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BAHADUR’S STOCHASTIC COMPARISON OF ASYMPTOTIC
RELATIVE EFFICIENCY IN COMBINING INFINITELY MANY
INDEPENDENT TESTS IN CASE OF CONDITIONAL EXTREME
VALUE DISTRIBUTION

MOHAMMED AL-HAJ EBRAHEM () AND ABEDEL-QADER S. AL-MASRI )

ABSTRACT. Bahadur’s stochastic comparison of asymptotic relative efficiency of
combining Infinitely many independent tests in case of conditional extreme value
distribution is proposed. Six distribution-free combination producers namely; Fisher,
logistic, sum of p-values, inverse normal, Tippett’s method and maximum of p-
values were studied. Several comparisons among the six procedures using the exact
Bahadur’s slopes were obtained. Results showed that the logistic producer is the

best procedure.

1. INTRODUCTION

Bahadur’s stochastic comparison is one of the most common approach in asymp-
totic relative efficiency for two test procedures in which the Type I and Type I1
error probabilities changes with increasing sample size, and also with respect to the
manner in which the alternatives under consideration are required to behave.

In comparison of test procedures, let Hy : F € %, is to be tested, where %
is a family of distributions, for any test procedure T,. The function ~,(T,F) =
Pr(T, rejects Hy), for distribution functions F, represents the power function of T,.
Under Hy, v,(T, F') represents the probability of a T'ype I error. The size of the
test is a, (T, Fo) = sup V. (T, F). For F' ¢ %, the probability of a T'ype II error

FeZy

is Bn(T,F) = 1 — v,(T, F). We are interested in studying consistent tests, that is
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for fixed F' ¢ Zy, B.(T,F) — 0 as n — oo, and unbiased tests that is F' ¢ Z,
(T, F) > a,(T,.%). To compare two test procedures through their power func-
tions, we will use the asymptotic relative efficiency (ARE) for two test procedures T}y
and Tz, with sample sizes n; and ny respectively, then the ratio ny/ny goes to some
limit. This limit is the ARE of Ty relative to T4. In Bahadur approach, the following
behaviors are satisfied: the Type I error is c,, — 0, the Type I error is 3, — 0, and
the alternatives is F™ = F' fixed.

Asymptotic relative efficiency have been considered by many authors. [2] studied six
free-distribution methods (sum of p-values, inverse normal, logistic, Fisher, minimum
of p-values and maximum of p-values) of combining infinitely number of independent
tests when the p-values are IID rv’s distributed with uniform distribution under the
null hypothesis versus triangular distribution with essential support (0, 1) under the
alternative hypothesis. They proved that the sum of p-values method is the best
method. [1] they combined infinite number of independent tests for testing simple
hypotheses against one-sided alternative for normal and logistic distributions, they
used four methods of combining (Fisher, logistic, sum of p-values and inverse nor-
mal). [3] studied six methods of combining independent tests. He showed under con-
ditional shifted Exponential distribution that the inverse normal method is the best
among six combination methods. [4] considered combining independent tests in case
of conditional normal distribution with probability density function X|0 ~ N(~0,1),
6 € [a,o0],a > 0 when 0y, 65, ... have a distribution function (DF) Fy. They concluded

that the inverse normal procedure is the best procedure.

2. EXTREME VALUE (GUMBEL) DISTRIBUTION

The extreme value (Gumbel) distribution (EV(6,1)) is used as the distribution of
the maximum, or the minimum, of a number of samples of many distributions. Also,
it used in the estimation of the magnitude chance of earthquakes and food levels.
The EV (0,1) distribution with location parameter 6, has distribution function (DF)
and probability density function (pdf) that are given, respectively, by

(2.1) Fa:0)=e*"" 2eR0cR
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(2.2) Fla;0) = e @O — _P(2:0)In F(2;0),z € R,0 € R
The conditional probability density function of X given A is

(2.3) Flz|A) = e EAD="C P AY) In F(z; AY), 2 € R

3. THE BAsic PROOBLEM

Consider testing the hypothesis
(3.1) H =, vs HY < € Qa— (g}

such that Ho(i) becomes rejected for large values of some real valued continuous ran-
dom variable T® i =1,2,...,n. The n hypotheses are combined into one as

(3.2)

HE (o) = (b ), w5 HE (1) € {HQZ- —{0m; -wgﬂ}
i=1

Where [[i—, Q; = Q1 X Qs X ... X Q, is the cartesian product of sets.

For i =1,2,... n the p-value of the i-th test is given by

(3.3) B(t) = P

H (T(i) > t) =1—F_u (t)

Hy

where F, ) (t) is the DF of T% under Héi). Note that P; ~ U(0, 1) under Ho(i).
0

In this paper, we will consider the special case where: n, = J9A;, ¢ = 1,...,n.
Then our proposed model will be W|A ~ EV(A9,1), A € R\(—o0, k), k > 0 where
A1, Ag, ... are independent identically distributed with DF H, with support defined
on A € R\(—o00,k),k > 0, assuming that 7", ... T™ are independent,then (3.1)

reduces to
(3.4) Hy:9=0 vs Hy :9>0,

It follows that the p-values P, ..., P, are also iid rv’s that have a U(0, 1) distribution
under Hy, and under H; have a distribution whose support is a subset of the interval
(0,1) and is not a U(0,1) distribution. Therefore, if f is the probability density
function (pdf) of P, then (3.4) is equivalent to

(3.5) Hy: P ~U(0,1), vs,Hy : P U0,1)
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where P has a pdf f with support subset of the interval (0, 1).

By sufficiency we may assume n; = 1 and 7% = X, fori = 1,...,n. Then we consider
the sequence {T(")} of independent test statistics, thus is we will take a random
sample X1,..., X, of size n and let n — oo and compare the six non-parametric
methods via exact Bahadur slope (EBS).

The producers that we will used in this paper are Fisher, logistic, sum of p-values,
inverse normal, Tippett’s method and maximum of p-values. These producers are

based on p-values of the individual statistics T;, and reject Hy if

\I]Fisher = -2 ZIH(PZ) > X%n,a’ \IllOQiStic == Zln <1 — P) > ba’
i=1 i=1 !
\I]Normal = - Zé_l(PZ) > \/ﬁé_l(l - Oé),
i=1

\Ifgum:—ZR- > Cu, Ve = —max P <a%,\IfT:—mz'nP,- < 1—(1—0()%.
i=1

where @ is the DF of standard normal distribution.

4. DIFINITIONS

This section lays out some basic tools to Bahadur’s stochastic comparison theory

that used in this article

Definition 4.1. [6] (Bahadur efficiency and exact Bahadur slope (EBS)) Let X3, ..., X,
be i.i.d. from a distribution with a probability density function f(x,#), and we want
to test Hy : 6 = 0y vs. Hy : 0 € © — {0y} Let {TT(LI)} and {Tr(f)} be two se-
quences of test statistics for testing Hy. Let the significance attained by 7V be
Lgf) =1-F (Tfﬁ), where F; (T,@) = Py, (T,Si) < ti), 1 = 1,2. Then there exists a
positive valued function C;(6) called the exact Bahadur slope of the sequence {T”}
such that

Ci(0) = lim —2n"'In (L})

f— 00
with probability 1 (w.p.1) under 6 and the Bahadur efficiency of {TT(LI)} relative to
{T,(f)} is given by eg (11, T3) = C1(8)/Ca(6).
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Theorem 4.1. [6] (Large deviation theorem) Let X, Xo, ..., X,, be IID, with distri-
bution F and put S, = > | X;. Assume ezistence of the moment generating function
(mgf) M(z) = Ep (e*X) , z real, and put m(t) = inf, e"**M(z). The behavior of large
deviation probabilities P (S, > t,), where t, — oo at rates slower than O(n). The
case t, =tn, if —oo <t < EY, then P (S, < nt) < [m(t)]", the

—2n"'In Pr (S, > nt) — —2Inm(t) a.s. (Fp).

Theorem 4.2. [5] (Bahadur theorem) Let {T,,} be a sequence of test statistics which
satisfies the following:

(1) Under Hy : 0 € © — {6} :
n2T, — b(0) a.s. (Fyp),

where b(#) € R.
(2) There exists an open interval I containing {b(0) : 0 € © — {6y}}, and a func-
tion g continuous on I, such that

lim —2n """ log sup [1 —F, (n%t)} = lim —2n"'log [1 — an(n%t)} =g(t), tel.
n 0€0g n

If {T.} satisfied (1)-(2), then for 6 € © — {6y}

—2n"tlog sup [1 — Fy, (T5,)] — C(0) a.s. (Fy).
[US(SH

Theorem 4.3. [3] Let X,..., X, be i.i.d. with probability density function f(x,0),
and we want to test Hy: 0 =0wvs. Hy : 0 > 0. Forj=1,2,letT,; => " fi(z;)/vn
be a sequence of statistics such that Hy will be rejected for large values of T, ; and
let ; be the test based on T, ;. Assume Eo(fi(z)) > 0,V0 € O, Eo(fi(x)) = 0,
Var(fi(x)) >0 for j =1,2. Then
1. If the derivative b;(0) is finite for j = 1,2, then

L G0) _ Varpo(f(s) {b’l(o)r

6—0 Cy(0)  Vare=o(fi(x)) [05(0)] °
where b;(8) = Eg(f;(x)), and C;(0) is the EBS of test p; at 6.
2. If the derivative U}(0) is infinite for j = 1,2, then

lim 01(9) . VCL’/’@Z(](fQ(LL’)) |i

= lim b (9)} 2
0—0 Cy(0)  Varg—o(fi(z)) .

60 bl (6)
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' 0 =0 vs.

are two test statistics for testing Hy

28
W and T
) under Hy, respectively, and that
)

Theorem 4.4. [6] If Ty
: 0 > 0 with distribution functwns F ) and F
) at 6 for any o, then if ¢, is the test based on 7Y

Y

T,g ) is at least as powerful as T

7 =1,2, then

c)g) > cl (o).
Corollary 4.1. [6] If T,, is the uniformly most powerful test for all v, then it is the
best via EBS.
Theorem 4.5. [3]

2 < mg(t) <et, V:0<t <05,
where
-1
_ —zt
mg(t) = ir;%e —

Theorem 4.6. [3]

(1) mp(t) > 2te™", Vt >0,
(2) mL(t) < tel™t, Vit > 0.852,
(3) mu(t (th) V>4,
where mL(t) inf,e(,1) e *mz csc(mz) and csc is an abbreviation for cosecant
function.

olz)

Theorem 4.7. For x > 0,
1 1
—— | <1-®x) <
| <1-00) <2

o) |1 -

Where ¢ is the pdf of standard normal distribution

Theorem 4.8. [3] Forz > 0,
= o) > 2@
Vi
Lemma 1. [3]

> 3 —zt — t
(1) mp(t) > onz1£16 e

e~ t?/(t+1) (t 1)
(2) mp(t) < R
sin (#5)

my(t) = inf,o 0= <inf, o <5 < —et, t<0
—3<t<0.
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5. DERIVATION OF THE EBS WITH GENERAL DF Hj,

In this section we will study testing problem (3.4). We will compare the six methods
Fisher, logistic, sum of p-values,the inverse normal, Tippett’s method and maximum
of p-values using EBS.

Let Xi,..., X, be IID with probability density function (2.3) and we want to test
(3.4). Then by (2.1), the p-value is given by

x

(5.1) Po(X,) =1—FH(X,)=1—¢*

The next three lemmas give the EBS for Fisher (Cr), logistic (Cf), inverse nor-
mal (Cy), sum of p-values (Cs), Tippett’s method (C7) and maximum of p-values

(Cynaz)methods.

Lemma 2. The exact Bahadurs slope (EBSs) result for the tests, which is given at
the end of Section 3, are as follows:
B1. Fisher method. Cp(¥) = bp(V¥) — 21In(bp(V)) + 2In(2) — 2,

where

bp(¥) = =2 (¢(1) = Eg, (e + 1)),

and Y(-) = % is the digamma function.

B2. Logistic method. Cp(9¥) = —21In(m(bL(¥))), where

mp(t) = Zei%fl) e *'rz cse(rz)

and
br(0) = Eg, (e +1) — Eg, e —(1).

B3. Sum of p-values method. Cg(d) = —21In(m(bs(?))), where

1—e*
t)=infe ?t— —
ms(t) inf ¢ .

and

bs(¥) = —Eg, (M +1)7".
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B4. Inverse Normal method. Cx(¥) = —2In(m(by(9))) = b3 (9),

where

bN(ﬁ) = - IEHA [eAﬂ IE‘Beta(e/w—l,l) (b ((I)_l(l - V))}

Proof of B1. For Fisher procedure,

2w

By Theorem 4.2 (1) and by the strong law of large number (SLLN), we have

TF W.p.l o H; e~ T
S be(9) = 2E ln[l e ]

then
br(9) = ~2Ep, Epyaan (n [1— e ] A).

Now, let U = e~ @A) and Z=1—¢""U then

En, / In [1 _ 6—@*1 6_(95_/\19)_6—(%/\19) s
ie

1
= Ey, e / In(2)(1 — 2)°"" " dz = By, Epegar,eroy In Z
0

= (1) — Eg, (e’ +1).

Thus, bp(¥) = =2 (¢(1) — Eg, v(e* + 1)) .

Now under Hy, then using Theorem 4.1, we have mg(t) = inf,~oe **Mg(2), where
Ms(2) = Ep(e*X). Under Hy : — (1 —e—e*””> ~ U(=1,0), so Mg(z) = = by
Theorem 4.2 (2), we complete the proof, that is

br(¥) ol- 2

) = bp(0)—2In(bp(9))+21n(2)—2.
]

Proof of B2. For logistic procedure,
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By Theorem 4.2 (1) and by the strong law of large number (SLLN), we have

T W.D. 1 - _671
—L 2% by (9) = —E™ In [ﬁ]

vn
then
1—e "
bL(ﬁ) = _EHA IEEV(Aﬁ,l) <1n [ﬁ |A>
= —Ey, / In [1 — e‘eﬂ] e~ (@A) =T g Ey, / ot (@=AY)—em @A g
R R
Now,

2 —(z—AQ)—e— (@A) _
/6 e (z—AV)—e dr = e A19’
R

and from Proof (B1), /

In [1 - e‘eﬁ] e~ @ AN g — ap(1) — (e’ + 1), Thus
R

bL(ﬁ) = IEHA (w(e/w + 1)) - IEHA (6_A19) - w(l)

Proof of B3. For sum of p-values procedure,

Zl—ee

It follows from Theorem 4.2 (1) and by the strong law of large number (SLLN) that

—x

% VPlop(0) = —EM (1 _ e—e’”)

then

-1

bs(9) = — Bty By { (1— ¢ ) A} = —Ep, (¢ +1)7
Now, by Theorem 4.1, we have mg(t) = inf,~q e‘ZtMS( ), where Mg(z2) = Ep(e*¥X).
Under Hy : — (1 — e_efx) ~ U(=1,0), so Mg(z) = =22 by part (2) of Theorem
4.2 we complete the proof, we conclude that Cg(d)) = —2 hl(ms(bs( )))- O

Proof of Bj. For the inverse normal procedure,

Zn: o1 (1 — e‘eﬁ>
Ty =— .
i=1 v
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By Theorem 4.2 (1) and the strong law of large number (SLLN), we have

w.p.1

T 22 by () = —EM o (1- ),

(V) = = Eu, Egvao {(19_1 (1 — e_efx> |A} ,

by (9)
let U =&! (1 — e_eﬂ> so we have
by(9) = —Ep, { / Mug(u) (1 — () du}
R

Ry {/%ew%(;) (1= B! du} |

where —ug(u) = “L¢(u). Now, by using integration by parts and substituting

U

V=1-®(U), we get
b 0) =~ B, {7 (4= 1) [ "2 (071 =) v

= - EHA {€A19 IE‘ZBeta(eAﬂ—l,l) ¢ ((I)_l(l - U))}
o(V2¢ Lo
where ¢* (() = \/%gb (\/§C> and (45(()) =25 = V271¢(0).
Now, by Theorem 1, we have my(t) = inf,~oe**My(z), where My(z) = Ep(e*X).
Under H, : — <1 - e‘eﬁ> ~ N(0,1), so My(z) = **/2, by part (2) of Theorem 4.2,
Cy(9) = =2In(mp (by(9))) = b3 (9). O

Theorem 1. Let Uy, Us, ... beii.d. with probability density function f and suppose
that we want to test Hy : U; ~ U(0,1) vs. Hy : U; ~ f on (0,1) but not U(0,1).
Then Chor(f) = —21n (ess.supy(u))

where ess.supy(u) = sup{u: f(u) > 0} w.p.1 under f. [3]

Lemma 3.

Omax (19) =0.
3]

d
Proof. Assume that d_AH A = ga the probability density function of the DF Hjy, then
the joint probability density function of X and A is

h(z, A) = f(z|A)ga

e—(z—AD)

h(z, A) = e~ @A9- ga,x € R.
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The marginal probability density function of X is

(o) = / (@A) A e R > 0
(k,00)

B 6A19
= e_m/ e (e‘e x) dHy.
(k,00)

67&0

Now, under ¢ the p-value P=1—¢"° ", so
5.2) hp) = [ -y pe 0.1)
(,00)
Then by Theorem 1 we have ess.sups(p) = 1. Therefore, Cyq.(9) = 0. O

Theorem 2. If 7(In7)*f(7) — 0 as 7 — 0, then Cr(f) = 0.

Lemma 4.
Cr(9) = 0.
Proof. From (5.2), we have
d oAD d oAD
53 == [ e = g B )

So by Theorem 2, we get

lim p(In p)?h(p) = — lim p(Inp)? 4 — By, (1 — p)°*

lim p(lnp)*A(p limp(lnp)* | =5 By (1= p :
Clearly, applying by L’Hopital rule twice we have, 1iII(1) p(Inp)? = 0, also,

p—
. d A |
Which implies C7(9) = 0. O
6. COMPARISON OF THE EBSS WHEN ¢ — 0

In this section, we will compare the EBSs that obtained in Section (5). We will
find the limit of the ratio of the EBSs of any two methods when 9 — 0.

Corollary 1. The limits of ratios of different tests are as follows:

Cr(¥)  Craa(9)

“l Col) ~ o)

= 0, where C@(ﬁ) € {Cp(ﬁ),CL(ﬁ), Cg(ﬁ),CN(ﬁ)} .

C2. (6323 (Ts,TF) — 1.80314
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C3. e (T,,Tr) — 1.97729
C4. es (T, Tr) — 1.96121
C5. e (T, Ty) — 1.0082

C6. e (Ty, Ts) — 1.08764

C7. eB (TL,TS) — 1.09656

Proof of C2.
br(¥) = =2 (¥(1) = Eg, (e +1)).
Therefore,

Vp(9) = 2Ky, (Ae[wwl(l + eM)) ,

where 1 (z) = %w(z) is the trigamma function.

o s
Ilglir(l) bp(9) =2 (E — 1) Eg, (A) < 0.

Also
bs(9) = =By, (e +1)7",
then

lim b () = EL%%EHA (A cosh™? (%)) = 1Eu, (A) < 0.

J9—0

Now under Hy : hp(z) = —2In [1 —e‘eﬂ] ~ X3 and hg(z) = — (1 —e_efz> ~

L B0 sm N
U(—1,0),s0 Vary—o(hr(z)) = 4 and Vary—o(hs(z)) = 1, also, b(0) =% 8) .
F
) . Cs(v) 27 ..
B 1 Th 4.3 t 1 = = 1.80314. Similarl
y applying Theorem (4.3) we ge lim Cr®) ~ (o) imilarly we

can prove other parts.

O
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6.1. The Limiting ratio of the EBS for different tests when ¥ — oco. Now,

we will compare the limit of the ratio of EBSs for any two methods when ¥ — oo.

Corollary 2. The limits of ratios for different tests are as follows:

D1. e (Tp, Tr) — 1
D2. ey (Ts, Tr) — 1
D3. ey (T, Ts) — 0
D4. lim {Cr(¥) = CL(9)} <0
D5. lim {Cs(¥) = Cr(¥)} <0

De6. (672] (TN,TF) — 0,63 (TN,TL) — 0,63 (TL,Ts) — 1.

Proof of D1. By Lemma (1) part (1) C(0) < 2b.(¢). So

CL(V)
Cr(9)

2, ()

= 0n(9) —2n(bp (V) + 2In(2) = 2°

It is sufficient to obtain lim 2bL(Q9).

Therefore,

A9 _ —A9 _
g 20000 By (e + 1) —Epy e ¥(1)

Y¥—00 bF(’lg) J—00 w(l) — EHA w(eM + 1) =1

So,

. CL(v)
1
9500 Cp(D)

<1

Also, by Theorem (4.6) part (2), we have CL(¥) > 2b.,(9) — 21In (b, (V) — 2. So

-2
n(2) —2

L) 2;,(9) — 21n (b, (9))
9500 Cp(9) = 0500 bp(0) — 2In(bp(9)) + 21
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It is sufficient to obtain the limit of lim 2bL(19).
Therefore,
A9 _ A9 _
g 20000 By (e + 1) —Egy e v _
¥—00 bF(ﬁ) Y—00 Qﬂ(l) —Epn, w(eM + 1)
Then,
. CL(v)
1 > 1
2500 Cp(9) =
Thus, by pinching theorem, we have ﬁh_)ngo g}iii; =1
Proof of D2. By Lemma (1) part (3) Cs(¥) < —21n(2) — 2In(—bg(9)). So
lim Cs(9) <1 —21n(2) — 2In(—bg(9)) .

2500 Cp(1) = 9500 bp (V) — 21n(bp(0)) + 21n(2) — 2

It is sufficient to obtain the limit of lim —2 ln(—bs(ﬁ))‘
Then

—2ln(=bs(¥)) . —InEg, (1+eM)7
T e Ey (e 1 1) = o)

Now, by Jensen’s inequality where the logarithm is concave function, then

—Eg, (1+e™) 7 <Egy,ln (14 M),

SO
Eg, In (1+ eM)

Epy (e +1) — (1)

o Z2(bs(9))
Y—o00 bp(ig)

< lim
¥—00

Now, by using Gauss’s integral for asymptotic expansion of ¢

1 /1 1 1
=Inz— — — ~ - 17 g
Y(e) =lnz -5 /0 (2 t+et—1)e ’
we get

P(1+er) =1n (1+ eM) — % — /OO (1 _ % + 1 ) o t(1+er) gy
0

2(1 4 M 2 et —1

xln(1+eAﬁ)asz9—>oo.

Therefore,

-2 ll’l(—bg(ﬁ)) < lim EHA In (1 + €A19)

¥—00 bF(ﬁ) ¥—00 EHA ln(eAﬁ + 1) - w(l) -t
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So

Q

V)
e

2500 Cp(V
Also, by Lemma (1) part (3), we have Cg(d) > —2 — 2In(—bg(1)). So, in the same

<1

~—

manner, we get

Q

lim s(0)
¥—ro0 Cp(ﬁ)

Clearly, by pinching theorem, we have lim gj(ﬁ)

> 1.

=

Proof of D3. From B4 we have
CN(,&) = E?{A |:6A19 IEBeta(e[w—l,l) ¢ (cb_l(]- - V))}

By Lemma (1) part (3) Cs(¥) > —2 — 21In(—bg(1)), we have
E%{A [€A19 IE‘EBem(e/W—l,l) ¢ ((I)_l(l - V)):|
Y—00 05(19) T ¥—o00 -2 — QIH(—bs(ﬁ))
— lim E?JA [eAﬁ IEBeta(eAﬁ—l,l) ¢ ((I)_l(l - V))} .
=00 —2—2InEy, (14 eA)™!
Now by using reflection symmetry, then V' ~ Beta (eM -1, 1) then
1 -V ~ Beta (1,61\”9 — 1) , then

lim CN(Q?) < lim E?{A [€A19 IE‘EBeta(l,e/W—l) (b(q)—l(v))]
Y—r00 05(19) T 900 -2 _ QIHEHA (1 + eAﬁ)_l )

Now we will find the limiting distribution for Zy = MV, when e — oo, Let,

Gz, (z9) = Py[Zy < 29]
—A9

zge
= PV £ 2] = By o) = () [T ),
0

A9

z etV —1
:1—[1—6%] L0 < zg < M.
Now,
limoas o [1— 25]°
lim GZﬁ (Zﬁ) —q_ ' AY_y |: EAZ} -1 6_20, 2> 0.
e — 00 llmEAﬁ_)OO [1 — e/\_%}

Thus, A1ﬂim e Beta(1, e*” — 1) = Exponential(1) and by Jensen’s inequality where

€ — 00
the logarithm is concave function, we get

E; o~ MY,
i S8 <y B 0 @TW))
900 Cg() ~ 000 24+ 2Ey, In(1+ eA?)
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Hence,

Y—00 05(19)

Proof of D4. By Theorem 4.6 (2), we have

= bp(d) — 2b,(9) + 21n (Zﬁ%) +21n(2).
Now,
bp(ig) - QbL(ﬁ) = 2EHA €_A19.

Also,

i 22W) By (e +1) —Eg, e —y(1) 1

Do bp(0) | vmee 2(0(1) — Eg, (M + 1)) 2
Then,

1911_}:(1010 (Cp(V) —CL(W)) < q9h_>120 (bp(9) — 2Inbp(V)) + 2791i_>:r101O In (Z;Eg;) +21n(2)

= 0—2In(2) + 2In(2) = 0.
So, Cr(¥) < CL(V) for large v.

Proof of D5. By Theorem (4.6) part (2), we have

CL(Q9) Z QbL(’lg) —2Iln (bL(’lg)) -2
also by Lemma (1) part (3), we have
Cs(V) < =2In(2) — 2In(=bs(0)),

we get

Cs(¥) — Cp(9) < d(0)
where
d(¥) = =21In(2) — 2In(—bs () — 20 (V) + 21In (b (V) + 2.

Since, the term by () dominates the term In by (+9). Thus,

d(V) = —In(=bs(?)) — br (V).



BAHADUR’S STOCHASTIC COMPARISON OF ASYMPTOTIC..... 39

Now, by (B2) and (B3), we have
d(¥) = —In (EHA (M + 1)‘1) — Eg, (e + 1) + Eg, e + (1),
Again by using Jensen’s inequality, we have
—n (B, (¢ +1)7") S Egyy In (M 4 1)
From proof (D2) we proved
Ep, In (e* +1) < Eg, ¢ (™ +1),
then
d(¥) <Eg,In (e +1) — Eg, (e +1) + Egr, e +9(1)
<Ep, (" +1) = Ep, (e + 1) + By, e +0(1).

So,
d(¥) < Eg, e ™ +9(1).

Now, when 9 — oo, we get
d(9¥) < (1) = —0.577216.

Which implies
lim (Cg(¥) — Cp(9)) < —0.577216 < 0

¥—00

Proof of D6. Straight forward by using D1 to D3. O

7. CONCLUSION

In this section we will compare the EBS for the six combination producers. From
the relations in section (6) we conclude that locally as ¥ — 0, the logistic procedure
is better than all other procedures since it has the highest EBS, followed in decreasing
order by the inverse normal, sum of p-values procedure and the Fisher’s procedure.

The worst two are the Tippett’s and the maximum of p-values procedures, i.e,

CL(ﬂ) > CN(ﬁ) > 05(19) > Cp(ﬁ) > CT(ﬁ) = Cmax(ﬁ)
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Whereas, from result of Section (6.1) as ¥ — oo the worst methods are Tippett’s
and the maximum of p-values. The logistic is better than all other procedures,
followed in decreasing order by sum of p-values procedure, Fisher’s and the inverse

normal procedures, i.e,

CL(d) > Cs(0) > Cp(9) > O (0) > Cr(¥) = Coaa (V).
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