
Jordan Journal of Mathematics and Statistics (JJMS), 16(2), 2023, pp 335 - 360

DOI: https://doi.org/10.47013/16.2.9

AN ANALYTICAL AND NUMERICAL STUDY OF THE LINEAR

COMBINATION OF THE DIRICHLET COMPONENTS

M. GHORBEL

Abstract. The aim of the present paper is to derive the exact distribution and the

corresponding moment function of the linear combination S := αS1 + βS2, where

(S1, S2) has the Dirichlet distribution with positive parameters θ1, θ2 and θ3. We

also provide the percentile points associated with the linear combination. Next, a

measure of entropy of the linear combination is investigated. Further, we give ap-

proximations for this distribution and discuss evidence for their robustness. Finally,

we study the application of the considered linear combination to precipitation data

in France and to the financial returns volatility domain.

1. Introduction

For given random variables S1 and S2, the linear combination S := αS1+βS2 is of

interest in problems pertaining to automation, control, fuzzy sets, neurocomputing,

and other areas of computer science. In neurocomputing, linear combinations are

used to combine multiple probabilistic classifiers on different feature sets. In order to

achieve the improved classification performance, a generalized finite mixture model

is proposed, as a linear combination scheme, and implemented based on radial basis

function networks (see Chen and Chi (1998)). Furthermore, the theory of congruence

equations (see for example, Cerruti (1993)) has applications in computer science.

There is a wide literature about congruence equations and the last twenty years

have witnessed interesting derived formulas and functions; among these, expressions

yielding the number of solutions of linear congruences. Counting such solutions is
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associated with statistical problems, such as the distribution of the values taken by

particular sums.

Linear combination of random variables is one of the significant research areas,

both from a theoretical and an application points of view. At this stage, we present

some applications proposed by authors concerning the linear combination of some

very specific distributions:

The weighted sums of uniform random variables have applications in stochastic

processes, which, in many cases, can be modeled by these weighted sums. In com-

puter vision algorithms, Kamgar-Parsi et al. (1995) discussed the applications of the

weighted sum, and applied the results to a problem in reliability analysis of digital

image processing algorithms, and then compared the analytical results with a Monte

Carlo simulation approach.

Linear combinations of inverted gamma random variables are applied to the com-

putation of the generalized p-values used for exact significance testing and interval

estimation of the parameter of interest in the Behrens–Fisher problem and for vari-

ance components in balanced mixed linear model (see Witkovsky (2001)).

Concerning the Beta distributions, their linear combinations are used for detecting

changes in the location of the distribution of a sequence of observations in quality

control problems (see Lai (1974)). Furthermore, the distribution of the sum of two

beta random variables can be used in several important applications, especially in

the area of bayesian optimal allocation and reliability (see for example, Pham-Gia

and Turkkan (1993)).

Weighted sums of the Poisson parameters are used in medical applications for

directly standardized mortality rates. Another example of the need for confidence

limits for weighted sums of Poisson parameters occurs in meta-analysis requiring the

aggregation of outcome rates from several different studies, using weights related to

the numbers of subjects in each study (see Dobson et al. (1991)).

In this paper, we aim at studying the linear combination of the Dirichlet distribu-

tion, considered by a large number of authors (see for example Kotz et al. (2000)) and

appearing in a set of applications namely order statistics, probabilistic constrained
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programming models, and delivery problems. Such applications may be found in Bar-

rera et al. (2005), Fabius (1973), Johnson (1960) and Phillips (1988). Furthermore,

Provost and Cheong (2000) showed the importance of the distribution of linear com-

binations of components of a Dirichlet random vector to quadratic forms, and their

ratios in statistics which can be applied in a variety of contexts. It remains to point

out that the same problem was raised by Gupta and Nadarajah (2006) in the study of

the linear combination of the inverted Dirichlet distribution. Here, the authors found

the exact expressions for the pdf and moments of this linear combination. Note that

the calculation reveals the hypergeometric Gaussian function as the one found for

our distribution.

With θ :=(θ1, θ2,θ3) > 0, we shall assume that (S1, S2) is distributed according to

the joint pdf

(1.1) f (s1, s2) =
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)
sθ1−1
1 sθ2−1

2 (1− s1 − s2)
θ3−1,

where s1 > 0, s2 > 0, and s1 + s2 ≤ 1. This is known as the Dirichlet distribution

D(θ). Alternatively, (S1, S2) is characterized by its joint moment function

(1.2) φ (q1; q2) := E (Sq1
1 Sq2

2 ) =
Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ2 + θ3 + q1 + q2)

Γ (θ1 + q1) Γ (θ2 + q2)

Γ (θ1) Γ (θ2)
.

Note that Eq. (1.1) and Eq. (1.2) are special cases of the Dirichlet distribution

treated by Kotz, Balakrishnan and Johnson (2000, pp 487-488).

The organization of the paper is as follows: In Section 2, we derive explicit ex-

pressions for the density function of the linear combination S := αS1 + βS2 by using

directly the joint density function of (S1, S2) . The calculations involve the Gauss

hypergeometric function defined by

2F1(a, b; c; x) :=
∞
∑

k=0

(a)k (b)k
(c)k

xk

k!
, |x| < 1,

where (i)k := i(i+1)...(i+k−1) denotes the ascending factorial. Next, various math-

ematical, statistical and reliability properties of the linear combinations of Dirichlet

components (like moments, percentiles) are discussed in Sections 3 and 4. In section

5, we investigate a measure of entropy of the linear combination in the general case

and we discuss Rényi and Shannon entropies for particular case θ1 + θ2 + θ3 = 1. In
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section 6, we propose with a similar manner to that suggested by Gupta and Nadara-

jah (2006), approximations for the distribution of S by the classical beta distribution,

and discuss the evidence for their robustness. It consists in giving a simple approx-

imation in terms of the beta distribution so that one can use the known procedures

for inference, prediction, etc. In section 7, we provide an application of the results

derived in this article to precipitation data about rain and snow from France. The

data are available at the website https://en.tutiempo.net/climate. Next, we study

another application of the considered linear combination in the field of financial re-

turns volatility of two French car manufacturers: Peugeot and Renault. Here, the

data set can be downloaded from the website https://finance.yahoo.com. Finally,

section 8 offers some conclusions.

For a frequent use of the beta distribution, we recall that: a random variable A

with the beta distribution with parameters a, b > 0 (say A
d
∼ β(a, b)), has density

fA (x) = Γ(a+b)
Γ(a)Γ(b)

xa−1 (1− x)b−1 , x ∈ [0, 1] and moment function E (Aq) = Γ(a+q)Γ(a+b)
Γ(a)Γ(a+b+q)

,

q > −a.

2. Density function of S

In this section, we treat linear combination S = αS1 + βS2, where α and β can be

positive or negative constants. Using the symmetry, we restrict our work to the two

cases where α > 0, β > 0, and α < 0, β > 0. In the following Theorems 2.1 and 2.2,

we derive the exact density functions of the linear combination S for these two cases.

Theorem 2.1. If S1 and S2 are jointly distributed according to Eq. (1.1), then the

density function of S = αS1 + βS2, for α > 0, β > 0, is given by

(2.1) fS(s) =
Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ3) Γ (θ2)

(s− α)θ2−1 (β − s)θ1+θ3−1

βθ3(β − α)θ1+θ2−1

×2F1(1− θ2, θ3; θ1 + θ3;
α (s− β)

β (s− α)
), for α < s < β.
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Proof. From Eq. (1.1), the joint density function of (S2, S) = (S2, αS1 + βS2) can be

written as

f(s2, s) =
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

sθ2−1
2

α

(

s− βs2
α

)θ1−1

(1− s2 −
s− βs2

α
)θ3−1

=
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

sθ2−1
2 βθ1−1 (β − α)θ3−1

αθ1+θ3−1

(

s

β
− s2

)θ1−1

(s2 −
s− α

β − α
)θ3−1,

where s−α
β−α

< s2 <
s
β
and α < s < β. Thus, the density function of S becomes

(2.2)

fS(s) =
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

βθ1−1 (β − α)θ3−1

αθ1+θ3−1

×
∫

s

β
s− α

β − α

sθ2−1
2

(

s
β
− s2

)θ1−1

(s2 −
s−α
β−α

)θ3−1ds2

for α < s < β. Using equation (2.2.6.1) in Prudnikov et al. (1986), the integral in

Eq. (2.2) is equal to

Γ (θ1) Γ (θ3)

Γ (θ1 + θ3)

(

s

β
−

s− α

β − α

)θ1+θ3−1(
s− α

β − α

)θ2−1

×2F1(1− θ2, θ3; θ1 + θ3;
α (s− β)

β (s− α)
).

Inserting this quantity in Eq. (2.2), the result follows. �

Theorem 2.2. If S1 and S2 are jointly distributed according to Eq. (1.1), then the

density function of S = αS1 + βS2, for α < 0, β > 0, is given by

(2.3) fS(s) =
Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ3) Γ (θ2)

sθ2−1(β − s)θ1+θ3−1

βθ2+θ3−1(β − α)θ1

×2F1(1− θ2, θ1; θ1 + θ3;
α (β − s)

s (β − α)
)

for 0 < s < β, and

(2.4) fS(s) =
Γ (θ1 + θ2 + θ3)

Γ (θ2 + θ3) Γ (θ1)

(−s)θ1−1 (s− α)θ2+θ3−1

(−α)θ1+θ3−1 (β − α)θ2

×2F1(1− θ1, θ2; θ2 + θ3;
β (s− α)

s (β − α)
)

for α < s < 0.
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Proof. If s > 0, the joint density function of (S1, S) = (S1, αS1 + βS2) can be written

as

f(s1, s) =
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

sθ1−1
1

β

(

s− αs1
β

)θ2−1

(1− s1 −
s− αs1

β
)θ3−1

=
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

sθ1−1
1 (β − α)θ3−1

βθ2+θ3−1
(s− αs1)

θ2−1 (
β − s

β − α
− s1)

θ3−1

where 0 < s1 <
β−s

β−α
and 0 < s < β. Thus, the density function of S becomes

fS(s) =
Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

(β − α)θ3−1

βθ2+θ3−1

×

∫

β − s

β − α

0

sθ1−1
1 (s− αs1)

θ2−1 (
β − s

β − α
− s1)

θ3−1ds1

for 0 < s < β. Making the change of variable u = β−α

β−s
s1, we obtain

(2.5)
fS(s) =

Γ (θ1 + θ2 + θ3)

Γ (θ1) Γ (θ2) Γ (θ3)

sθ2−1 (β − α)θ3−1

βθ2+θ3−1

(

β − s

β − α

)θ1+θ3−1

×
∫ 1

0
uθ1−1 (1− u)θ3−1

(

1− u
α (β − s)

s (β − α)

)θ2−1

du.

Using equation (2.2.6.15) in Prudnikov et al. (1986), the integral in Eq. (2.5) is equal

to

Γ (θ1) Γ (θ3)

Γ (θ1 + θ3)
×2 F1(1− θ2, θ1; θ1 + θ3;

α (β − s)

s (β − α)
).

Inserting this quantity in Eq. (2.5), the Eq. (2.3) follows. The proof of Eq. (2.4) can

be treated similarly. �

Plots of the density function for some selected values of θ, α and β are shown in

Figures 1 and 2, respectively. The four curves in each plot correspond to the selected

values of θ1 and θ2. It is clear that the densities become flatter by increasing the value

of β.

3. Moments

In this section, we give the moments of S = αS1+βS2, when S1 and S2 are jointly

distributed according to Eq. (1.1). Now we establish the following result:
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Figure 1. The density function (2.1) for α = 1, θ3 = 0.5 and (1): β = 1.5;

(2): β = 2; (3): β = 3; (4): β = 6. The four curves in each plot are: the

blue curve (θ1 = 0.5, θ2 = 0.5), the green curve (θ1 = 2, θ2 = 0.5), the red

curve (θ1 = 2, θ2 = 2), and the magenta curve (θ1 = 4, θ2 = 4).

Figure 2. The density functions (2.3)-(2.4) for α = −1, θ3 = 0.5 and (1):

β = 1.5; (2): β = 2; (3): β = 3; (4): β = 6. The four curves in each plot are:

the blue curve (θ1 = 0.5, θ2 = 0.5), the green curve (θ1 = 2, θ2 = 1), the red

curve (θ1 = 2, θ2 = 2), and the magenta curve (θ1 = 4, θ2 = 4).
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Theorem 3.1. If S1 and S2 are jointly distributed according to Eq. (1.1), then the

moment function of S = αS1 + βS2 is given by (for n ≥ 0)

(3.1)

E (Sn) =
Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ2 + θ3 + n)

αn

Γ (θ1) Γ (θ2)

n
∑

k=0

(

n

k

)

Γ (θ2 + k) Γ (θ1 + n− k)

(

β

α

)k

Proof. The moment function of S can be written as

E (Sn) = E ((αS1 + βS2)
n)

=

n
∑

k=0

(

n

k

)

αn−kβkφ (n− k; k) ,

where φ (n− k; k) := E
(

Sn−k
1 Sk

2

)

. By using Eq. (1.2), the result follows. �

From this, we obtain the following corollary, where Eq. (3.1) reduces to particular

cases for n = 1 and n = 2.

Corollary 3.1. The first two moments of S are

(3.2) E (S) =
αθ1 + βθ2
θ1 + θ2 + θ3

and

(3.3) E
(

S2
)

=
(αθ1 + βθ2)

2 + α2θ1 + β2θ2
(θ1 + θ2 + θ3) (θ1 + θ2 + θ3 + 1)

.

�

Remark: We can give the moment function of
∑k

m=1 αmSm, where (S1, ..., Sk) are

k random variables distributed according to Dirichlet distribution with parameters

(θ1, ..., θk+1). Indeed, the joint moment function of (S1, ..., Sk) is given by

E

(

k
∏

m=1

Sqm
m

)

=
Γ
(

∑k+1
m=1 θm

)

Γ
(

∑k+1
m=1 θm +

∑k
m=1 qm

)

k
∏

m=1

Γ (θm + qm)

Γ (θm)
.

From this and by using the multinomial formula, we obtain

E

((

k
∑

m=1

αmSm

)n)

=
∑

q1,...,qk≥0
∑k

m=1
qm=n

n!
∏k

m=1 qm!

k
∏

m=1

αqm
m E

(

k
∏

m=1

Sqm
m

)
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=
Γ
(

∑k+1
m=1 θm

)

Γ
(

∑k+1
m=1 θm + n

)

∑

q1,...,qk≥0
∑k

m=1
qm=n

n!
∏k

m=1 qm!

k
∏

m=1

αqm
m

Γ (θm + qm)

Γ (θm)
.

It is straightforward to found Eq. (3.1) for k = 2.

4. Percentiles

In this section, we provide extensive tabulations of the percentiles of the distribu-

tion of S = αS1 + βS2. These percentiles are computed numerically by solving the

following equations, with respect to sq,

Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ3) Γ (θ2)

1

βθ3(β − α)θ1+θ2−1

∫ sq

0

(s− α)θ2−1 (β − s)θ1+θ3−1

×2F1(1− θ2, θ3; θ1 + θ3;
α (s− β)

β (s− α)
)ds = q,

Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ3) Γ (θ2)

1

βθ2+θ3−1(β − α)θ1

∫ sq

0

sθ2−1(β − s)θ1+θ3−1

×2F1(1− θ2, θ1; θ1 + θ3;
α (β − s)

s (β − α)
)ds = q

and

Γ (θ1 + θ2 + θ3)

Γ (θ2 + θ3) Γ (θ1)

1

(−α)θ1+θ3−1 (β − α)θ2

∫ sq

0

(−s)θ1−1 (s− α)θ2+θ3−1

×2F1(1− θ1, θ2; θ2 + θ3;
β (s− α)

s (β − α)
)ds = q.

Evidently, this involves computation of the Gauss hypergeometric function and

routines for this are widely available. Table 1 provides the numerical values of sq for

α = −2,−1.9, ..., 1.9, β = 2, θ1 = 4, θ2 = 4, θ3 = 1. We hope that these values will

be of use to the practitioners mentioned in Section 1. Similar tabulations could be

easily derived for other values of α, β, θ1, θ2 and θ3.
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Table 1. Percentile points of S

α 0.7 0.8 0.9 0.95 0.99

-2 0.4196 0.5253 0.5981 0.6179 0.6246

-1.9 0.4315 0.5402 0.6145 0.6342 0.6407

-1.8 0.4397 0.5519 0.6293 0.6502 0.6575

-1.7 0.4521 0.5667 0.6462 0.6680 0.6751

-1.6 0.4618 0.5824 0.6637 0.6866 0.6935

-1.5 0.4738 0.5988 0.6840 0.7055 0.7128

-1.4 0.4865 0.6174 0.7033 0.7258 0.7330

-1.3 0.4918 0.6319 0.7239 0.7470 0.7545

-1.2 0.4968 0.6510 0.7452 0.7692 0.7769

-1.1 0.5009 0.6674 0.7669 0.7925 0.8004

-1 0.4923 0.6789 0.7885 0.8159 0.8246

-0.9 0.4757 0.6864 0.8087 0.8392 0.8490

-0.8 0.4448 0.6789 0.8242 0.8604 0.8717

-0.7 0.3973 0.6539 0.8292 0.8737 0.8887

-0.6 0.3137 0.6039 0.8173 0.8736 0.8923

-0.5 0.2070 0.5170 0.7699 0.8458 0.8689

-0.4 0.1715 0.3794 0.6687 0.7644 0.7984

-0.3 0.0910 0.1944 0.4918 0.6070 0.6515

-0.2 0.0068 0.0230 0.2344 0.3589 0.4113

-0.1 0.0005 0.0069 0.0188 0.0786 0.1218

0 0.8345 1.0148 1.1333 1.1644 1.1746

0.1 0.8803 1.0610 1.1814 1.2134 1.2232

0.2 0.9250 1.1095 1.2327 1.2648 1.2753

0.3 0.9736 1.1625 1.2879 1.3205 1.3314

0.4 1.0266 1.2199 1.3474 1.3807 1.3918

0.5 1.0845 1.2821 1.4119 1.4463 1.4569

0.6 1.1494 1.3491 1.4815 1.5161 1.5272

0.7 1.2195 1.4230 1.5574 1.5922 1.6037

0.8 1.2979 1.5039 1.6398 1.6752 1.6869

0.9 1.3840 1.5934 1.7305 1.7675 1.7777

1 1.4808 1.6918 1.8298 1.8653 1.8769

1.1 1.5889 1.8006 1.9392 1.9739 1.9868

1.2 1.7108 1.9225 2.0607 2.0966 2.1078

1.3 1.8496 2.0584 2.1959 2.2318 2.2430

1.4 2.0099 2.2119 2.3473 2.3828 2.3940
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1.5 2.1917 2.3882 2.5197 2.5554 2.5652

1.6 2.4048 2.5940 2.7169 2.7488 2.7595

1.7 2.6655 2.8289 2.9441 2.9707 2.9851

1.8 2.9590 3.1159 3.2155 3.3248 3.2503

1.9 3.0053 3.4177 3.5476 3.5488 3.5488

5. Entropy

An entropy provides an excellent tool to quantify the amount of information (or un-

certainty) contained in a random observation regarding its parent distribution (popu-

lation). A large value of entropy implies greater uncertainty in the data. The concept

of entropy is important in different areas such as physics, probability and statistics,

communication theory, and economics, etc. Several measures of entropy have been

studied and compared in the literature. The simplest known entropy is the Shannon

entropy (Shannon (1948)) of the random variable S = αS1 + βS2 defined by

(5.1) E[− log f(S)] = −

∫

f(s) log f(s)ds.

One of the main extensions of the Shannon entropy was defined by Rényi (1961).

This generalized entropy measure is given by

(5.2) HR (µ, f) =
logG (µ)

1− µ
(for µ > 0 and µ 6= 1),

where

G (µ) :=

∫

(f (s))µ ds.

Note that the Shannon entropy is the particular case of the Rényi entropy for µ ↑ 1.

Consider calculating the Shannon entropy when S has the density function given

by Eq. (2.1). If α < s < β, then one can write

E[− log f(S)] = − log

[

Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ3) Γ (θ2)

1

βθ3(β − α)θ1+θ2−1

]

+ (1− θ2) · E[log(S − α)] + (1− θ1 − θ3) · E[log(β − S)]

−
Γ (θ1 + θ2 + θ3)

Γ (θ1 + θ3) Γ (θ2)

1

βθ3(β − α)θ1+θ2−1
I,

where I denotes the integral

I =

∫ β

α

(s− α)θ2−1 (β − s)θ1+θ3−1 ln

(

2F1(1− θ2, θ3; θ1 + θ3;
α (s− β)

β (s− α)
)

)

ds.
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Unfortunately, this integral I cannot be reduced to a closed form. Thus, one cannot

obtain a closed form expression for the entropy measure when S is distributed as in

Theorem 2.1 or as in Theorem 2.2. Hence, we performed a numerical study to examine

the behavior of Eq. (5.1) with respect to the parameters in Theorem 2.1 and Theorem

2.2 respectively.

Figure 3 below shows the variation of Eq. (5.1) for a range of values of α and θ1

with θ2 = 2, θ3 = 1 and β = 6. The effect of the parameters is evident: Eq. (5.1)

is an increasing function of both α < 0 and θ1 whereas Eq. (5.1) increases with

respect to α > 0 but with respect to θ1, it initially increases before decreasing. Note

that similar results can be obtained if we change θ1 by θ2 or θ3 and if we fix α and

change β. Finally, for the reasons mentioned above, one cannot obtain closed form

expressions for the Rényi entropy and the investigation will have to be performed

numerically.

Next, we derive exact forms of Rényi and Shannon entropies under the constraint

θ1 + θ2 + θ3 = 1, for the distribution of S defined by Eq. (2.1) with 0 < α < s < β.

Note that the case where α < 0 and β > 0 can be traited similarly.

Firstly, we recall that the density function of S in the particular case θ1+θ2+θ3 = 1

is given by

(5.3) fS (s) =
sθ1+θ2−1 (s− α)−θ1 (β − s)−θ2

Γ (1− θ2) Γ (θ2)
for 0 < α < s < β

Before continuing, we need the following lemma:

Lemma 5.1. Let g (α, β, θ1, θ2) = limµ→1 h(µ), where

(5.4) h(µ) =
d

dµ
2F1

(

µ (1− θ1 − θ2) , 1− µθ2; 2− µ (θ1 + θ2) ;
β − α

β

)

Then,

g (α, β, θ1, θ2) =
∑

j≥1

Γ (1− θ2 + j) Γ (1− θ1 − θ2 + j) Γ (2− θ1 − θ2)

Γ (1− θ2) Γ (1− θ1 − θ2) Γ (2− θ1 − θ2 + j) j!

(

β − α

β

)j

× [θ2Ψ (1− θ2)− (1− θ1 − θ2) Ψ (1− θ1 − θ2) + (θ1 + θ2) Ψ (2− θ1 − θ2 + j)
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Figure 3. Plots of the Shannon entropy for θ2 = 2 and θ3 = 1, β = 6,

α = −5,−4,−3,−2,−1 and θ1 = 0.1, 0.2, ..., 5 (left); for θ2 = 2 and θ3 = 1,

β = 6, α = 1, 2, 3, 4, 5 and θ1 = 0.1, 0.2, ..., 5 (right).

(5.5)

−θ2Ψ (1− θ2 + j) + (1− θ1 − θ2)Ψ (1− θ1 − θ2 + j)− (θ1 + θ2)Ψ (2− θ1 − θ2)],

where Ψ (.) = Γ
′

(.) /Γ (.) is the digamma function.

Proof. Expanding 2F1 in series form, we write

(5.6) h (µ) =
d

dµ

∑

j≥0

∆j (µ)

j!

(

β − α

β

)j

=
∑

j≥0

[

d

dµ
∆j (µ)

]

(β − α)j

j!βj

where

∆j (µ) =
Γ (1− µθ2 + j) Γ (µ (1− θ1 − θ2) + j) Γ (2− µ (θ1 + θ2))

Γ (1− µθ2) Γ (µ (1− θ1 − θ2)) Γ (2− µ (θ1 + θ2) + j)

Now, differentiating the logarithm of ∆j (µ) with respect to µ, we obtain

d

dµ
∆j (µ) = ∆j (µ) [θ2Ψ (1− µθ2)− (1− θ1 − θ2)Ψ (µ (1− θ1 − θ2))

+ (θ1 + θ2)Ψ (2− µ (θ1 − θ2) + j)− θ2Ψ (1− µθ2 + j)

(5.7) + (1− θ1 − θ2) Ψ (µ (1− θ1 − θ2) + j)− (θ1 + θ2) Ψ (2− µ (θ1 − θ2))]

Finally, substituting Eq. (5.7) in Eq. (5.6) and taking µ → 1, we obtain Eq. (5.5). �
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Theorem 5.1. Consider the random variable S defined by its density function given

in Eq. (5.3). The Rényi and the Shannon entropies are given respectively by

HR (µ, f) =
1

1− µ
[µ logC (θ2) + (1− µ (θ1 + θ2)) log (β − α)

+µ (θ1 + θ2 − 1) log (β) + log (Γ (1− µθ1)) + log (Γ (1− µθ2))

− log (Γ (2− µ (θ1 + θ2)))+log 2F1

(

µ (1− θ1 − θ2) , 1− µθ2; 2− µ (θ1 + θ2) ;
β − α

β

)

]

and

HSH (f) = − logC (θ2) + (θ1 + θ2) log (β − α)− (θ1 + θ2 − 1) log (β)

+θ1Ψ (1− θ1) + θ2Ψ (1− θ2)− (θ1 + θ2) Ψ (2− (θ1 + θ2))

−
g (α, β, θ1, θ2)

2F1

(

1− θ1 − θ2, 1− θ2; 2− θ1 − θ2;
β − α

β

) ,

where C (θ2) = (Γ (1− θ2) Γ (θ2))
−1 and g (α, β, θ1, θ2) is given in the previous lemma.

Proof. Let us compute G (µ)

G (µ) =

∫ β

α

(f (s))µ ds

=

∫ β

α

sµ(θ1+θ2−1) (s− α)−µθ1 (β − s)−µθ2

(Γ (1− θ2) Γ (θ2))
µ ds

Using again equation (2.2.6.1) in Prudnikov et al. (1986), we obtain

G (µ) =
Γ (1− µθ1) Γ (1− µθ2)

Γ (2− µ (θ1 + θ2))
(C (θ2))

µ (β − α)1−µ(θ1+θ2) αµ(θ1+θ2−1)

×2F1

(

µ (1− θ1 − θ2) , 1− µθ1, ; 2− µ (θ1 + θ2) ;
α− β

α

)

Now, we use the following Euler’s relation

(5.8) 2F1(a, b; c; z) = (1− z)−a
2F1(a, c− b; c;

z

z − 1
),

to write

G (µ) =
Γ (1− µθ1) Γ (1− µθ2)

Γ (2− µ (θ1 + θ2))
(C (θ2))

µ (β − α)1−µ(θ1+θ2) βµ(θ1+θ2−1)

×2F1

(

µ (1− θ1 − θ2) , 1− µθ2, ; 2− µ (θ1 + θ2) ;
β − α

β

)
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Taking logarithm of G (µ) and using Eq. (5.2), we obtain the Rényi entropy. The

Shannon entropy is obtained from the Rényi entropy by taking µ ↑ 1 and using

L’Hopital’s rule. �

6. Approximations

It is clear that if α > 0, β > 0 (respectively if α < 0, β > 0); the random variable

Y =
S − α

β − α
(respectively Y =

S

β
if S ∈ (0, β) or Y =

S

α
if S ∈ (α, 0)) has support in

the interval [0, 1] . Accordingly, it is evident that we will motivate to approximate its

distribution by the beta distribution with parameters a, b > 0 (say Y
d
∼ β(a, b)) and

density function

(6.1) fY (y) =
Γ (a+ b)

Γ (a) Γ (b)
ya−1 (1− y)b−1 .

The idea of approximating distributions including complicated formulae with the beta

distribution is frequently tackled in the statistics literature, based on the interesting

work of Das Gupta (1968) (see also Sculli and Wong (1985), Fan (1991), Johannesson

and Giri (1995), Nadarajah and Kotz (2004) and Gupta and Nadarajah (2006)). Note

that recently, Ghorbel (2019) developed this single beta distribution of the form (6.1)

for the bivariate beta distribution. Subsequently, this transformation was opted for

owing to its popularity, simplicity and its association with the derived distribution.

The basic reason for doing this doesn’t lie in the fact that the calculation of Eq.

(2.1), Eq. (2.3) and Eq. (2.4) cannot be handled; it rather resides in providing a

simple approximation in terms of the beta distribution so that one can use the known

procedures for inference, prediction, etc. Furthermore, the presented approximation

seems to be useful especially to practitioners who not only avoid the use of the Gauss

hypergeometric function but also regard the beta distribution as widely accessible in

standard statistical packages.

The choice of the beta parameters a and b is made using the method of moments.

The first two moments of Y can be written as

E (Y ) =
a

a+ b
and E

(

Y 2
)

=
a (a + 1)

(a+ b) (a + b+ 1)
.
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After some algebraic manipulation, it is straightforward to find that

(6.2) a = E (Y )
E (Y )−E (Y 2)

E (Y 2)− E2 (Y )

and

(6.3) b = (1− E (Y ))
E (Y )−E (Y 2)

E (Y 2)− E2 (Y )
.

If α > 0, β > 0 (approximation 1), we have E (Y ) = (E (S)− α) / (β − α) and

E
(

Y 2
)

=
(

E
(

S2
)

− 2αE (S) + α2
)

/ (β − α)2 ,

and if α < 0, β > 0 (approximation 2), we have E (Y ) = E (S) /β and E (Y 2) =

E (S2) /β2 (respectively E (Y ) = E (S) /α and E (Y 2) = E (S2) /α2)) if S ∈ (0, β)

(respectively if S ∈ (α, 0)). The two moments E (S) and E (S2) can be computed us-

ing Eq. (3.2) and Eq. (3.3), respectively for given values of the parameters θ, α and β.

In order to show the robustness of the approximation, we selected fifteen values for

each case of the parameters θ, α and β and computed the corresponding estimates for

a and b using Eq. (6.2) and Eq. (6.3). From this, we use the selected parameters θ,

α and β and the estimates are presented in Tables 2, 3 and 4, respectively. Next, we

checked robustness by comparing the exact and the approximated density functions

of Y, as given by Eq. (2.1) (respectively Eq. (2.3) and Eq. (2.4)) and Eq. (6.1).

These comparisons are illustrated in Figures 4, 5 and 6.

We notice that our approximation is robust for most of the parameter choices.
Some examples are illustrated in Figure 4. Besides, we deduce that the robustness is

weak when both θ1 and θ2 are small (see for example Figure 4). Next, it is clear that
approximation is the most robust in terms of increasing the value of β (see Figure 5).

Finally, Figure 6 reveals that approximation is the most robust in terms of decreasing

the value of α. It is worth noting that the numerical results are obtained by the use
of hypergeom function in MATLAB.
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Table 2. Estimates of (a, b) for selected (θ1, θ2, β) and for α = 1 and

θ3 = 0.5

θ1 θ2 β a b

1

2

2

2

4

1

2

2

2

4

1

2

2

2

4

0.5

0.5

2

4

4

0.5

0.5

2

4

4

0.5

0.5

2

4

4

3

3

3

3

3

4

4

4

4

4

6

6

6

6

6

0.0132

0.0431

1.1947

2.9228

3.1138

0.1111

0.1429

1.4528

3.2857

3.4242

0.2364

0.2629

1.6712

3.5786

3.6655

0.0921

0.4741

1.8774

2.1434

3.9442

0.5556

1.1429

2.1132

2.2857

4.1685

0.9455

1.7086

2.2869

2.3857

4.3234

Table 3. Estimates of (a, b) for selected (θ1, θ2, β) and for α = −1

and θ3 = 0.5

θ1 θ2 β a b

0.5

0.5

0.5

2

4

0.5

0.5

0.5

2

4

0.5

0.5

0.5

2

4

0.5

2

4

4

4

0.5

2

4

4

4

0.5

2

4

4

4

3

3

3

3

3

4

4

4

4

4

6

6

6

6

6

0.0769

1.2525

2.9179

1.9728

1.1981

0.1518

1.4205

3.1683

2.3734

1.6866

0.2471

1.6019

3.4336

2.8387

2.2999

0.2692

0.7970

0.8881

1.8741

2.6208

0.4554

0.8523

0.9198

2.0343

3.0922

0.6424

0.9054

0.9497

2.1935

3.5649
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Figure 4. The exact density function of S (solid curve) and its approxi-

mated function (broken curve) for fixed values α = 1, θ3 = 0.5.

Table 4. Estimates of (a, b) for selected (θ1, θ2, α) and for β = 1 and

θ3 = 0.5

θ2 θ1 α a b

0.5

0.5

0.5

2

4

0.5

0.5

0.5

2

4

0.5

0.5

0.5

2

4

0.5

2

4

4

4

0.5

2

4

4

4

0.5

2

4

4

4

−5

−5

−5

−5

−5

−6

−6

−6

−6

−6

−8

−8

−8

−8

−8

0.2065

1.5278

3.3258

2.6442

2.0382

0.2471

1.6019

3.4336

2.8387

2.2999

0.3027

1.6974

3.5712

3.0985

2.6606

0.5677

0.8845

0.9380

2.1301

3.3758

0.6424

0.9054

0.9497

2.1935

3.5649

0.7350

0.9308

0.9637

2.2722

3.8008

7. Real data applications

We initially consider the data of rain and snow collect from five French cities and

present an application of the model given by Eq. (1.1).
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Figure 5. The exact density function of S (solid curve) and its approxi-

mated function (broken curve) for fixed values α = −1, θ3 = 0.5.

Figure 6. The exact density function of S (solid curve) and its approxi-

mated function (broken curve) for fixed values β = 1, θ3 = 0.5.

Precipitation is any type of water that forms in the Earth’s atmosphere and then

drops onto the surface of the Earth. Clouds eventually get too full of water vapor,

and the precipitation turns into a liquid (rain) or a solid (snow). The rain stands

for precipitation that occurs in different sizes, from big, heavy drops to light ones,
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Table 5. Estimated values of θ̂1, θ̂2, θ̂3 and of E (S)

City θ̂1 θ̂2 θ̂3 E (S)

Dijon 27.0001 2.9755 25.1356 0.5439

Lille 36.0639 2.7709 30.1578 0.5629

Rennes 26.7630 1.3470 24.2960 0.5364

Paris 46.9868 3.1354 40.8413 0.5510

Toulouse 51.1998 2.0747 66.8744 0.4434

but snow is one of the solid types of precipitation. It is made of water that has been

frozen.

We consider data available at the website https://en.tutiempo.net/climate col-

lected from the following five French cities (in different parts of the country) regarding

the rain and snow: Dijon, Lille, Rennes, Paris and Toulouse. The dataset comprises

the number of days in each year where rain and snow appeared during the period

from 1990 to 2018. We consider the following variables:

• S1 : proportion of days with rain.

• S2 : proportion of days with snow.

• S = S1 + S2 : proportion of days with precipitation (rain or snow).

The vector (S1, S2) would follow the Dirichlet distribution with parameters θ1, θ2

and θ3. These unknown parameters of Eq. (1.1) are estimated by using the maximum

likelihood method, and by implementing Fisher scoring method (for more details, see

Ronning (1989) and the algorithm used by Narayanan (1991, 1992)). The estimates

of parameters and the estimated values of the moments E (S) (given by Eq. (3.2))

for five cities are outlined in Table 5.

It was reported that the proportion of days with precipitation phenomenon (rain

or snow) was similar for the five cities. Toulouse city presented the lowest proportion.

The second application is from finance and we will use the distribution of the linear

combination in financial data fitting and show its computability of some financial

tools.
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If pt is the closing price of a stock at time t , then the simple rate of return

between times t and t−1 is defined as Rt := (pt−pt−1)/pt−1, which is the percentage

price difference. It is well-known that (see for example Danielsson(2011)) a financial

portfolio’s random rate of return is a linear combination of the random rate of returns

on the individual assets in the portfolio. For example, a portfolio composed of two

assets can be given as Rp = αR1 + βR2, where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are the

portfolio weights associated with the assets R1 and R2, respectively, and α + β = 1.

Note that the choice of weighted index α is 0.001 and β is 0.999 to respect Eq. (2.1)

where α < s < β. From this, the variance of the rate of return on the two-asset

portfolio is

(7.1) S2 := σ2
p = α2S2

1 + β2S2
2 + 2αβρ12S1S2,

where Si; i = 1, 2 represent standard deviations of R1 and R2 respectively and ρ12 is

the correlation coefficient between the returns on asset R1 and asset R2. Portfolio

variance is a statistical value that assesses the degree of dispersion of the returns of a

portfolio. It is an important concept in modern investment theory. The calculation

of portfolio variance considers not only the riskiness of individual assets but also

the correlation between each pair of assets in the portfolio. Thus, the statistical

variance analyzes how assets within a portfolio tend to move together. Furthermore,

we can calculate the standard deviation of the portfolio using portfolio variance. This

represents a measure of volatility: the more a stock’s returns vary from the stock’s

average return, the more volatile the stock. This volatility is often used by investors

to measure the risk of a stock or a stock portfolio and it has a large negative impact on

investment performance and is one of the major reasons investors’ long term returns

fall far short of expectations. The exploration of return volatility is a significant

subject for investors and decision makers, because it is a matter of great account in

evaluating risks, modeling market dynamics and enabling portfolios to be optimized.

Many authors have analyzed return and volatility of portfolios and have evaluated

relationship between return and risk (see for example Robert T. and Rossi (2006),

Iyiola et al. (2012) and recently Aliu et al. (2017)).
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In this financial application, we will use two monthly closing adjusted prices of stock

returns of two French car manufacturers: Peugeot and Renault from 01/01/2010 to

01/01/2017. We may assume that the closing prices of the two stocks are dependent

since they are in same French car industries. The data set can be downloaded from

the website https://finance.yahoo.com, among othors. By using MSExcel, we can

calculate the empirical correlation coefficients between the returns on the two assets

and we remark that the majority of correlation coefficients are between 0.9 and 1.0

which indicate that returns can be considered very highly correlated. Then, we

can assume that ρ12 = 1, which would mean that returns are perfectly positively

correlated, the righthand side of Eq. (7.1) is a perfect square and simplifies to

S2 = α2S2
1 + β2S2

2 + 2αβS1S2

= (αS1 + βS2)
2 ,

or S = αS1 + βS2. A correlation coefficient of 1 means that there is a perfect pos-

itive linear association between the two variables. This means that if one metric

increases, the other metric increases too. The vice versa is true: the decrease of one

metric signifies the decrease for another one too. Therefore, the portfolio standard

deviation is a weighted average of the component security standard deviations. In

this circumstance, there are no gains to diversification; it is a technique of allocating

portfolio resources or capital to a mix of different investments. The ultimate goal of

diversification is to reduce the volatility of the portfolio by offsetting losses in one

asset class with gains in another asset class (For more details see for example chapter

4 of Szylar (2013)).

Moreover, the histogram of volatility of returns of Peugeot, S1 and Renault, S2 is

sketched in Figure 7. Next, by using the maximum likelihood method, and the Fisher

scoring method mentioned in the first application, we are able to give the estimates

of the unknown parameters of Eq. (1.1). We obtain θ̂1 = 2.3431, θ̂2 = 2.0841 and

θ̂3 = 17.1626. The data for S are given for convenience as:
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0.14842 0.11493 0.14469 0.11354 0.09352 0.14906 0.13447 0.06413

0.04031 0.03462 0.08517 0.08827 0.09176 0.10045 0.06482 0.07953

0.10036 0.09667 0.17629 0.22420 0.15378 0.12761 0.12472 0.11291

0.12931 0.08663 0.06058 0.08519 0.09509 0.05364 0.03618 0.08679

0.08927 0.03288 0.01694 0.04461 0.05523 0.04844 0.12908 0.17636

0.17034 0.14496 0.08796 0.04159 0.07175 0.12149 0.10649 0.06915

0.06965 0.01018 0.00536 0.01821 0.01892 0.00652 0.03526 0.04510

0.08070 0.12121 0.11494 0.14993 0.14834 0.08084 0.05282 0.05606

0.05634 0.01206 0.23799 0.26312 0.13377 0.09658 0.13540 0.12099

0.04196 0.04046 0.08433 0.17450 0.18524 0.10762 0.05179 0.08238

0.12136 0.09849

Figure 7. Histogram of volatility of returns of two stocks

Further, we also fitted the distribution of S to this data set. For computational

convenience, as the data fits above also suggest, we assume θ1 = θ2 fitting. We then

use again hypergeom function in Matlab to find the maximum likelihood estimates

of the parameters of the exact distribution of S (involving the Gauss hypergeometric

function), given by Eq. (2.1). The maximum likelihood estimates are θ̂1 = θ̂2 =

2.2978 and θ̂3 = 19.7721. The histogram of the volatility of returns and the fit of
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the distribution of S is sketched in Figure 8 showing a good fit. In order to verify

the goodness of fitting, we have performed a Kolmogorov–Smirnov (KS) test. The

probability value (p-value) is 0.2883 at the default 5% significance level.

Figure 8. Histogram of volatility of returns and superimposed fitted density

8. Conclusions

In this note, we derived the distribution of the linear combination of two random

variables distributed according the Dirichlet distribution. We have derived various

properties, including the expressions of the probability density, the ordinary mo-

ments, percentiles and entropies. Since the formulas involve the Gauss hypergeomet-

ric function, we have proposed an approximation for the distribution of the linear

combination based on the standard beta distribution. Finally, two applications of

the considered linear combination are used to assess the model and to show its im-

portance. In each application, we analyze two real data sets and the distribution of

the linear combination provides an adequate fit to data sets.
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