The term a(t,e(v)) - @ = |e(v)|P~2(v) - 7 represents the normal
component of the tensor of the constraints whose value on the boundary constitutes
Neumann data.

The main result of the present work is stated in the following theorem:

Theorem 1.1. VI' > 0, VF € L*(0,T; H '(Qy)) and Yo} € L*(Qy), the coupled
problem (1.1)-(1.7) admits at least one solution:
(v, mus) €L (0, T, H'(Qp)) N H'(0,T; H'(y) x L* (0, T; L*() /R)

(1.11)
x (H'((0,T) x Q) N H*(0,T; H (%)) .

The focus is on establishing existence of globally-in-time solution to the coupled
problem (1.1)-(1.7) which is analogous to problem [5, Problem 2.10, p.556]. The

interest in the regularity of the solutions is secondary in our current considerations.
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Novelty of the study. Our contribution to the analysis of FSI type problems can
be summarized by mean of two main ideas. The first one is to have included a
non-linear (or quasi-linear) term in the Stokes equation. This has the advantage,
as pointed out above, of encompassing non-Newtonian fluids (with a viscosity that
depends no linearly on the strain). To our knowledge, the present work is the first
to undertake the study of a coupled problem with a nonlinear term in the equation
of the fluid part, i.e., which considers a non-Newtonian fluid interacting with a solid
structure. Moreover, we prove the globally-in-time existence of at least one solution
to the coupled problem while dealing with this non-linearity. To achieve that, we view
the solution of (1.1)-(1.7) as a fixed point of some non-linear operator 7" and we use
a regularization method in order to apply fixed point theory. The key ingredient in
order to apply such a theory is the fact that the operator defined by the quasi-linear
term is monotone. This allows us to use the theory of monotone operator cf. [7], this

is the second new original feature of the present work.

Organization of the paper. In the second section we establish a well-posedness result
for the Dirichlet problem associated to the Lamé operator along with an inverse es-
timate for the solid displacement. In the third section we derive an energy estimate
for the quasi-linear Stokes system and we introduce the operator T : X — X whose
fixed point is a solution of problem (1.1)-(1.7), the space X is given by (2.6). Next we
apply the regularization method to construct a sequence of auxiliary compact opera-
tors (7). such that T = li_rf(l]TE, then we establish the boundedness and compactness
of T using the preceding estimates. In the fourth section, we prove the existence
of a fixed point u¢ to T by combining Banach and Schaeffer fixed point theorems.
Finally we conclude by showing that the fixed points u¢ converge to a fixed point u°

of T.

2. INVERSE ESTIMATE FOR THE LAME SYSTEM.

Throughout this section, we let Q, C R? to be a bounded planar domain with
boundary 9Q, € C?. We consider the auxiliary Dirichlet problem (2.2) associated to

the time dependent second order Lamé operator H given by:

(2.1) Hu = Oyu — divo(u).
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We prescribe a non-homogeneous Dirichlet condition on (0,7") x 3 and a homogeneous

Dirichlet condition on the remaining part of the boundary:
Opus — divo(ug) =0 in (0,7) x Q,
(2.2) us =ud on (0,7) x %,
us =0 on (0,7) x (002 — %),

where T' > 0. Moreover, the following initial-time conditions are prescribed:
(2.3) us(0) =0, Jrus(0) = 0.

The Dirichlet data u? in (2.2) is assumed to be compatible with (2.3). Let us define

the space:
D, = {v € C*(Q), suppv N (99, — X)) = 0},

where 3 denotes the topological interior of . We set:

—H1

(2.4) U =D,

to be the completion of D, with respect to the H'(2,)—norm. Consider the space:
1

(2.5) {1=(v): vel}=Hg (%),

where s (v) denotes the trace, on the boundary ¥, of the function v. The space
HZ(X) is defined as the completion of C3°(X) with respect to the H?2(X)—norm.
Denote X to be the space:

(26) = H(0,1;132) 0L (0,7 Hé(z)) C H:((0,T) x ),
and denote [X]* its topological dual space. Let us define the operator 77 by:

Ty : X = 2 (O,T; H—%(Z))
(2.7)
u;l = gs = Tl(ugl)>

where H~2(X) denotes the dual of HO%(E). The operator T; associates to every
Dirichlet data u? € X on the solid part of the contact interface, (0,T) x ¥, the
uniquely determined Neumann data g, := o(us) - it corresponding to the solution wu,
of the Dirichlet problem (2.2)-(2.3). In the sequel we will denote equally by ug the

Dirichlet data u?. The main result of this section is given in the following proposition:
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Proposition 2.1. The operator Ty, given by (2.7), is well defined and bounded 1i.e.

there exists a constant Cy > 0 such that:

(28) o) T, diay) < Colull

for all ug € X, where X is defined by (2.6).

Before passing on to the proof of Proposition 2.1, we give a remark stating a lifting

property within the context of the Bochner space L*(0,T;U) :

Remark 1. Consider the map s defined by:
1
e o 20, T U) — L2 (O,T; HOZ(Z))
v = s,

this map associates to every v € L*(0,T;U) its trace on (0,T) x X. We claim that v
1
is onto. Indeed, let v € L? (O,T; HOZ(Z)>. The function can be extended by zero to

the rest of the boundary. This results in a function belonging to L? (O,T; H%(OQS)>
which we still denote by v. By using the lifting property, one can easily find a family of
functions (0,T) > t — o(t,.) € HY(S) such that vpa,0(t,.) = v(t,.), ¥Vt € (0,T), and
such that one also has: ||0(,.)||m,) < [|v(t, .)HH%(QS), Vt € (0,T). The existence of
a v satisfying such estimate can be established, for instance, within the Banach space
{w(t,.) € H'(%) © [o, w(t,2)Azp(x)dz = 0,Vp € CF(Q),Vt € (0,T)}. Thus the
function v satzsfy:

1ollz20m0 < HUHLZ (QT;HO%(E))’
and moreover, by combining [3, Theorem 1, p.518] and [2, Theorem 2.1, p.731], we
have 0(t,.) € U, Vt € (0,T); we thus conclude the surjectivity of vs.

Let us state a lemma about a useful existence and regularity result:

Lemma 2.1. Consider the problem

O — divo(¢) = F in (0,T) x Q,
(2.9) 6=0 on(0,T) x 09,

$(0,.) =0, 8(0,.) =0,
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we claim that for every F' € L*(0,T; H=*(€)), problem (2.9) admits a unique solution
¢ € L2(0,T; HY(SY)) and moreover o(¢) - 1 € L2(0,T; H=2(0)).

Proof. One can, by density, find a sequence (F},), of elements in L?(0,T; L?(€)) C
LY0,T; L*(€)) such that:

(2.10) 1 = Foll2omm-1@0) = 0.

Next one can use [10, Theorem 2.1, p.151] to show the existence of a unique solution
én € L2(0,T; H'(2,)) =: A to problem (2.9) with F), as a right hand side instead of

F. Starting from the weak formulation of problem (2.9), one writes:

(211) < at¢na atw >+ < 5(¢n)75(w) > L2(0,T;L2(Q,) =< Fo, ¢ > A*A

for all v € L*(0,T; H}(2)). Choosing ¢ = ¢,, and using (2.10) we infer easily that

(212) ||at¢n||L2(0,T;L2(Qs)) + ||5(¢n)||L2(O,T;L2(Qs)) <C

for some C' > 0, and deduce the existence of a unique solution lim, ¢, := ¢ € A to

problem (2.9). O
Now we pass into the proof of Proposition 2.1:

Proof. Define the subspace

v e HY(0,T) x Q,) N H20,T; H1(%,)) :
(2.13) A= [0 [, vH(g)dadt = 0, € C2((0,T) x ),

1o (O)Iz20,) = 10:0(0)]| r-1(0.) = 0,
where 7 is defined in (2.1). Recall that: H'(0,T;L%(,)) N L2(0,T; H'(Q,)) =

HY(0,T) x €,). One sees that A is a Banach space when endowed with the norm:

V][4 := [[v]|m1(0.0)x00) + 11000] | L200,7: 5124

moreover A is reflexive. The idea of the proof consists at writing 77 as a composition

Ty = N o, " of two linear operators and then establishing their boundedness. The
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rest of the proof is divided into two main steps:

Step 1: first inverse estimate. Consider the trace operator:
Yo i A= H2((0,T) x 9)
Ug > YoUs,

this operator associates to every function us € A its trace on (0,7") x 0€), the space
A is given by (2.13). The linear operator 7y, is clearly one-to-one, we claim that it is
also onto. Indeed, let u, € H2((0,T) x 99,). we show the existence of U, € A such
that us = 19Us. To do this, it suffices to prove that the problem:

OuUs —dive(Us) =0 in (0,7T) x Q,
(2.14) Us=us on (0,T) x 0,
Us(07 ) = 07 atUs(Oa ) = 0,

admits a solution Us € A. Let u? € C*((0,T) x 0)) be such that:

(2.15) || — s = 0;

HZ ((0,7)x09s)

such functions do exist by a density argument. Denote U!" to be the solution of
problem (2.14) corresponding to ul as a Dirichlet data, according to [10, Theorem
2.1, p.151], this problem admits a unique solution U’ € A . The first equation of
(2.14) yields us:

(2.16) < UM, 0y > — < U divo(¢) >=< U", () - 1 >,

for all ¢ € L?(0,T; H'(£2,)) that is solution of problem (2.9). Since, by Lemma 2.1,
o(¢)- 7 € L*(0,T; H™3(,)) then using the convergence (2.15) we have:

(2.17) <UMH(P) >=< Ul 0(¢) - T >=<us,0(¢)- T >,
for every ¢ € L*(0,T; H'(Q,)) solution of problem (2.9) i.e.

(2.18) < UM F > converges YF € L*(0,T; H *(Q)).
Given that L*(0,T; H(€)) is reflexive, then (2.18) implies:

(219) aC > 0, ||U;l||L2(O,T;H1(QS)) S C, Vn,
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and thus (U"),, converges weakly to lim,, ., U™ =: U, € L*(0,T; H'(Q,)). Further-

more, we have:

(2.20) < UL, ¢ >=< UL, Onp >;

letting n — oo, we obtain

(2.21) < OyUs, ¢ >=< Us, 04 >, < OUs, 0,0 >=< Uy, O >,

for all ¢ € A, which implies that U, € A.

Following the continuity argument stated in [10, Theorem 2.3, p.153|, we see that
|0 UM | L2(0,1:1-1(02,)) 1s uniformly bounded. Consequently, by combining this last fact
and (2.19) we deduce, by invoking the Aubin-Lions lemma and the continuity of the
trace operator, that ||[ul — Uy||r2(0.102x)) < ||UY — Us ||L2 oTh @y 0, this show
that y(im U?) = 7(Us) = us, which concludes the surjectivity of 79. We thus
infer that the operator -y is an isomorphism. Since the domain and codomain of
the operator 7y are Banach spaces and since 7, is bounded, then by applying the
Banach isomorphism theorem, we deduce that the inverse operator 7, is bounded
ie. EIC’%;l > 0 such that:

(2.22) ||u8||A<C 1||u5||H§(0T)xZ)

for all u, € X € H2((0,T) x ).

Step 2: second inverse estimate. Consider the following operator:
N:A— L0,T;H (%))
us = N(us) = gs,
where A is defined by (2.13). The operator N associates to every displacement us € A

the corresponding Neumann data, g, := o(u,) - 77, on the boundary (0,T) x ¥. We
claim that N(A) C L*(0,T; H~2(X)). Indeed, using the density of smooth functions

in the space (X I ||H2( o1 X2)>,
sequence (ul), of elements in C'*°((0,7") x §2) N A such that:

we can construct with the aid of estimate (2.22) a

(2.23) llul — usl|a — 0 as n — oo.
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Let ¢ € L*(0,T;U), where U is given by (2.4). We integrate by part the first equation
in (2.2) against the test function ¢(t,.) € U to obtain:

T T
/ < @tu?, Qb >[1}*7[1} dt + / / E(U?)E(gb) dzdt
(2.24) 0 0 I8

T
= /0 <9590 >y s dt,

for every ¢ € L*(0,T:U), where ¢" := o(u?) - 7 € C®((0,T) x %), the bracket
< .. >[gp 5,1 denotes the duality pairing between [H?(E)|* and H?(F). The tensor
¢ is defined by (1.10). Using (2.23), the expression (2.24), the claim stated in Remark
1 and (2.5), we deduce that V¢ € L? (0, T, Hé(Z)):

T
(2.25) <\ / < gu o > 11y dt|) is a Cauchy sequence,
0 n

the completeness of R yields sup, | fOT < gt > 11y dt| < oo for every ¢ €
1
L? <0, T; Hg (Z)) Using the uniform boundedness principle we infer that

(2.26) sup HQZLHE(LQ (O’T;HO% (2)),R) < 00,

given the completeness and the separability of L? (O, T Ho% (2)), we infer using the
fundamental theorem of weak* convergence and estimate (2.26) that the sequence
(g2™),, converges weakly* to some g, € L? (O,T H _%(Z)>, for some subsequence
(a(n)),. Actually one can easily remark, using (2.25), that the whole sequence con-
verges to g;. We infer that the operator N is well defined. The reader should notice
that we have only proved: N(A) C L? (0, T, H_%(E)>.

Moreover, the operator N is bounded. Indeed, considering (2.5), we easily infer

from the above arguments that the operator N sends every weakly convergent se-

quence in A into a weakly* convergent sequence in L> <O,T; H _%(Z)>. But given
1

the reflexivness of the space L? <0, T, H; (E)), the weak™ convergence and the weak

convergence agree. This shows that N is sequentially weakly continuous. Since N is

linear, we deduce that it is bounded i.e. 3Cy > 0 such that:

(227) ||gs||L2<0,T;H7%(E)> S CN||u8||A>

for every u, € A.
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Finally, by combining (2.22) and (2.27), we infer that 3Cs > 0 such that:

(2.28) llo(us) - 72| < Csllus|

L2 <O,T;H’%(E)) HE ((0,T)x09%)’

for every u, € Hz ((0,T) x ¥). Estimate (2.28) holds for every u, € X ¢ Hz((0,T) X

¥), thus we conclude immediately estimate (2.8).

3. ESTIMATES FOR THE QUASI-LINEAR STOKES PROBLEM

Problem setting for the fluid part. Assume Q; C R? to be a sufficiently smooth
domain, say with boundary 9Q; = X U (092, — X) € C*. We consider the unsteady
Stokes operator with a quasi-linear diffusion term appearing in the first equation
of (3.1). This operator is endowed, cf. system (3.1), with mixed boundary condi-
tions. We prescribe a non-homogeneous Neumann condition on the contact interface,
(0, T) x X, via the Cauchy stress tensor, and prescribe a homogeneous Dirichlet con-
dition on the remaining part of the boundary. The fluid is assumed to be divergence-
free. Let F' € L*(0, T3 HY(y)), gy € L*(0,T; H~3(X)) and 0§ € L*(;). The fluid
part of the coupled problem reads:

( Owy —div a(t, Vvy) — pAvy + Vo = F in (0,7T) x Qy,
divoy =0 in (0,7) x Qy,
(3.1) (a(t, Vvg) + S(vp, 7)) -7 =g; on (0,T) x %,

vy = 0 on (O,T) X (8Qf - E),

vf(O, ) = U?‘ in Qf,

\

where vy is the unknown fluid velocity vector, m denotes the unknown pressure and
S(vg,m) denotes the Cauchy stress tensor given by (1.9). Let the vector function
a := (a1, as) be such that the functions a; : [0,7] x R? — R, with j = 1,2, satisfy
the assumptions stated in [7, Example 6.A, p.139] in the two dimensional case. One
easily sees that these assumptions imply the hypothesis of [7, Proposition 5.1, p.129].
Actually we assume a stronger condition than [7, Condition 6.6.c, p.139], that is:

de,, > 0 such that:

(3'2) (a(t> 6) - a(t’ 77))(5 - 77) Z Cm|§ - 77|§> Vf, n € R2’ \V/t € [0’ T]
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and

(3.3) a(t,0) = 0,¥t > 0

Consider the space:

(3.4) D;:={veC®y), divv=0, suppvn (99;—X) =0}
Denote V to be the closure of D; with respect to the H'(Q;)—norm i.e.
(3.5) v.=D,",

the closed subspace V is endowed with the H'-norm and thus it is a Hilbert space.

Well-posedness and energy estimate.

Proposition 3.1. VF € L*(0,T; H'(Sy)), Yo} € L*(Q,) andVg; € L*(0,T; H2(%)),

there exists a unique solution vy to problem (3.1) such that:
(3.6) vp € L2(0,T5V) N HY(0, T HH(Qy));
moreover, one has the following energy estimate:

10wyl 20,1100 + vpllz20.10)

(3.7) < Cy([[(S(vg, m) + alt, Voy)) - WHLz(O,T;H*%(Z))

+ Fl 2omm—1 @ + 10 2@.)-

The well-posedness result stated in Proposition 3.1 is rather classic. An equivalent
weak formulation of (3.1) can be derived by integrating the first equation in (3.1),
against ¢ € L*(0,T;V), to obtain, cf. [11, Problem 3.15, p.371]:

(38) (w5, 8) + Alv)(6)— < (alt, Voy) + S(vg,m) - 7,6 >y 1y.5=< F.6 >,

for a.e. time 0 <t < T, where

(3.9) Afwy)(6) = /

Qy

a(t,va)V¢d:c—|—/ e(vy)e(p)de.

Qf

We emphasize that, in order to obtain (3.8), we used the fact div(Vuvs + Vivs) = 0
which holds since divuy = 0, consequently one has divS(vy, ) = Avy — V7 in this
case, cf. [6, Problem 1.1, p.237-240]. Given the assumption (3.2), the operator A is

strongly monotone. Problem (3.8) rewrites:
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Find vy € L? (0, T; V) N H? (O,T; H_l(Qf)) s.t

- [ oo+ [ awpieoa
(3.10) 0 0

T T
— [ <ttt Vo) + S Tol) >y e+ [ <Fosat
0 0

V¢ € L?(0,T;V) with d,¢ € L?(0,T; H*(Qy)) and ¢(T) = 0. Problem (3.10) fits

in the class of quasi-linear parabolic problems. One deals with such a problem using

1
ORI

N)I)—l

classical arguments, see for instance [7, Porposition 5.1, p.129] and [7, Example 6.A,
p.139]. Applying these last results we infer that problem (3.10) admits a unique
solution vy € L? (0,T;V) for every g; € L? <0, T, H_%(Z)>. Regarding the existence
issue, also cf. [9, Theorem 1.1, p.225]. Furthermore, one can derive the energy
estimate (3.7) by choosing as test function ¢ = vy € L?(0,7;V) in (3.10) and using
the assumptions (3.2) and (3.3).

Remark 2. Let v; € L (o,T; H%(Z)) < L2(0,T; L3(S)). It is a classical fact

continuous

that vy can be arbitrarily approzimated by an element v} € Cg° (O,T; H%(E)> w.r.1.
the norm of the space L* (O, T; H%(Z)>. On another hand, by applying the Poincaré

inequality in the time variable with v,, we can easily show that:

t t
(3.11) / ()| 2agymdr < C, / 0] oy dr + [[(0)] 22y

On the other hand:

T lup(t, @) —up(t y)?
/qu /// ! |x_y‘f2 dtdzdy

T t t
<0/// |“f 7) ~ vyl dtdzdy + T]u’(0) 2

|z —y|? HI(®)

(3.12)

Combining estimates (3.11), (3.12) and using ug(0,z) = 0 for x € X, then letting

n — 00!

T T
2 2
(3.13) /0 Huf(r)||H%(2)dT < Cp/O ||Uf(7”)||H%(E)dr.

The same conclusion holds in case of fractional Sobolev spaces H*(X) with s € R .

We infer from Remark 2, that the fluid displacement u; satisfies:

(3.14)  wupeL? <O,T; H%(Z)) A H' (0,T; IA(S)) € H2((0,T) x %).
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The idea. Let us explain the main idea of this section. Define T5 to be the operator:

R:ﬂ(@TJTﬂE)%X%ﬂﬁ«QﬂxZ)
(3.15)

g5 — To(gy) = uy,
this operator associates to every Neumann data, on the fluid part of the contact

interface, the displacement wus corresponding to the velocity vy which is a solution of

(3.1). It is easily seen, by combing (3.7), (3.13) and by applying (3.14), that:

1 2
[ Ta(g5) — T2(9f)||H%((o,T)xz)

1
Ly

RTAE R :
= llug — vl d o2 =l ot oy

(3.16) ) )
< Cp”“f - Uf||L2(o,T;H1(Qf))

1 2
< C1f||gf - gf||L2<O,T;H7%(E)>

for every g}, g7 € L? (O, T: H_%(E)>, and thus the operator T5 is continuous. Let T}
and Ty be defined respectively by (2.7) and (3.15). Define the operator:
T:X > XCH2((0,T) x %)
(3.17)
us — T(us) =Ty 0Ty (us) = uy,

We remark that the global solution of the coupled problem (1.1)-(1.7) is a fixed point
of T', then to show existence of a solution to (1.1)-(1.7) it suffices to prove existence
of a fixed point of the of the operator T'. To be able to use fixed point theory we need
some compactness. However, T sends solid displacements from : X ¢ Hz ((0,T) x %)
into no more spatial-regular fluid displacements, that is into: X C Hz ((0,T) x %).
In order to recover some compactness we need to consider a sequence of auxiliary
operators T5. To achieve that, we proceed into a regularization of the Stokes problem
(3.10) i.e. to define a sequence of problems depending on a small real parameter,
¢ > 0, in such a way that the new operator 7% o T} sends Hz ((0,7) x ¥) into a more
regular space in the spatial variable, this will ensure the needed compactness. The

(solution of the) original problem will be recovered by letting € — 0.
Regularized problem. Consider the space:

(3.18) w=D,"
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to be the completion of Dy, defined by (3.4), with respect to the Sobolev H*—norm.
It is indeed a Hilbert spaces. We denote by (.,.)y2 its canonical inner product, and

by (.,.)m2, the part of (.,.)u2 that involves only the second derivatives. We denote

W* its dual. Given g; € L? (0, T; H_%(E)>, consider the regularized problem:

Find v € L* (0, T; W) such that:

| @01t + A5 (0)
(3.19) 0

T T
_ / < F(t), 8(t) >0, dt / < g5(8), 8(t) >_
0 0
for all ¢ € L*(0,T; W), where
T T
A05)(6) = / AW (@)t + e / / 0} 9,

and where A is given by (3.9). It is easily seen that the quasi-linear elliptic operator
A W — W+ satisfy the assumptions of [7, Proposition 5.1, p.129] and that of [7,
Theorem 5.1, p.128]. Then for every g; € L? (0, T; H_%(E)>, problem (3.19) admits

a unique solution:
(3.20) v € L*(0,T; W)

for all € > 0, where W is given by (3.18). An energy estimate can be derived by using

the strong monotony of the operator A.. We thus obtain the estimate:
l,e 2€ 1 2
(3.21) loy" = v [l 20wy < Crllgy — ngLQ(QT;Hf%(E))-

Estimate (3.21) is obtained by choosing as test function ¢ = vjlf — vfc’g, in (3.19),

corresponding to gjlc, g]%. Using the continuity of the trace operator
Yo 1 HA(Qy) = H2 (D),
we infer from (3.21):

l,e 2.€ )
||Uf — Yy ||L2 (o,T;H%(E))
(3.22)

1 2
< C1f||gf - gf||L2(0,T;H7%(E))
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Remark 3. The same fact that was stated in Remark 2 holds with u$ and v} in the
space L? <O,T; H%(Z)) Thus we obtain by combining (3.13) corresponding to the
space H2(X) and estimate (3.22):

||u;1 - uj‘g”L?(O,T;Hl(E)) + ||u;1 - U;’2HH1(0,T;L2(2))

(3.23)

1 2

for every gy, g7 € L? (O,T : H_%(E)> .

The auxiliary operator 7. First define Z to be the space:

(3.24) Z:=H'(0,T;L*(X)) N L* (0, T Hy(X)) € H'((0,T) x %),

it is endowed with the standard H'((0,T) x X)—norm. Define the operator Ts by:

TS . I? (O,T; H—%(z)) S ZCX
(3.25)
g5 = T5(g5) = u,

i.e. it associates to every g; € L? (0, T; H_%(E)>, the trace on (0,7) x X of the fluid
displacement u} corresponding to the fluid velocity v§ which is the solution of the
regularized problem (3.19) with g; as a Neumann data. Estimate (3.23) translates
the boundedness of T5. Let us introduce the auxiliary operator T := T o T, that is:
T°: X > ZCX
(3.26)
us — uf =Ty o Th(us),

where X and Z are respectively given by (2.6) and (3.24), moreover the operators T;
and T are respectively defined by (2.7) and (3.25). The operator T associates to
every solid displacement us € X, the fluid displacement u} € X defined on the fluid
part of the contact interface (0,7") x X.

The auxiliary coupled problem is formed out of the Lamé solid problem (2.2) and
the quasi-linear Stokes regularized problem (3.19). By combining the estimates (2.8)
and (3.23) on one hand, and using the coupling condition (1.8) on the other hand,

we infer the estimate:

(3.27) Ve >0, ||T(u,) — T(u)|lx < CoCylluy — il
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for all ul,u? € X i.e. the non-linear operator T* is Lipschitz for every € > 0. One
should notice that the constant C;C; doesn’t depend on e.
4. EXISTENCE OF SOLUTION FOR THE MAIN COUPLED PROBLEM

4.1. Existence result for the auxiliary coupled problem. Let T be as defined

by (3.26) and X be as defined by (2.6). We propose to prove the following proposition:
Proposition 4.1. For every e > 0, the operator T admits a fixed point u® € X.

The idea for proving Proposition 4.1 is to combine the Banach and the Schaefer

fixed point theorems. Let us recall Schaefer’s theorem, cf. [8, Theorem 4.3.2, p.29]:

Theorem 4.1. (Schaefer). Let K be a Banach space. Let T : I — K be a continuous

and compact mapping. Assume that the set
{ve: v=pTv for some p, 0 < p <1}
s bounded, then T admits a fixed point in IC.

We are going now to prove Proposition 4.1:

Proof. We deal at first with a contraction mapping. Fix p € R such that pC;Cy < 1.
The coefficient p doesn’t depend on €. Consider the operator p7 defined by:
pT : X - XNZCX

us = uf = pTy o T (us),
where Z is defined by (3.24). Applying estimate (3.27), we have:
(4.1) 10T (us) — pT*(ud)l|x < pCsCillus — |,

for all ul,u? € X. Let us note the following four facts:

o Continuity of the operators T¢. Estimate (3.27) means that 7 is Lipschitz and
thus continuous. Moreover, estimate (4.1) implies that pT° is a contraction
mapping for every € > (0. Consequently, since X is a Banach space, we
deduce, by applying the Banach fixed point theorem, that p7 admits a unique
[0, T]—globally defined fixed point uf, € X
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e Boundedness condition. We deduce from the preceding point that, Ve > 0,
the set {u € X, u = pT*u } reduces to the unique fixed point ug,, and thus it
is bounded.

o Stability of the operators T¢. According to definition (3.26), we have T (X') C
X, thus T is stable for every € > 0.

e Compactness of the operator T¢. Let ¢ > 0. By combining estimates (2.8),
(3.23) and the boundedness of |[T¢(0)||z, we remark that the operator T
sends every bounded subset £ C X into an H'—bounded subset T¢(E) C
H*((0,T)xY). Using the compact embedding H'((0, T)xX) < Hz((0,T)x

compact

Y)), we deduce that T¢(E) is compact in X', thus T° is compact Ve > 0.

Thus we checked for T the sufficient conditions of Theorem 4.1; this proves Propo-

sition 4.1. O

4.2. Existence of a solution to the coupled problem (1.1)-(1.7). We now
establish the existence of a solution for the global coupled problem which, as pointed
out above, amounts at establishing the existence of a fixed point of the operator T’

given by (3.17). According to Proposition 4.1, Ve > 0, there exists u¢ € X’ such that
(4.2) T U = u,

where X is given by (2.6). Since (u)c~g is an uncountable family of vectors belonging
to the separable normed vector space (X, || ||x), then it must have a limit point with

respect to the topology induced by the norm of X i.e. there exists u® € X such that:
(4.3) l|u€ —u®||x — 0,
as € — 0. To be able to pass to the limit ¢ — 0 in (4.2), we need Lemma 4.1:

Lemma 4.1. Let T¢ and T be respectively as defined by (3.26) and (3.17), then:

(4.4) T u — Tu, YueX.

strongly in X

Proof. Fix u € X and pose g; = Tiu, where Tj is given by (2.7). Choose in (3.19)
¢ = uf where u = T5(gy) and where T is given by (3.25). Using (3.23), we infer

immediately that T°u T Uy with Uy € &, let us show that Uy = Tu.
weakly in
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Denote v§ to be the velocity v§ := du$. It is clear, by using (3.21) with g]% =0
and g} = gy, that (||U;||L2(O7T;H1(Qf)))e is uniformly bounded, thus:

(4.5) v = Vp oin L(0,T; H'(Sy)).

weakly

- : T o
Moreover, by combining (3.21) and (4.5) we infer that both € [ [v%(t) %fs?n(ﬂf)dt =
€ fOT(v]i,v]i) m2,dt and [|0.0%|L20,r;-1(,)) are also uniformly bounded with respect

to € > 0, consequently:

Oy — OiVy in L0, T; H (),

(4.6)
€2, vs — 0 in L*(0,T; L*(Qy)).
v weakly
Combining the weak problems (3.10), (3.19) and applying the last convergence in
(4.6) on one hand, and by considering the auxiliary function u™ corresponding to
problem (3.10) with f™ an dg™ as right hand sides such that ||f™ — f|| — 0 and

llg" — g|| = 0, we deduce that:
(47) ||V'U;c — v,UfHLz(O,T;LZ(Qf)) — 0’

it follows that V; = v;. Given that a is Lipschitz in the second variable, then (4.7)
yields:

(4.8) a(t, Vuy) — a(t, VVy) converges strongly.

Finally, letting € — 0 in (3.19) by mean of combining (4.5), (4.6) and (4.8), one infers
that V} is the fluid velocity field corresponding to the solid displacement u € X.
Consequently we have dyu = V; and Uy = T'u, this yields convergence (4.4). O

Proof of Theorem 1.1. Now we are ready to present a proof of the main result:

Proof. Let u® be such as defined by (4.3), we have:
17°u = Tu’|| x
(4.9)
<||Tu¢ — TU°|| + ||Tu° — Tu’||.

On one hand we have:
T us — Tu°||

< GOyl |uf — ||,
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where we used (3.27). Applying (4.3), we infer:

(4.10) ||[Tu — Tu°||x — 0 as e— 0.
On another hand, using (4.4), we obtain:

(4.11) || Tu® — T%u°|| — 0, € — 0.
Combining (4.10) and (4.11) it yields

(4.12) || Tu — Tu||x, € — 0.
Combining (4.2), (4.3) and (4.12), we deduce:

(4.13) u’ = limu = lim T = Tw’,

e—0 e—0
that is T has a fixed point «° € X. This completes the proof of Theorem 1.1.
Regarding the regularity claimed in Theorem 1.1, one can use estimate (2.22)
to infer the regularity of the solid displacement us € X on (). Furthermore, one
combines the estimates (3.6) and (2.8) to infer the regularity of the fluid velocity
vy on (). The regularity of the pressure 7 can be inferred in the following fashion:
one considers the regularity of the solution u° stated in (3.6), namely that 9,u’ €
L*(0,T; H'(2;)) and then applies the energy estimate in [1, Theorem 25, p.226]
and thus infer that 7 € L? (0, T; L*(Q;)/R). O

5. CONCLUSION

According to the procedure adopted by the authors in [5], cf. the bottom of [5, Proof
of Theorem 5.1, p.571], they established the globally-in-time existence of a solution
by using an iterative method which is based on the linearity of the problem that was
considered in their paper. We emphasize that this method is no longer applicable
in the non-linear context of the present work. Indeed, it is always possible to prove
existence of a solution locally in time, i.e., given a non-linear problem consider on
the time interval [0, 7], fixed point theory can lead to the existence of a solution on
[0,7;] C [0, 7). Using the linearity of the differential equations, one can iterate the
process to obtain a global in time solution. Given that the problem considered in
this paper is non-linear, we had to combine two fixed point theorems, the Banach

and Schaeffer theorems.
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It should be noted that there is no memory effect in the (iterative) resolution of
the presently addressed coupled problem in the sense that the result (in particular
the displacement) obtained at a time ¢ does not depend on the displacement at an
earlier time. This is notably due to the fact that the deformation of the geometry (in
particular that of the contact surface ¥), within time incrementing i.e. during the
coupling, is not taken into account, although we assumed in the introduction that
the domain Q(¢) depends upon time.

That said, the main theorem established in this paper remains relevant. Indeed,
it can be incorporated as an auxiliary result to demonstrate a more complex well-
posedness result like for instance [5, Theorem 2.1, p.555]. If one is willing to prove a
result analogous to the later in the framework considered in this paper, then one has,
in a first step, to generalize Theorem 1.1 to the case when the data in system (1.1)-
(1.7) are non-homogeneous along with a non necessary free divergence condition. We
believe that this step can be achieved with some slight modification of the procedure
described in the present work, one obtains up to this step a result analogous to [5,
Theorem 5.1, p.570]. Then one should follow the same method as in the proof of [5,
Theorem 2.1, p.555] which deals with the well-posedness of system [5, Problem 2.1,
p.551-552] and which requires taking into account the deformation of the geometry
during the interaction, especially that of the contact interface.

Finally, a last perspective would be to improve the regularity of the solution of
the coupled problem. This has been successfully undertaken in other works assuming
that the contact interface Y7 is flat. This led the authors, by using Fourier analysis
techniques, to show a "hidden” regularity. It would be interesting to establish such
an additional regularity without restrictive assumption on the shape of the contact

interface. This would be an interesting extension of our result.

Acknowledgment

I would like to sincerely thank the anonymous referees for their valuable comments,
suggestions and for the effort they put into reviewing this work. I would like also to

thank the editor in chief as well as all the journal staff for their help and support.



334

1]

9 x

[10]

[11]

DJAMEL AIT-AKLI
REFERENCES

C. Amrouche, M. Krbec, M. Necasova and B. Lucquin-Desreux, Elliptic Differential Equations:
Linear Theory, Encyclopedia of Mathematical Physics, Academic Press, 2006, Pages 216-228.

P. Doktor and A. Zanisek, The density of infinitely differentiable functions in Sobolev spaces
with mixed boundary conditions, Appl. Math. 51(5)(2006), 517-547.

M. Egert and P. Tolksdorf, Characterizations of Sobolev functions that vanish on a part of the
boundary, Discrete Contin. Dyn. Syst. Ser. S. 10(4)(2017), 729-743.

L. C. Evans(1998), Partial Differential Equations, Graduate Studies in Mathematics V.19,
American Mathematical Society, Providence, R.I.

J.P. Raymond and C. Vanninathan, A fluid-structure model coupling the Navier-Stokes equa-
tions and the Lamé system; Math. Pures Appl. 102(3)(2014), 546-596.

Y. Shibata and S. Shimizu, On the Stokes equation with Neumann boundary condition, Reg-
ularity and other aspects of the Navier-Stokes equations, Banach Center Publ., Institute of
mathematics, 70(2005), 239-250.

R. E. Showalter(1997), Monotone Operators in Banach Space and Nonlinear Partial Differen-
tial Equations, Mathematical surveys and Monographs, Volume 49.

D. R. Smart(1974), Fized Point Theorems, Cambridge Univ. Press, Cambridge.

V.A. Solonikov, Solvability of a problem on the evolution of a viscous incompressible fluid,
bounded by a free surface, on a finite time interval, St. Petersburg Math. J. 3(1)(1992), 189—
220.

I. Lasiecka, J.L. Lions and R. Triggiani, Nonhomogeneous boundary value problem for second
order hyperbolic operators, J. Math. Pures et Appl. 65(1986), 149-192.

J. T. Beale, The Initial Value Problem for the Navier-Stokes Equations with a Free Surface,
Comm. Pure Appl. Math., Vol. XXXIV, 359-392 (1981).

L2CSP LABORATORY, MOULOUD MAMMERI UNIVERSITY, T1z1-Ouzou, 15000, ALGERIA.

Email address: djamel.aitakliQummto.dz



