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BAHADUR’S STOCHASTIC COMPARISON OF ASYMPTOTIC

RELATIVE EFFICIENCY IN COMBINING INFINITELY MANY

INDEPENDENT TESTS IN CASE OF CONDITIONAL EXTREME

VALUE DISTRIBUTION

MOHAMMED AL-HAJ EBRAHEM (1) AND ABEDEL-QADER S. AL-MASRI (2)

Abstract. Bahadur’s stochastic comparison of asymptotic relative efficiency of

combining Infinitely many independent tests in case of conditional extreme value

distribution is proposed. Six distribution-free combination producers namely; Fisher,

logistic, sum of p-values, inverse normal, Tippett’s method and maximum of p-

values were studied. Several comparisons among the six procedures using the exact

Bahadur’s slopes were obtained. Results showed that the logistic producer is the

best procedure.

1. INTRODUCTION

Bahadur’s stochastic comparison is one of the most common approach in asymp-

totic relative efficiency for two test procedures in which the Type I and Type II

error probabilities changes with increasing sample size, and also with respect to the

manner in which the alternatives under consideration are required to behave.

In comparison of test procedures, let H0 : F ∈ F0 is to be tested, where F0

is a family of distributions, for any test procedure Tn. The function γn(T, F ) =

PF (Tn rejects H0), for distribution functions F, represents the power function of Tn.

Under H0, γn(T, F ) represents the probability of a Type I error. The size of the

test is αn(T,F0) = sup
F∈F0

γn(T, F ). For F /∈ F0, the probability of a Type II error

is βn(T, F ) = 1 − γn(T, F ). We are interested in studying consistent tests, that is
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for fixed F /∈ F0, βn(T, F ) → 0 as n → ∞, and unbiased tests that is F /∈ F0,

γn(T, F ) ≥ αn(T,F0). To compare two test procedures through their power func-

tions, we will use the asymptotic relative efficiency (ARE) for two test procedures TA

and TB, with sample sizes n1 and n2 respectively, then the ratio n1/n2 goes to some

limit. This limit is the ARE of TB relative to TA. In Bahadur approach, the following

behaviors are satisfied: the Type I error is αn → 0, the Type II error is βn → 0, and

the alternatives is F n = F fixed.

Asymptotic relative efficiency have been considered by many authors. [2] studied six

free-distribution methods (sum of p-values, inverse normal, logistic, Fisher, minimum

of p-values and maximum of p-values) of combining infinitely number of independent

tests when the p-values are IID rv’s distributed with uniform distribution under the

null hypothesis versus triangular distribution with essential support (0, 1) under the

alternative hypothesis. They proved that the sum of p-values method is the best

method. [1] they combined infinite number of independent tests for testing simple

hypotheses against one-sided alternative for normal and logistic distributions, they

used four methods of combining (Fisher, logistic, sum of p-values and inverse nor-

mal). [3] studied six methods of combining independent tests. He showed under con-

ditional shifted Exponential distribution that the inverse normal method is the best

among six combination methods. [4] considered combining independent tests in case

of conditional normal distribution with probability density function X|θ ∼ N(γθ, 1),

θ ∈ [a,∞], a ≥ 0 when θ1, θ2, ... have a distribution function (DF) Fθ. They concluded

that the inverse normal procedure is the best procedure.

2. Extreme Value (Gumbel) Distribution

The extreme value (Gumbel) distribution (EV(θ,1)) is used as the distribution of

the maximum, or the minimum, of a number of samples of many distributions. Also,

it used in the estimation of the magnitude chance of earthquakes and food levels.

The EV (θ, 1) distribution with location parameter θ, has distribution function (DF)

and probability density function (pdf) that are given, respectively, by

(2.1) F (x; θ) = e−e−(x−θ)

, x ∈ ℜ, θ ∈ ℜ
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(2.2) f(x; θ) = e−(x−θ)−e−(x−θ)

= −F (x; θ) lnF (x; θ), x ∈ ℜ, θ ∈ ℜ.

The conditional probability density function of X given Λ is

(2.3) f(x|Λ) = e−(x−Λϑ)−e−(x−Λϑ)

= −F (x; Λϑ) lnF (x; Λϑ), x ∈ ℜ.

3. The Basic Prooblem

Consider testing the hypothesis

(3.1) H
(i)
0 : ηi = ηi0, vs , H

(i)
1 : ηi ∈ Ωi − {ηi0}

such that H
(i)
0 becomes rejected for large values of some real valued continuous ran-

dom variable T (i), i = 1, 2, . . . , n. The n hypotheses are combined into one as

(3.2)

H
(i)
0 : (η1, ..., ηn) = (η10, ..., η

n
0 ), vs , H

(i)
1 : (η1, ..., ηn) ∈

{

n
∏

i=1

Ωi − {(η10, ..., ηn0 )}
}

Where
∏n

i=1Ωi = Ω1 × Ω2 × ...× Ωn is the cartesian product of sets.

For i = 1, 2, . . . , n the p-value of the i-th test is given by

(3.3) Pi(t) = P
H

(i)
0

(

T (i) > t
)

= 1− F
H

(i)
0

(t)

where F
H

(i)
0

(t) is the DF of T (i) under H
(i)
0 . Note that Pi ∼ U(0, 1) under H

(i)
0 .

In this paper, we will consider the special case where: ηi = ϑΛi, i = 1, . . . , n.

Then our proposed model will be W |Λ ∼ EV (Λϑ, 1), Λ ∈ ℜ\(−∞, κ), κ ≥ 0 where

Λ1,Λ2, ... are independent identically distributed with DF HΛ with support defined

on Λ ∈ ℜ\(−∞, κ), κ ≥ 0, assuming that T (1), . . . , T (n) are independent,then (3.1)

reduces to

(3.4) H0 : ϑ = 0 vs H1 : ϑ > 0,

It follows that the p-values P1, . . . , Pn are also iid rv’s that have a U(0, 1) distribution

under H0, and under H1 have a distribution whose support is a subset of the interval

(0, 1) and is not a U(0, 1) distribution. Therefore, if f is the probability density

function (pdf) of P , then (3.4) is equivalent to

H0 : P ∼ U(0, 1), vs , H1 : P ≁ U(0, 1)(3.5)
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where P has a pdf f with support subset of the interval (0, 1).

By sufficiency we may assume ni = 1 and T (i) = Xi for i = 1, . . . , n. Then we consider

the sequence
{

T (n)
}

of independent test statistics, thus is we will take a random

sample X1, . . . , Xn of size n and let n → ∞ and compare the six non-parametric

methods via exact Bahadur slope (EBS).

The producers that we will used in this paper are Fisher, logistic, sum of p-values,

inverse normal, Tippett’s method and maximum of p-values. These producers are

based on p-values of the individual statistics Ti, and reject H0 if

ΨF isher = −2

n
∑

i=1

ln(Pi) > χ2
2n,α,Ψlogistic = −

n
∑

i=1

ln

(

Pi

1− Pi

)

> bα,

ΨNormal = −
n
∑

i=1

Φ−1(Pi) >
√
nΦ−1(1− α),

ΨSum = −
n
∑

i=1

Pi > Cα,ΨMax = −max Pi < α
1
n ,ΨT = −min Pi < 1− (1− α)

1
n .

where Φ is the DF of standard normal distribution.

4. Difinitions

This section lays out some basic tools to Bahadur’s stochastic comparison theory

that used in this article

Definition 4.1. [6] (Bahadur efficiency and exact Bahadur slope (EBS)) LetX1, . . . , Xn

be i.i.d. from a distribution with a probability density function f(x, θ), and we want

to test H0 : θ = θ0 vs. H1 : θ ∈ Θ − {θ0}. Let
{

T
(1)
n

}

and
{

T
(2)
n

}

be two se-

quences of test statistics for testing H0. Let the significance attained by T
(i)
n be

L
(i)
n = 1− Fi

(

T
(i)
n

)

, where Fi

(

T
(i)
n

)

= PH0

(

T
(i)
n ≤ ti

)

, i = 1, 2. Then there exists a

positive valued function Ci(θ) called the exact Bahadur slope of the sequence {T (i)
n }

such that

Ci(θ) = lim
θ→∞

−2n−1 ln
(

Li
n

)

with probability 1 (w.p.1) under θ and the Bahadur efficiency of
{

T
(1)
n

}

relative to
{

T
(2)
n

}

is given by eB (T1, T2) = C1(θ)/C2(θ).
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Theorem 4.1. [6] (Large deviation theorem) Let X1, X2, . . . , Xn be IID, with distri-

bution F and put Sn =
∑n

i=1Xi. Assume existence of the moment generating function

(mgf) M(z) = EF

(

ezX
)

, z real, and put m(t) = infz e
−ztM(z). The behavior of large

deviation probabilities P (Sn ≥ tn) , where tn → ∞ at rates slower than O(n). The

case tn = tn, if −∞ < t ≤ EY, then P (Sn ≤ nt) ≤ [m(t)]n , the

−2n−1 lnPF (Sn ≥ nt) → −2 lnm(t) a.s. (Fθ) .

Theorem 4.2. [5] (Bahadur theorem) Let {Tn} be a sequence of test statistics which

satisfies the following:

(1) Under H1 : θ ∈ Θ− {θ0}:

n− 1
2Tn → b(θ) a.s. (Fθ) ,

where b(θ) ∈ ℜ.
(2) There exists an open interval I containing {b(θ) : θ ∈ Θ− {θ0}} , and a func-

tion g continuous on I, such that

lim
n

−2n−1 log sup
θ∈Θ0

[

1− Fθn(n
1
2 t)
]

= lim
n

−2n−1 log
[

1− Fθn(n
1
2 t)
]

= g(t), t ∈ I.

If {Tn} satisfied (1)-(2), then for θ ∈ Θ− {θ0}

−2n−1 log sup
θ∈Θ0

[1− Fθn(Tn)] → C(θ) a.s. (Fθ) .

Theorem 4.3. [3] Let X1, . . . , Xn be i.i.d. with probability density function f(x, θ),

and we want to test H0 : θ = 0 vs. H1 : θ > 0. For j = 1, 2, let Tn,j =
∑n

i=1 fi(xi)/
√
n

be a sequence of statistics such that H0 will be rejected for large values of Tn,j and

let ϕj be the test based on Tn,j. Assume Eθ(fi(x)) > 0, ∀θ ∈ Θ, E0(fi(x)) = 0,

V ar(fi(x)) > 0 for j = 1, 2. Then

1. If the derivative b′j(0) is finite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=
V arθ=0(f2(x))

V arθ=0(f1(x))

[

b′1(0)

b′2(0)

]2

,

where bi(θ) = Eθ(fj(x)), and Cj(θ) is the EBS of test ϕj at θ.

2. If the derivative b′j(0) is infinite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=
V arθ=0(f2(x))

V arθ=0(f1(x))

[

lim
θ→0

b′1(θ)

b′2(θ)

]2

.
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Theorem 4.4. [6] If T
(1)
n and T

(2)
n are two test statistics for testing H0 : θ = 0 vs.

H1 : θ > 0 with distribution functions F
(1)
0 and F

(2)
0 under H0, respectively, and that

T
(1)
n is at least as powerful as T

(2)
n at θ for any α, then if ϕj is the test based on T

(j)
n ,

j = 1, 2, then

C(1)
ϕ1

(θ) ≥ C(2)
ϕ2

(θ).

Corollary 4.1. [6] If Tn is the uniformly most powerful test for all α, then it is the

best via EBS.

Theorem 4.5. [3]

2t ≤ mS(t) ≤ et, ∀ : 0 ≤ t ≤ 0.5,

where

mS(t) = inf
z>0

e−zt e
z − 1

z
.

Theorem 4.6. [3]

(1) mL(t) ≥ 2te−t, ∀t ≥ 0,

(2) mL(t) ≤ te1−t, ∀t ≥ 0.852,

(3) mL(t) ≤ t
(

t2

1+t2

)3

e1−t, ∀t ≥ 4,

where mL(t) = infz∈(0,1) e
−ztπz csc(πz) and csc is an abbreviation for cosecant

function.

Theorem 4.7. For x > 0,

φ(x)

[

1

x
− 1

x3

]

≤ 1− Φ(x) ≤ φ(x)

x
.

Where φ is the pdf of standard normal distribution.

Theorem 4.8. [3] For x > 0,

1− Φ(x) >
φ(x)

x+
√

π
2

.

Lemma 1. [3]

(1) mL(t) ≥ inf
0<z<1

e−zt = e−t

(2) mL(t) ≤
e−t2/(t+1)

(

πt
t+1

)

sin
(

πt
t+1

)

(3)







ms(t) = infz>0
e−zt(1−e−z)

z
≤ infz>0

e−zt

z
≤ −et, t < 0

ms(t) ≥ −2t, −1
2
≤ t ≤ 0.
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5. Derivation of the EBS with general DF HΛ

In this section we will study testing problem (3.4). We will compare the six methods

Fisher, logistic, sum of p-values,the inverse normal, Tippett’s method and maximum

of p-values using EBS.

Let X1, . . . , Xn be IID with probability density function (2.3) and we want to test

(3.4). Then by (2.1), the p-value is given by

(5.1) Pn(Xn) = 1− FH0(Xn) = 1− e−e−x

The next three lemmas give the EBS for Fisher (CF ), logistic (CL), inverse nor-

mal (CN), sum of p-values (CS), Tippett’s method (CT ) and maximum of p-values

(Cmax)methods.

Lemma 2. The exact Bahadurs slope (EBSs) result for the tests, which is given at

the end of Section 3, are as follows:

B1. Fisher method. CF (ϑ) = bF (ϑ)− 2 ln(bF (ϑ)) + 2 ln(2)− 2,

where

bF (ϑ) = −2
(

ψ(1)− EHΛ
ψ(eΛϑ + 1)

)

,

and ψ(·) = Γ′(·)
Γ(·) is the digamma function.

B2. Logistic method. CL(ϑ) = −2 ln(m(bL(ϑ))), where

mL(t) = inf
z∈(0,1)

e−ztπz csc(πz)

and

bL(ϑ) = EHΛ
ψ(eΛϑ + 1)− EHΛ

e−Λϑ − ψ(1).

B3. Sum of p-values method. CS(ϑ) = −2 ln(m(bS(ϑ))), where

mS(t) = inf
z>0

e−zt1− e−z

z

and

bS(ϑ) = −EHΛ

(

eΛϑ + 1
)−1

.
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B4. Inverse Normal method. CN(ϑ) = −2 ln(m(bN (ϑ))) = b2N (ϑ),

where

bN (ϑ) = −EHΛ

[

eΛϑ EBeta(eΛϑ−1,1) φ
(

Φ−1(1− V )
)]

Proof of B1. For Fisher procedure,

TF = −2
n
∑

i=1

ln
[

1− e−e−x

]

√
n

.

By Theorem 4.2 (1) and by the strong law of large number (SLLN), we have

TF√
n

w.p.1−−−→ bF (ϑ) = −2EH1 ln
[

1− e−e−x

]

then

bF (ϑ) = −2EHΛ
EEV (Λϑ,1)

(

ln
[

1− e−e−x

]

|Λ
)

.

Now, let U = e−(X−Λϑ), and Z = 1− e−e−ΛϑU , then

EHΛ

∫

ℜ
ln
[

1− e−e−x

]

e−(x−Λϑ)−e−(x−Λϑ)

dx

= EHΛ
eΛϑ
∫ 1

0

ln(z)(1− z)e
Λϑ−1 dz = EHΛ

EBeta(1,eΛϑ) lnZ

= ψ(1)− EHΛ
ψ(eΛϑ + 1).

Thus, bF (ϑ) = −2
(

ψ(1)− EHΛ
ψ(eΛϑ + 1)

)

.

Now under H0, then using Theorem 4.1, we have mS(t) = infz>0 e
−ztMS(z), where

MS(z) = EF (e
zX). Under H0 : −

(

1− e−e−x

)

∼ U(−1, 0), so MS(z) = 1−e−z

z
, by

Theorem 4.2 (2), we complete the proof, that is

CF (ϑ) = −2 ln(mF (bF (ϑ))) = −2 ln

(

bF (ϑ)

2
e1−

bF (ϑ)

2

)

= bF (ϑ)−2 ln(bF (ϑ))+2 ln(2)−2.

�

Proof of B2. For logistic procedure,

TL = −
n
∑

i=1

ln
[

1−e−e
−x

e−e−x

]

√
n

.
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By Theorem 4.2 (1) and by the strong law of large number (SLLN), we have

TL√
n

w.p.1−−−→ bL(ϑ) = −E
H1 ln

[

1− e−e−x

e−e−x

]

then

bL(ϑ) = −EHΛ
EEV (Λϑ,1)

(

ln

[

1− e−e−x

e−e−x

]

|Λ
)

= −EHΛ

∫

ℜ
ln
[

1− e−e−x

]

e−(x−Λϑ)−e−(x−Λϑ)

dx− EHΛ

∫

ℜ
e−xe−(x−Λϑ)−e−(x−Λϑ)

dx.

Now,
∫

ℜ
e−xe−(x−Λϑ)−e−(x−Λϑ)

dx = e−Λϑ,

and from Proof (B1),

∫

ℜ
ln
[

1− e−e−x

]

e−(x−Λϑ)−e−(x−Λϑ)

dx = ψ(1)−ψ(eΛϑ+1). Thus

bL(ϑ) = EHΛ

(

ψ(eΛϑ + 1)
)

− EHΛ

(

e−Λϑ
)

− ψ(1)

�

Proof of B3. For sum of p-values procedure,

TS = −
n
∑

i=1

1− e−e−x

√
n

.

It follows from Theorem 4.2 (1) and by the strong law of large number (SLLN) that

TS√
n

w.p.1−−−→ bS(θ) = −E
H1

(

1− e−e−x

)

then

bS(ϑ) = −EHΛ
EEV (Λϑ,1)

{(

1− e−e−x

)

|Λ
}

= −EHΛ

(

eΛϑ + 1
)−1

.

Now, by Theorem 4.1, we have mS(t) = infz>0 e
−ztMS(z), where MS(z) = EF (e

zX).

Under H0 : −
(

1− e−e−x

)

∼ U(−1, 0), so MS(z) = 1−e−z

z
, by part (2) of Theorem

4.2 we complete the proof, we conclude that CS(ϑ) = −2 ln(mS(bS(ϑ))). �

Proof of B4. For the inverse normal procedure,

TN = −
n
∑

i=1

Φ−1
(

1− e−e−x

)

√
n

.
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By Theorem 4.2 (1) and the strong law of large number (SLLN), we have

n− 1
2TN

w.p.1−−−→ bN (ϑ) = −E
H1 Φ−1

(

1− e−e−x

)

,

bN(ϑ) = −EHΛ
EEV (Λϑ,1)

{

Φ−1
(

1− e−e−x

)

|Λ
}

,

let U = Φ−1
(

1− e−e−x

)

so we have

bN(ϑ) = −EHΛ

{
∫

ℜ
eΛϑuφ(u) (1− Φ(u))e

Λϑ−1 du

}

= EHΛ

{
∫

ℜ
eΛϑ

dφ(u)

du
(1− Φ(u))e

Λϑ−1 du

}

,

where −uφ(u) = d
du
φ(u). Now, by using integration by parts and substituting

V = 1− Φ (U) , we get

bN(ϑ) = −EHΛ

{

eΛϑ
(

eΛϑ − 1
)

∫ 1

0

ve
Λϑ−2φ

(

Φ−1(1− v)
)

dv

}

= −EHΛ

{

eΛϑ EBeta(eΛϑ−1,1) φ
(

Φ−1(1− v)
)}

where φ2 (ζ) = 1√
2π
φ
(√

2ζ
)

and
φ(

√
2ζ)

φ(ζ)
= e−

1
2
ζ2 =

√
2πφ(ζ).

Now, by Theorem 1, we have mN(t) = infz>0 e
−ztMN (z), where MN (z) = EF (e

zX).

Under H0 : −
(

1− e−e−x

)

∼ N(0, 1), so MN (z) = ez
2/2, by part (2) of Theorem 4.2,

CN(ϑ) = −2 ln(mN(bN (ϑ))) = b2N(ϑ). �

Theorem 1. Let U1, U2, . . . be i.i.d. with probability density function f and suppose

that we want to test H0 : Ui ∼ U(0, 1) vs. H1 : Ui ∼ f on (0, 1) but not U(0, 1).

Then Cmax(f) = −2 ln (ess.supf(u))

where ess.supf(u) = sup {u : f(u) > 0} w.p.1 under f. [3]

Lemma 3.

Cmax(ϑ) = 0.

[3]

Proof. Assume that
d

dΛ
HΛ = gΛ the probability density function of the DF HΛ, then

the joint probability density function of X and Λ is

h(x,Λ) = f(x|Λ)gΛ

h(x,Λ) = e−(x−Λϑ)−e−(x−Λϑ)

gΛ, x ∈ ℜ.
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The marginal probability density function of X is

f(x) =

∫

(κ,∞)

e−(x−Λϑ)−e−(x−Λϑ)

gΛ dΛ, x ∈ ℜ, κ ≥ 0

= e−x

∫

(κ,∞)

eΛϑ
(

e−e−x

)eΛϑ

dHΛ.

Now, under ϑ the p-value P = 1− e−e−x

, so

(5.2) h(p) =

∫

(κ,∞)

eΛϑ (1− P )e
Λϑ−1 dHΛ, p ∈ (0, 1).

Then by Theorem 1 we have ess.supf(p) = 1. Therefore, Cmax(ϑ) = 0. �

Theorem 2. If π(ln π)2f(π) → 0 as π → 0, then CT (f) = 0.

Lemma 4.

CT (ϑ) = 0.

Proof. From (5.2), we have

(5.3) h(p) = −
∫

(κ,∞)

d

deΛϑ
(1− p)e

Λϑ

dHΛ = − d

deΛϑ
EHΛ

(1− p)e
Λϑ

.

So by Theorem 2, we get

lim
p→0

p(ln p)2h(p) = − lim
p→0

p(ln p)2
{

d

deΛϑ
EHΛ

(1− p)e
Λϑ

}

.

Clearly, applying by L’Hopital rule twice we have, lim
p→0

p(ln p)2 = 0, also,

− lim
p→0

{

d

deΛϑ
EHΛ

(1− p)e
Λϑ

}

= 0.

Which implies CT (ϑ) = 0. �

6. Comparison of the EBSs when ϑ→ 0

In this section, we will compare the EBSs that obtained in Section (5). We will

find the limit of the ratio of the EBSs of any two methods when ϑ→ 0.

Corollary 1. The limits of ratios of different tests are as follows:

C1.
CT (ϑ)

CD(ϑ)
=
Cmax(ϑ)

CD(ϑ)
= 0, where CD(ϑ) ∈ {CF (ϑ), CL(ϑ), CS(ϑ), CN(ϑ)} .

C2. eB (TS, TF ) → 1.80314
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C3. eB (TL, TF ) → 1.97729

C4. eB (TN , TF ) → 1.96121

C5. eB (TL, TN) → 1.0082

C6. eB (TN , TS) → 1.08764

C7. eB (TL, TS) → 1.09656

Proof of C2.

bF (ϑ) = −2
(

ψ(1)− EHΛ
ψ(eΛϑ + 1)

)

.

Therefore,

b′F (ϑ) = 2EHΛ

(

ΛeΛϑψ1(1 + eΛϑ)
)

,

where ψ1(z) =
d

dz
ψ(z) is the trigamma function.

lim
ϑ→0

b′F (ϑ) = 2

(

π2

6
− 1

)

EHΛ
(Λ) <∞.

Also

bS(ϑ) = −EHΛ

(

eΛϑ + 1
)−1

,

then

lim
ϑ→0

b′S(ϑ) = lim
ϑ→0

1
4
EHΛ

(

Λ cosh−2

(

Λϑ

2

))

= 1
4
EHΛ

(Λ) <∞.

Now under H0 : hF (x) = −2 ln
[

1− e−e−x

]

∼ χ2
2 and hS(x) = −

(

1− e−e−x

)

∼

U(−1, 0), so V arϑ=0(hF (x)) = 4 and V arϑ=0(hS(x)) =
1
12
, also,

b′S(0)

b′F (0)
=

(

8π2

6
− 8

)−1

.

By applying Theorem (4.3) we get lim
ϑ→0

CS(ϑ)

CF (ϑ)
=

27

(π2 − 6)2
= 1.80314. Similarly we

can prove other parts.

�
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6.1. The Limiting ratio of the EBS for different tests when ϑ → ∞. Now,

we will compare the limit of the ratio of EBSs for any two methods when ϑ→ ∞.

Corollary 2. The limits of ratios for different tests are as follows:

D1. eB (TL, TF ) → 1

D2. eB (TS, TF ) → 1

D3. eB (TN , TS) → 0

D4. lim
ϑ→∞

{CF (ϑ)− CL(ϑ)} ≤ 0

D5. lim
ϑ→∞

{CS(ϑ)− CL(ϑ)} < 0

D6. eB (TN , TF ) → 0, eB (TN , TL) → 0, eB (TL, TS) → 1.

Proof of D1. By Lemma (1) part (1) CL(ϑ) ≤ 2bL(ϑ). So

CL(ϑ)

CF (ϑ)
≤ 2bL(ϑ)

bF (ϑ)− 2 ln(bF (ϑ)) + 2 ln(2)− 2
.

It is sufficient to obtain lim
ϑ→∞

2bL(ϑ)

bF (ϑ)
.

Therefore,

lim
ϑ→∞

2bL(ϑ)

bF (ϑ)
= − lim

ϑ→∞

EHΛ
ψ(eΛϑ + 1)− EHΛ

e−Λϑ − ψ(1)

ψ(1)− EHΛ
ψ(eΛϑ + 1)

= 1.

So,

lim
ϑ→∞

CL(ϑ)

CF (ϑ)
≤ 1.

Also, by Theorem (4.6) part (2), we have CL(ϑ) ≥ 2bL(ϑ)− 2 ln (bL(ϑ))− 2. So

lim
ϑ→∞

CL(ϑ)

CF (ϑ)
≥ lim

ϑ→∞

2bL(ϑ)− 2 ln (bL(ϑ))− 2

bF (ϑ)− 2 ln(bF (ϑ)) + 2 ln(2)− 2
.
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It is sufficient to obtain the limit of lim
ϑ→∞

2bL(ϑ)

bF (ϑ)
.

Therefore,

lim
ϑ→∞

2bL(ϑ)

bF (ϑ)
= − lim

ϑ→∞

EHΛ
ψ(eΛϑ + 1)− EHΛ

e−Λϑ − ψ(1)

ψ(1)− EHΛ
ψ(eΛϑ + 1)

= 1.

Then,

lim
ϑ→∞

CL(ϑ)

CF (ϑ)
≥ 1

Thus, by pinching theorem, we have lim
ϑ→∞

CL(ϑ)

CF (ϑ)
= 1. �

Proof of D2. By Lemma (1) part (3) CS(ϑ) ≤ −2 ln(2)− 2 ln(−bS(ϑ)). So

lim
ϑ→∞

CS(ϑ)

CF (ϑ)
≤ lim

ϑ→∞

−2 ln(2)− 2 ln(−bS(ϑ))
bF (ϑ)− 2 ln(bF (ϑ)) + 2 ln(2)− 2

.

It is sufficient to obtain the limit of lim
ϑ→∞

−2 ln(−bS(ϑ))
bF (ϑ)

.

Then

lim
ϑ→∞

−2 ln(−bS(ϑ))
bF (ϑ)

= lim
ϑ→∞

− lnEHΛ

(

1 + eΛϑ
)−1

EHΛ
ψ(eΛϑ + 1)− ψ(1)

.

Now, by Jensen’s inequality where the logarithm is concave function, then

− lnEHΛ

(

1 + eΛϑ
)−1 ≤ EHΛ

ln
(

1 + eΛϑ
)

,

so

lim
ϑ→∞

−2 ln(−bS(ϑ))
bF (ϑ)

≤ lim
ϑ→∞

EHΛ
ln
(

1 + eΛϑ
)

EHΛ
ψ(eΛϑ + 1)− ψ(1)

.

Now, by using Gauss’s integral for asymptotic expansion of ψ

ψ(z) = ln z − 1

2z
−
∫ ∞

0

(

1

2
− 1

t
+

1

et − 1

)

e−tz dt,

we get

ψ(1 + eΛϑ) = ln
(

1 + eΛϑ
)

− 1

2 (1 + eΛϑ)
−
∫ ∞

0

(

1

2
− 1

t
+

1

et − 1

)

e−t(1+eΛϑ) dt

≍ ln
(

1 + eΛϑ
)

as ϑ→ ∞.

Therefore,

lim
ϑ→∞

−2 ln(−bS(ϑ))
bF (ϑ)

≤ lim
ϑ→∞

EHΛ
ln
(

1 + eΛϑ
)

EHΛ
ln(eΛϑ + 1)− ψ(1)

= 1.
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So

lim
ϑ→∞

CS(ϑ)

CF (ϑ)
≤ 1.

Also, by Lemma (1) part (3), we have CS(ϑ) ≥ −2 − 2 ln(−bS(ϑ)). So, in the same

manner, we get

lim
ϑ→∞

CS(ϑ)

CF (ϑ)
≥ 1.

Clearly, by pinching theorem, we have lim
ϑ→∞

CS(ϑ)

CF (ϑ)
= 1. �

Proof of D3. From B4 we have

CN(ϑ) = E
2
HΛ

[

eΛϑ EBeta(eΛϑ−1,1) φ
(

Φ−1(1− V )
)]

By Lemma (1) part (3) CS(ϑ) ≥ −2− 2 ln(−bS(ϑ)), we have

lim
ϑ→∞

CN(ϑ)

CS(ϑ)
≤ lim

ϑ→∞

E
2
HΛ

[

eΛϑ EBeta(eΛϑ−1,1) φ (Φ
−1(1− V ))

]

−2− 2 ln(−bS(ϑ))

= lim
ϑ→∞

E
2
HΛ

[

eΛϑ EBeta(eΛϑ−1,1) φ (Φ
−1(1− V ))

]

−2− 2 lnEHΛ
(1 + eΛϑ)−1 .

Now by using reflection symmetry, then V ∼ Beta
(

eΛϑ − 1, 1
)

then

1− V ∼ Beta
(

1, eΛϑ − 1
)

, then

lim
ϑ→∞

CN(ϑ)

CS(ϑ)
≤ lim

ϑ→∞

E
2
HΛ

[

eΛϑ EBeta(1,eΛϑ−1) φ (Φ
−1(V ))

]

−2− 2 lnEHΛ
(1 + eΛϑ)−1 .

Now we will find the limiting distribution for Zϑ = eΛϑVϑ when eΛϑ → ∞. Let,

GZϑ
(zϑ) = Pϑ [Zϑ ≤ zϑ]

= Pϑ

[

Vϑ ≤ zϑe
−Λϑ
]

= FYϑ

(

zϑe
−Λϑ
)

= (eΛϑ − 1)

∫ zϑe
−Λϑ

0

(1− vϑ)
eΛϑ−2 dvϑ

= 1−
[

1− zϑ
eΛϑ

]eΛϑ−1

, 0 < zϑ < eΛϑ.

Now,

lim
eΛϑ→∞

GZϑ
(zϑ) = 1− limeΛϑ→∞

[

1− zϑ
eΛϑ

]eΛϑ

limeΛϑ→∞
[

1− zϑ
eΛϑ

] = 1− e−zϑ, z > 0.

Thus, lim
eΛϑ→∞

eΛϑ Beta(1, eΛϑ − 1) = Exponential(1) and by Jensen’s inequality where

the logarithm is concave function, we get

lim
ϑ→∞

CN(ϑ)

CS(ϑ)
≤ lim

ϑ→∞

E
2
Exp(1) φ

(

Φ−1(e−ΛϑVϑ)
)

2 + 2EHΛ
ln (1 + eΛϑ)

= 0.
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Hence,

lim
ϑ→∞

CN(ϑ)

CS(ϑ)
= 0.

�

Proof of D4. By Theorem 4.6 (2), we have

CF (ϑ)− CL(ϑ) ≤ bF (ϑ)− 2 ln bF (ϑ) + 2 ln(2) + 2 ln bL(ϑ)− 2bL(ϑ)

= bF (ϑ)− 2bL(ϑ) + 2 ln

(

bL(ϑ)

bF (ϑ)

)

+ 2 ln(2).

Now,

bF (ϑ)− 2bL(ϑ) = 2EHΛ
e−Λϑ.

Also,

lim
ϑ→∞

bL(ϑ)

bF (ϑ)
= − lim

ϑ→∞

EHΛ
ψ(eΛϑ + 1)− EHΛ

e−Λϑ − ψ(1)

2 (ψ(1)− EHΛ
ψ(eΛϑ + 1))

=
1

2
.

Then,

lim
ϑ→∞

(CF (ϑ)− CL(ϑ)) ≤ lim
ϑ→∞

(bF (ϑ)− 2 ln bF (ϑ)) + 2 lim
ϑ→∞

ln

(

bL(ϑ)

bF (ϑ)

)

+ 2 ln(2)

= 0− 2 ln(2) + 2ln(2) = 0.

So, CF (ϑ) ≤ CL(ϑ) for large ϑ. �

Proof of D5. By Theorem (4.6) part (2), we have

CL(ϑ) ≥ 2bL(ϑ)− 2 ln (bL(ϑ))− 2

also by Lemma (1) part (3), we have

CS(ϑ) ≤ −2 ln(2)− 2 ln(−bS(θ)),

we get

CS(ϑ)− CL(ϑ) ≤ d(ϑ)

where

d(ϑ) ≡ −2 ln(2)− 2 ln(−bS(ϑ))− 2bL(ϑ) + 2 ln (bL(ϑ)) + 2.

Since, the term bL(ϑ) dominates the term ln bL(ϑ). Thus,

d(ϑ) = − ln(−bS(ϑ))− bL(ϑ).
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Now, by (B2) and (B3), we have

d(ϑ) ≡ − ln
(

EHΛ

(

eΛϑ + 1
)−1
)

− EHΛ
ψ(eΛϑ + 1) + EHΛ

e−Λϑ + ψ(1).

Again by using Jensen’s inequality, we have

− ln
(

EHΛ

(

eΛϑ + 1
)−1
)

≤ EHΛ
ln
(

eΛϑ + 1
)

.

From proof (D2) we proved

EHΛ
ln
(

eΛϑ + 1
)

≍ EHΛ
ψ
(

eΛϑ + 1
)

,

then

d(ϑ) ≤ EHΛ
ln
(

eΛϑ + 1
)

− EHΛ
ψ(eΛϑ + 1) + EHΛ

e−Λϑ + ψ(1)

≍ EHΛ
ψ
(

eΛϑ + 1
)

− EHΛ
ψ(eΛϑ + 1) + EHΛ

e−Λϑ + ψ(1).

So,

d(ϑ) ≤ EHΛ
e−Λϑ + ψ(1).

Now, when ϑ→ ∞, we get

d(ϑ) ≤ ψ(1) = −0.577216.

Which implies

lim
ϑ→∞

(CS(ϑ)− CL(ϑ)) ≤ −0.577216 < 0

�

Proof of D6. Straight forward by using D1 to D3. �

7. Conclusion

In this section we will compare the EBS for the six combination producers. From

the relations in section (6) we conclude that locally as ϑ → 0, the logistic procedure

is better than all other procedures since it has the highest EBS, followed in decreasing

order by the inverse normal, sum of p-values procedure and the Fisher’s procedure.

The worst two are the Tippett’s and the maximum of p-values procedures, i.e,

CL(ϑ) > CN(ϑ) > CS(ϑ) > CF (ϑ) > CT (ϑ) = Cmax(ϑ).



40 MOHAMMED AL-HAJ EBRAHEM AND ABEDEL-QADER S. AL-MASRI

Whereas, from result of Section (6.1) as ϑ → ∞ the worst methods are Tippett’s

and the maximum of p-values. The logistic is better than all other procedures,

followed in decreasing order by sum of p-values procedure, Fisher’s and the inverse

normal procedures, i.e,

CL(ϑ) > CS(ϑ) > CF (ϑ) > CN(ϑ) > CT (ϑ) = Cmax(ϑ).
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