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ON A q-ANALOGUE OF THE RIGHT LOCAL GENERAL

TRUNCATED M-FRACTIONAL DERIVATIVE

RAJENDRAKUMAR B. CHAUHAN(1) AND MEERA H. CHUDASAMA(1,2)

Abstract. We introduce a q-analogue of the right local general truncated M -

fractional derivative for α-differentiable functions. From this newly defined opera-

tor, q-analogues of the standard properties and results of the α-right local general

truncated M -fractional derivative like the Rolle’s theorem, the mean value theo-

rem and its extension, inverse property, the fundamental theorem of calculus and

the theorem of integration by parts are obtained. In context with this q-fractional

derivative operator, a q-analogue of a physical problem, the falling body problem,

is obtained. Also, the q-vertical velocity and the q-distance are obtained from this

problem and the solutions has been compared and shown in the graphs for vari-

ous combination of q-parameter and fractional order α with the classical ordinary

solution.

1. Introduction

Let 0 < q < 1. A q-analogue of the factorial function

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1)

is defined by [9, Eq.(1.2.15) and (1.2.30), p. 3, 6]

(1.1) (a; q)n =



























1, if n = 0

(1− a)(1− aq) · · · (1− aqn−1), if n ∈ Z>0

[(1− aq−1)(1− aq−2) · · · (1− aq−n)]
−1
, if n ∈ Z<0

(a;q)∞
(aqn;q)∞

, if n ∈ C,
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where a ∈ C in general, and (a; q)∞ :=
∞
∏

k=0

(1− aqk).

For a ≡ qa = q,

(q; q)n = (1− q)(1− q2) · · · (1− qn)

is a q-analogue of n!.

In the theory of q-calculus [14], a q-number (or basic number) is given by

(1.2) [a]q =
1− qa

1− q
, q 6= 1.

The q-Gamma function [9, Eq.(1.10.1), p. 20] is defined by

(1.3) Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x.

In a view of the q-calculus, the q-derivative [1, 5, 12, 13] and the general q-integral

[9, 11] of a function are defined as follows :

Definition 1.1. For an arbitrary function f(t) and 0 < q < 1, the q-derivative of

f(t) is given by

(1.4) Dqf(t) =
f(t)− f(tq)

t(1− q)
.

Note that, if we take q → 1 in (1.4) then Dqf(t) = f ′(t).

Definition 1.2. The general q-integral of f(t) is defined as

(1.5)

b
∫

a

f(t) dqt =

b
∫

0

f(t) dqt−

a
∫

0

f(t) dqt,

where

(1.6)

a
∫

0

f(t) dqt = a(1− q)
∞
∑

n=0

f(aqn)qn.

Note that, if f is continuous on [0, a], then it is easily seen that

lim
q→1

a
∫

0

f(t) dqt =

a
∫

0

f(t) dt.

With the aid of the q-derivative, in [15, 16], the qπ1
-derivative and qπ2-derivative are

defined as follows:
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Definition 1.3. The qπ1
-derivative of a mapping f : [π1, π2] → R is defined as

(1.7) π1
Dqf(x) =

f(x)− f(qx+ (1− q)π1)

(1− q)(x− π1)
, x 6= π1.

Observe that at x = π1, π1
Dqf(π1) = lim

x→π1

π1
Dqf(x) if it exists and is finite.

Definition 1.4. The qπ2-derivative of a mapping f : [π1, π2] → R is defined as

(1.8) π2Dqf(x) =
f(qx+ (1− q)π2)− f(x)

(1− q)(π2 − x)
, x 6= π2.

Observe that at x = π2,
π2Dqf(π2) = lim

x→π2

π2Dqf(x) if it exists and is finite.

2. Main Results

In this section, we first introduce a q-analogue of the α-RLGTM-fractional derivative

[6]. In view of the qπ1
-derivative [16], we begin with the following definition.

Definition 2.1. Let f : [π1, b] → R and t < b, b ∈ R. For 0 < α ≤ 1, we define a

q-α-right local general truncated M-fractional derivative of order α of f (q-α-RLGT

M-fractional derivative) as

(2.1) π1
D

α,β
q,M,bf(t) :=

1

Γq(β + 1)

(f((b− t)α)− f(q(b− t)α) + (1− q)π1)

(1− q)((b− t)α − π1)
.

Now onwards, for the sake of simplicity, we will denote (b− t)α = tα,b.

Remark 1. From Definition 2.1, if f(t) = c, where c is any constant, then

π1
D

α,β
q,M,bf(t) = 0.

Remark 2. For π1 = 0, α = 1, b = 0, β = 0 or 1; replacing t by −t and then letting

q → 1, (2.1) reduces to lim
q→1

0D
1,0
q,M,0f(−t) = f ′(t).

Now, we will derive a q-analogue of various properties as given in [6] for q-α-RLGT

M-fractional derivative.

Theorem 2.1. Let f1, f2 : [π1, b] → R be q-α-RLGT M-fractional differentiable at

t, t < b, µ1, µ2 ∈ R and β > 0. Then

(1) π1
D

α,β
q,M,b(µ1f1 + µ2f2)(t) = µ1 π1

D
α,β
q,M,bf1(t) + µ2 π1

D
α,β
q,M,bf2(t).

(2) π1
D

α,β
q,M,b(f1 ·f2)(t) = f1(tα,b) π1

D
α,β
q,M,bf2(t)+f2(qtα,b(1−q)+π1) π1

D
α,β
q,M,bf1(t).
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(3) π1
D

α,β
q,M,b

(

f1
f2

)

(t)

=
f2(qtα,b + (1− q)π1) π1

D
α,β
q,M,bf1(t)− f1(qtα,b + (1− q)π1) π1

D
α,β
q,M,bf2(t)

f2(tα,b) f2(qtα,b + (1− q)π1)
.

(4) π1
D

α,β
q,M,b(k) = 0, where k is a constant.

(5) If f1(t) is q-differentiable [10, 12] at f2(t), then

π1
D

α,β
q,M,b(f1of2)(t) = Dq(f1(f2(tα,b)) π1

D
α,β
q,M,bf2(t).

Proof. (1) From the Definition 2.1, we have

π1
D

α,β
q,M,b(µ1f1 + µ2f2)(t)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)
((µ1f1 + µ2f2)(tα,b)− (µ1f1 + µ2f2)(qtα,b + (1− q)π1))

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)
(µ1f1(tα,b) + µ2f2(tα,b)− µ1f1(qtα,b + (1− q)π1)

−µ2f2(qtα,b + (1− q)π1))

=

(

1

Γq(β + 1)

(µ1f1(tα,b)− µ1f1(qtα,b + (1− q)π1))

(1− q)(tα,b − π1)

)

+

(

1

Γq(β + 1)

(µ2f2(tα,b)− µ2f2(qtα,b + (1− q)π1))

(1− q)(tα,b − π1)

)

= µ1 π1
D

α,β
q,M,bf1(t) + µ2 π1

D
α,β
q,M,bf2(t).

(2) From the Definition 2.1, we have

π1
D

α,β
q,M,b(f1 · f2)(t)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)
((f1 · f2)(tα,b)− (f1 · f2)(qtα,b + (1− q)π1))

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)
(f1(tα,b)f2(tα,b)− f1(qtα,b + (1− q)π1)f2(qtα,b + (1− q)π1)

+f1(tα,b)f2(qtα,b + (1− q)π1)− f1(tα,b)f2(qtα,b + (1− q)π1))

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)
(f1(tα,b) (f2(tα,b)− f2(qtα,b + (1− q)π1))

+f2(qtα,b + (1− q)π1) (f1(tα,b)− f1(qtα,b + (1− q)π1)))

= f1(tα,b) π1
D

α,β
q,M,bf2(t) + f2(qtα,b + (1− q)π1) π1

D
α,β
q,M,bf1(t).
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(3) Again with the aid of Definition 2.1, we have

π1
D

α,β
q,M,b

(

f1
f2

)

(t)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)

((

f1
f2

)

(tα,b)−

(

f1
f2

)

(qtα,b + (1− q)π1)

)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)

(

f1(tα,b)

f2(tα,b)
−

f1(qtα,b + (1− q)π1)

f2(qtα,b + (1− q)π1)

)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)

×

(

f1(tα,b)f2(qtα,b + (1− q)π1)− f2(tα,b)f1(qtα,b + (1− q)π1)

f2(tα,b)f2(qtα,b + (1− q)π1)

)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)

×

(

f1(tα,b)f2(qtα,b + (1− q)π1)− f1(qtα,b + (1− q)π1)f2(qtα,b + (1− q)π1)

f2(tα,b)f2(qtα,b + (1− q)π1

+
f1(qtα,b + (1− q)π1)f2(qtα,b + (1− q)π1)− f2(tα,b)f1(tα,bq)

f2(tα,b)f2(qtα,b + (1− q)π1

)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)

×

(

f2(qtα,b + (1− q)π1)(f1(tα,b)− f1(qtα,b + (1− q)π1))

f2(tα,b)f2(qtα,b + (1− q)π1

−
f1(qtα,b + (1− q)π1)(f2(tα,b)− f2(qtα,b + (1− q)π1))

f2(tα,b)f2(qtα,b + (1− q)π1

)

=
f2(qtα,b + (1− q)π1)

f2(tα,b)f2(qtα,b + (1− q)π1)

(

1

Γq(β + 1)

(f1(tα,b)− f1(qtα,b + (1− q)π1))

(1− q)(tα,b − π1)

)

−
f1(qtα,b + (1− q)π1)

f2(tα,b)f2(qtα,b + (1− q)π1)

(

1

Γq(β + 1)

(f2(tα,b)− f2(qtα,b + (1− q)π1))

(1− q)(tα,b − π1)

)

=
f2(qtα,b + (1− q)π1) π1

D
α,β
q,M,bf1(t)− f1(qtα,b + (1− q)π1) π1

D
α,β
q,M,bf2(t)

f2(tα,b)f2(qtα,b + (1− q)π1)
.

(4) In this case, the proof is directly follows from Remark 1.

(5) This result is proved in two cases: (I) f2 is constant and (II) f2 is non constant.

Case-I: Let f2(t) = c, where c is any constant.

Then from Remark 1, we have

π1
D

α,β
q,M,b (f1of2)(t) = π1

D
α,β
q,M,b f1(f2(t)) = π1

D
α,β
q,M,b f1(c) = 0.
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Case-II: Let f2 be not a constant.

Then by Definition 2.1, we have

π1
D

α,β
q,M,b(f1of2)(t)

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)
((f1of2)(tα,b)− (f1of2)(qtα,b + (1− q)π1))

=
1

Γq(β + 1)

1

(1− q)(tα,b − π1)

×
f1(f2(tα,b))− f1(f2(qtα,b + (1− q)π1))

f2(tα,b)− f2(qtα,b + (1− q)π1)
(f2(tα,b)− f2(qtα,b + (1− q)π1))

=
f1(f2(tα,b))− f1(f2(qtα,b + (1− q)π1))

f2(tα,b)− f2(qtα,b + (1− q)π1)

×

(

1

Γq(β + 1)

1

(1− q)(tα,b − π1)
(f2(tα,b)− f2(qtα,b + (1− q)π1))

)

= Dq(f1(f2(tα,b))) π1
D

α,β
q,M,bf2(t).

�

In the next theorem, a relation between q-α-RLGT M-fractional derivative and q-

difference operator is obtained.

Theorem 2.2. If f : [0, b] → R has the q-α-RLGT M-fractional derivative at t, t < b

with β > 0 and π1 = 0, then

(2.2) 0D
α,β
q,M,bf(t) =

1

Γq(β + 1)
Dqf(tα,b).

Proof. For t < b and π1 = 0, from Definition 2.1, we have

0D
α,β
q,M,bf(t)

=
1

Γq(β + 1)

(f(tα,b)− f(qtα,b))

(1− q)tα,b

=
1

Γq(β + 1)
Dqf(tα,b).

�

Now, as a consequence of Theorem 2.2, we have the following q-α-RLGTM-fractional

derivatives of various q-analogues of some well-known functions.

Theorem 2.3. Let µ ∈ R, β > 0, α ∈ (0, 1] and t < b. Then

(1) 0D
α,β
q,M,b(1) = 0;
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(2) 0D
α,β
q,M,b(t

µ) =
[µ]q

Γq(β + 1)
tµ−1
α,b ;

(3) 0D
α,β
q,M,b(eq(µt)) =

µ

Γq(β + 1)
eq(µtα,b);

(4) 0D
α,β
q,M,b(Eq(µt)) =

µ

Γq(β+1)
Eq(µqtα,b);

(5) 0D
α,β
q,M,b(sinq(µt)) =

µ

Γq(β + 1)
cosq(µtα,b);

(6) 0D
α,β
q,M,b(cosq(µt)) = −

µ

Γq(β + 1)
sinq(µtα,b);

(7) 0D
α,β
q,M,b(Sinq(µt)) =

µ

Γq(β + 1)
Cosq(µqtα,b);

(8) 0D
α,β
q,M,b(Cosq(µt)) = −

µ

Γq(β + 1)
Sinq(µqtα,b).

Proof.

(1) The proof is directly follows from Remark 1.

(2) From Theorem 2.2 and q-derivative of tµα,b [12, p. 7], we have

0D
α,β
q,M,b(t

µ) =
1

Γq(β + 1)
Dq(t

µ
α,b)

=
[µ]q

Γq(β + 1)
tµ−1
α,b .

(3) Using Theorem 2.2 and q-derivative of eq(µtα,b) [12, Eq.(9.11), p. 31], we have

0D
α,β
q,M,b(eq(µt)) =

1

Γq(β + 1)
Dq(eq(µtα,b))

=
µ

Γq(β + 1)
eq(µtα,b).

(4) Using Theorem 2.2 and q-derivative of Eq(µtα,b) [12, Eq.(9.11), p. 31], we get

0D
α,β
q,M,b(Eq(µt)) =

1

Γq(β + 1)
Dq(Eq(µtα,b))

=
µ

Γq(β + 1)
Eq(µqtα,b).

(5) Using Theorem 2.2 and q-derivative of sinq(µtα,b) [12, Eq.(10.4), p. 34], we

have

0D
α,β
q,M,b(sinq(µt)) =

1

Γq(β + 1)
Dq(sinq(µtα,b))

=
µ

Γq(β + 1)
cosq(µtα,b).
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(6) Using Theorem 2.2 and q-derivative of cosq(µtα,b) [12, Eq.(10.5), p. 34], we

obtain

0D
α,β
q,M,b(cosq(µt)) =

1

Γq(β + 1)
Dq(cosq(µtα,b))

= −
µ

Γq(β + 1)
sinq(µtα,b).

(7) Using Theorem 2.2 and q-derivative of Sinq(µtα,b) [12, Eq.(10.4), p. 34], we

arrive at

0D
α,β
q,M,b(Sinq(µt)) =

1

Γq(β + 1)
Dq(Sinq(µtα,b))

=
µ

Γq(β + 1)
Cosq(µqtα,b).

(8) Using Theorem 2.2 and q-derivative of Cosq(µtα,b) [12, Eq.(10.5), p. 34], we

have

0D
α,β
q,M,b(Cosq(µt)) =

1

Γq(β + 1)
Dq(Cosq(µtα,b))

= −
µ

Γq(β + 1)
Sinq(µqtα,b).

�

2.1. Generalization of fundamental results of calculus through q-α-RLGT

M-fractional derivative. Further, we have observed that a q-α-RLGTM-fractional

derivative also has various important theorems similar to the α-RLGT M-fractional

derivative [6]. We have derived the q-analogues of Rolle’s theorem, the mean value

theorem and its extension using this newly defined q-analogue of a fractional deriva-

tive operator in the next three theorems.

Theorem 2.4. Let f : [γ, ρ] → R, where ρ < b. If

(1) f is continuous on [γ, ρ],

(2) f is q-α-RLGT M-fractional differentiable on (γ, ρ),

(3) f(γ) = f(ρ),

then there exists c ∈ (γ, ρ) such that 0D
α,β
q,M,bf(c) = 0, β > 0.

Proof. We will prove this theorem in three cases:

Case-I: When f(x) = k on [γ, ρ], where k is any constant.
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Then from Remark 1, 0D
α,β
q,M,bf(x) = 0 for all x ∈ [γ, ρ].

That is, in other words, we can say that there exists c ∈ (γ, ρ) such that

0D
α,β
q,M,bf(c) = 0.

Case-II: Let f be non-constant. In this case, suppose that there is some d ∈ (γ, ρ)

such that f(d) > f(γ).

Since f is continuous on [γ, ρ], by a q-analogue of the extreme value theorem [13,

Thm. 2.1, p. 172], f(x) has local maximum in [γ, ρ].

Also, as f(γ) = f(ρ) and f(d) > f(γ), we have the maximum value of f at some c in

(γ, ρ).

Here, c occurs in the interior of the interval means that f(x) has relative maximum

at x = c and by the second hypothesis, 0D
α,β
q,M,bf(x) exists.

Therefore, 0D
α,β
q,M,bf(c) = 0.

Case-III: Let f be non-constant, but in this case, suppose that there is some d ∈

(γ, ρ) such that f(d) < f(γ).

Now, in the similar manner of Case-II, by a q-analogue of the extreme value theorem

[13, Thm. 2.1, p. 172], f(x) has local minimum in [γ, ρ].

Also, as f(γ) = f(ρ) and f(d) < f(γ), we have the minimum value of f at some c in

(γ, ρ).

Hence, 0D
α,β
q,M,bf(c) = 0. �

Theorem 2.5. Let f : [γ, ρ] → R, where ρ < b, 0 /∈ [γ, ρ]. If

(1) f is continuous on [γ, ρ],

(2) f is q-α-RLGT M-fractional differentiable on (γ, ρ),

then there exists c ∈ (γ, ρ) such that

(2.3)
f(ρ)− f(γ)

ρ− γ
= Γq(β + 1) 0D

α,β
q,M,bf(c).

Proof. For x ∈ [γ, ρ], let

(2.4) g(x) := f(x)− f(γ)−

(

f(ρ)− f(γ)

ρ− γ

)

(x− γ).

Since f is continuous on [ρ, γ], g is continuous on [ρ, γ] too.

Also, it can be easily verified that g(γ) = 0 = g(ρ).
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Therefore, from Theorem 2.1, we can say that g is q-α-RLGT M-fractional differen-

tiable on (γ, ρ).

Now, from Theorem 2.4, there exists c ∈ (γ, ρ) such that

(2.5) 0D
α,β
q,M,bg(c) = 0.

Taking 0D
α,β
q,M,b on both the sides of (2.4), we get

0D
α,β
q,M,bg(x) = 0D

α,β
q,M,bf(x)− 0D

α,β
q,M,bf(γ)−

(

f(ρ)− f(γ)

ρ− γ

)

0D
α,β
q,M,b(x− γ).

Applying Theorem 2.2 and then Theorem 2.3, we obtain

0D
α,β
q,M,bg(x)

= 0D
α,β
q,M,bf(x)− 0D

α,β
q,M,bf(γ)−

(

f(ρ)− f(γ)

ρ− γ

)

1

Γq(β + 1)
Dq(xα,b − γ)

= 0D
α,β
q,M,bf(x)− 0−

(

f(ρ)− f(γ)

ρ− γ

)

1

Γq(β + 1)
.

Whence at x = c,

0D
α,β
q,M,bg(c) = 0D

α,β
q,M,bf(c)−

(

f(ρ)− f(γ)

ρ− γ

)

1

Γq(β + 1)
.

Then using (2.5), we get

0D
α,β
q,M,bf(c)−

(

f(ρ)− f(γ)

ρ− γ

)

1

Γq(β + 1)
= 0.

Therefore,

0D
α,β
q,M,bf(c) =

(

f(ρ)− f(γ)

ρ− γ

)

1

Γq(β + 1)
.

Hence,
f(ρ)− f(γ)

ρ− γ
= Γq(β + 1) 0D

α,β
q,M,bf(c).

�

Theorem 2.6. Let ρ < b, 0 /∈ [γ, ρ] and f1, f2 : [γ, ρ] → R. If

(1) f1, f2 are continuous on [γ, ρ] and f2(γ) 6= f2(ρ),

(2) f1, f2 is q-α-RLGT M-fractional differentiable on (γ, ρ),

then there exists c ∈ (γ, ρ) such that

0D
α,β
q,M,bf1(c)

0D
α,β
q,M,bf2(c)

=
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)
with β > 0.
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Proof. For x ∈ [γ, ρ], define

(2.6) G(x) := f1(x)− f2(γ)−

(

f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)

(f2(x)− f2(γ)).

Since f1, f2 are continuous on [ρ, γ], G is continuous on [ρ, γ] too.

Also, it can be easily seen that G(γ) = 0 = G(ρ).

Therefore, from Theorem 2.1, we can say that G is a q-α-RLGT M-fractional differ-

entiable function on (γ, ρ).

Now, from Theorem 2.4, there exists c ∈ (γ, ρ) such that

(2.7) 0D
α,β
q,M,bG(c) = 0.

Taking 0D
α,β
q,M,b on both the sides of (2.6), we get

0D
α,β
q,M,bG(x)

= 0D
α,β
q,M,bf1(x)− 0D

α,β
q,M,bf2(γ)−

(

0D
α,β
q,M,b (f2(x)− f2(γ))

)

(

f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)

.

Writing the above expression at x = c and then again applying Theorem 2.2 and

Remark 1, we have

0D
α,β
q,M,bG(c) = 0D

α,β
q,M,bf1(c)− 0−

(

f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)

0D
α,β
q,M,bf2(c)− 0,

which implies from (2.7),

0D
α,β
q,M,bf1(c)−

(

f1(ρ)− f1(γ)

f2(ρ)− f2(γ)

)

0D
α,β
q,M,bf2(c) = 0.

Therefore,

0D
α,β
q,M,bf1(c)

0D
α,β
q,M,bf2(c)

=
f1(ρ)− f1(γ)

f2(ρ)− f2(γ)
.

�

Next, we will show some results pertaining to the corresponding q-integral. For that,

we have defined a corresponding q-analogue of the right M-integral as follows.

Definition 2.2. Let f be a function defined in [t, b) and α ∈ (0, 1]. Then a q-right

M-integral of order α of f is denoted and defined as

(2.8) I
β
q,M,bf(t) = −Γq(β + 1)

b
∫

t

f(x) dqx = −Γq(β + 1) Iq,bf(t),
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with β > 0, where

Iq,bf(t) =

b
∫

t

f(x) dqx =

b
∫

0

f(x) dqx−

t
∫

0

f(x) dqx,

and here
b
∫

0

f(x) dqx = b(1− q)
∞
∑

n=0

f(bqn) qn.

In context with the above definition, we have obtained a q-analogue of the inverse

property, fundamental theorem of calculus and the theorem of integration by parts

in the upcoming theorems.

Theorem 2.7. Let b ∈ R, α ∈ (0, 1] and f be a continuous function such that there

exists I
β
q,M,bf . Then

(2.9) 0D
α,β
q,M,b

(

I
β
q,M,bf(t)

)

= f(tα,b),

with 0 6= t < b and β > 0.

Proof. From Theorem 2.2, we have

0D
α,β
q,M,b

(

I
β
q,M,bf(t)

)

=
1

Γq(β + 1)
Dq

(

I
β
q,M,bf(tα,b)

)

=
1

Γq(β + 1)
Dq



−Γq(β + 1)

b
∫

t

f(x) dqx





= −Dq





b
∫

0

f(x) dqx−

t
∫

0

f(x) dqx





= −



Dq





b
∫

0

f(x) dqx



−Dq





t
∫

0

f(x) dqx









= − [0− f(tα,b)]

= f(tα,b),

as (DqIq,bf)(t) = f(t) from [14, Eq. (11), p. 313]. �



ON A q-ANALOGUE OF THE RIGHT LOCAL. . . 13

Theorem 2.8. Let f : [0, b] → R be a continuously differentiable function such that

0D
α,β
q,M,bf exists and α ∈ (0, 1]. Then for all t < b,

(2.10) I
β
q,M,b

(

0D
α,β
q,M,bf(t)

)

= f(tα,b)− f(b),

with β > 0.

Proof. From Definition 2.2 and then applying Theorem 2.2, we have

I
β
q,M,b

(

0D
α,β
q,M,bf(t)

)

= −Γq(β + 1)

b
∫

t

0D
α,β
q,M,bf(x) dqx

= −Γq(β + 1)

b
∫

t

1

Γq(β + 1)
Dqf(xα,b) dqx

=

t
∫

b

Dqf(xα,b) dqx

= Iq,b Dqf(tα,b)

= f(tα,b)− f(b),

by [14, Eq. (11), p. 313]. �

It can be easily observed that, if f(b) = 0, then by (2.10) for all t < b,

I
β
q,M,b

(

0D
α,β
q,M,bf(t)

)

= f(tα,b).

Now, for the sake of brevity, we denote

I
β
q,M,bf(t) = −

b
∫

t

f(x) dq,β x, where dq,β x = Γq(β + 1) dqx.

In this notation, we derive a q-analogue of the generalization of the integration by

parts in the following theorem for a q-right M-integral.



14 RAJENDRAKUMAR B. CHAUHAN AND MEERA H. CHUDASAMA

Theorem 2.9. Let f1, f2 : [c, d] → R be continuously differentiable and α ∈ (0, 1].

Then

d
∫

c

f1(xα,b) 0D
α,β
q,M,b (f2(x)) dq,β x

= [f1(xα,b)f2(xα,b)]
d
c −

d
∫

c

f2(qxα,b) 0D
α,β
q,M,b (f1(x)) dq,β x, β > 0.

Proof. In the stated notations,

d
∫

c

f1(xα,b) 0D
α,β
q,M,b (f2(x)) dq,β x

=

d
∫

c

f1(xα,b) 0D
α,β
q,M,b (f2(x)) Γq(β + 1) dqx

=

d
∫

c

f1(xα,b)

(

1

Γq(β + 1)
Dq (f2(xα,b))

)

Γq(β + 1) dqx,

by Theorem 2.2.

Now, applying the formula for q-integration by parts [14, p. 313], we get

d
∫

c

f1(x) 0D
α,β
q,M,b (f2(x)) dq,β x

=

d
∫

c

f1(xα,b) Dq (f2(xα,b)) dqx

= [f1(xα,b)f2(xα,b)]
d
c −

d
∫

c

f2(qxα,b)Dq(f1(xα,b)) dqx

= [f1(xα,b)f2(xα,b)]
d
c −

d
∫

c

f2(qxα,b) Dq(f1(xα,b))

(

1

Γq(β + 1)

)

dq,β x

= [f1(xα,b)f2(xα,b)]
d
c −

d
∫

c

f2(qxα,b) 0D
α,β
q,M,b (f1(x)) dq,β x,

by again using Theorem 2.2. �
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3. Application

In this section, we have derived a q-analogue of the falling body problem [2] using

the q-α-RLGT M-fractional derivative.

Consider the falling of an object of mass m on the earth gravitational field through

the air from a height h with initial velocity v0. The classical equation of motion for

the particle is given by [7, 8]

(3.1) m
dv

dt
= −mg −mkv,

where k is a positive constant and g is the gravitational force. The initial conditions

are given as

v(0) = v0, z(0) = h,

where z(t) is the vertical distance of the particle at aritrary time t and
dz(t)

dt
= v(t).

It can be easily observe that the solution of (3.1) for the velocity and distance are

obtained as

(3.2) v =
mg

k
−

A

k
e−

kt
m , where A 6= 0

and

(3.3) z =
A

m
e−

kt
m

respectively.

A q-analogue of (3.1) using the q-α-RLGT M-fractional derivative is

(3.4) 0D
α,β
q,M,bvq = −g − kvq, q ∈ (0, 1),

with vq(0) = 0, zq(0) = h.

Using Theorem 2.2, the above equation becomes

(3.5)
1

Γq(β + 1)
Dqvq(tα,b) = −g − kvq.

In order to solve (3.5), we assume the solution in the series form

(3.6) vq(tα,b) =

∞
∑

n=0

an,q t
n
α,b.



16 RAJENDRAKUMAR B. CHAUHAN AND MEERA H. CHUDASAMA

Therefore,

1

Γq(β + 1)
Dq

(

∞
∑

n=0

an,q t
n
α,b

)

=
1

Γq(β + 1)

∞
∑

n=0

[n]q an,q t
n−1
α,b

=
1

Γq(β + 1)

∞
∑

n=1

[n]q an,q t
n−1
α,b , where [0]q = 0,

=
1

Γq(β + 1)

∞
∑

n=0

[n + 1]q an+1,q t
n
α,b.

Now, from (3.5), we have

1

Γq(β + 1)

∞
∑

n=0

[n+ 1]q an+1,q t
n
α,b = −g − k

∞
∑

n=0

an,q tnα,b,

which gives

a1, q =
−g − ka0,q

[1]q
Γq(β + 1),

an+1, q =
−kan,q
[n + 1]q

Γq(β + 1), n ≥ 1.(3.7)

From this comparison, the n-term coefficient can be expressed as

(3.8) an,q =
(−1)nkn−1g + (−k)na0,q

[n]q!
Γn
q (β + 1), n ≥ 1.

Therefore, the instantaneous q-α-RLGT velocity is obtained as

vq(tα,b) = a0,q +
∞
∑

n=1

an,qt
n
α,b

= a0,q +

∞
∑

n=1

(

(−1)nkn−1g + (−k)na0,q
[n]q!

Γn
q (β + 1)

)

tnα,b

= a0,q +
∞
∑

n=1

( g

k
(−ktα,b)

n + (−ktα,b)
na0,q

[n]q!
Γn
q (β + 1)

)

= a0,q +
(g

k
+ a0,q

)

∞
∑

n=1

(−ktα,b)
n

[n]q!
Γn
q (β + 1).
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For vq(0) = 0, we have

vq(tα,b) =
g

k

(

∞
∑

n=1

(−ktα,b)
n

[n]q!
Γn
q (β + 1)

)

=
g

k

(

∞
∑

n=1

(−k)n(tα,b)
n

[n]q!
Γn
q (β + 1)

)

=
g

k

(

∞
∑

n=1

(−k)n(b− t)αn

[n]q!
Γn
q (β + 1)

)

=
g

k

(

∞
∑

n=0

(−k)n+1(b− t)α(n+1)

[n + 1]q!
Γn+1
q (β + 1)

)

= −
g

k
Γq(β + 1)(b− t)α +

g

k

∞
∑

n=1

(−k)nΓn
q (β + 1)

[n]q!
(b− t)αn.(3.9)

The vertical distance zq(tα,b) in quantum calculus is governed by

(3.10) Dqzq(tα,b) = −
g

k
Γq(β + 1)(b− t)α +

g

k

∞
∑

n=1

(−k)nΓn
q (β + 1)

[n]q!
(b− t)αn.

Taking q-right M-integral on both the sides of (3.10), we get

I
β
q,M,b (Dqzq(tα,b))

= I
β
q,M,b

(

−
g

k
Γq(β + 1)(b− t)α +

g

k

∞
∑

n=1

(−k)nΓn
q (β + 1)

[n]q!
(b− t)αn

)

.

Using Theorem 2.8 and Definition 2.2, we obtain

zq(tα,b)− zq(b)

= −
g

k
Γq(β + 1)



Γq(β + 1)

t
∫

b

(b− x)−α dqx





+
g

k



Γq(β + 1)

t
∫

b

∞
∑

n=1

(−k)n Γn
q (β + 1)

[n]q!
(b− x)αn dqx





= −
g

k
Γ2
q(β + 1)

[

−
(b− x)α+1

[α+ 1]q

]t

b

+
g

k

∞
∑

n=1

(−k)n Γn+1
q (β + 1)

[n]q!

[

−
(b− x)αn+1

[αn+ 1]q

]t

b

=
g

k
Γ2
q(β + 1)

(b− t)α+1

[α + 1]q
−

g

k

∞
∑

n=1

(−k)n Γn+1
q (β + 1)

[n]q!

(b− t)αn+1

[αn+ 1]q
.
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With zq(b) = h, we have

zq(tα,b) = h+
g

k
Γ2
q(β + 1)

(b− t)α+1

[α + 1]q
−

g

k

∞
∑

n=1

(−k)n Γn+1
q (β + 1)

[n]q!

(b− t)αn+1

[αn+ 1]q
.

The comparison of the solutions through Newton derivative and traditional q-derivative

with the q-α-RLGT M-fractional derivative are shown in Figures 1 and 2 for various

values of α and q. It can be seen from the graphs that we can control the q-distance

by choosing suitable parameters of the q-α-RLGT M-fractional derivative operator.

Figure 1. Newton derivative and traditional q-derivative (α = 1)

solutions for the q-distance

Figure 2. Solutions of (3.4) for the q-distance for α = 0.2 and α = 0.6
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Figures 3 and 4 show the comparison of the solutions through Newton derivative

and traditional q-derivative with the q-α-RLGT M-fractional derivative for various

values of α and q. It can be seen from the graphs that we can control the q-velocity

by choosing suitable parameters of the q-α-RLGT M-fractional derivative operator.

Figure 3. Newton derivative and traditional q-derivative (α = 1)

solutions of (3.4) for the q-vertical velocity

Figure 4. Solutions of (3.4) for the q-vertical velocity for α = 0.2 and

α = 0.6

4. Conclusion

We have established a q-analogue of the α-right local general truncated M-fractional

derivative [6] and a q-right M-integral. Additionally, we could find the associa-

tions between the q-α-RLGT M-fractional derivative and q-right M-integral. The
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q-analogues of the well known results like the Rolle’s theorem, the mean value theo-

rem, the fundamental theorem of calculus and the theorem containing integration by

parts are also obtained for our newly defined q-fractional derivative operator.

Also, using the proved results in the previous sections, we have obtained the exact

solutions for the q-vertical velocity and the q-distance of a q-analogue of the well

known physical problem, the falling body problem, by our newly defined q-α-RLGT

M-fractional derivative operator. With the use of MATLAB software, we have com-

pared the solutions of q-falling body problem for the q-vertical velocity and the q-

distance for various fractional order α and an integer order by considering different

values of q. Also, these solutions are compared with with the Newton derivative and

the traditional q-derivative.

As a future perspective, one can define and study the results of q-α-left local general

truncated M-fractional derivative which is defined as follows:

Let f : [a, π2] → R and t < π2, a ∈ R. For 0 < α ≤ 1, we define a q-α-left local

general truncated M-fractional derivative of order α of f as

(4.1) π2D
α,β
q,M,af(t) :=

1

Γq(β + 1)

(f((t− a)α)− f(q(t− a)α) + (1− q)π2)

(1− q)((t− a)α − π2)
.

Also, one can work on the possible open problems by analyzing and studying the re-

sults and inequalities proved in [16, 17] for our newly defined q-α-RLGTM-fractional

derivative.
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