MONOTONE ITERATIVE TECHNIQUE FOR A COUPLED SYSTEM OF NONLINEAR CONFORMABLE FRACTIONAL DYNAMIC EQUATIONS ON TIME SCALES

BOUHARKET BENDOUMA

ABSTRACT. In this paper, we investigate the existence of extremal solutions for a coupled system of nonlinear conformable fractional dynamic equations on time scales, by applying the monotone iterative technique combined with the method of lower and upper solutions. At last, an example is given to illustrate our main result.

1. Introduction

Fractional differential equations plays an important role in describing many phenomena and processes in various fields of science such as physics, chemistry, control systems, population dynamics, etc., see [16, 20, 23]. In [6], Benkhettou et al. introduced a conformable fractional calculus on an arbitrary time scale, which provides a natural extension of the conformable fractional calculus. The notion of conformable fractional calculus on an arbitrary time scales was developed in [1, 4, 5, 6, 12, 19, 25].

In [24], G. Wang et al. adopted the method of monotone iteration combined with the method of upper and lower solutions to consider the following system of nonlinear

Received: Jan. 19, 2022 Accepted: May 8, 2022.

 $^{2010\ \}textit{Mathematics Subject Classification.}\ \ 34\text{A}08,\ 34\text{A}12,\ 34\text{B}15,\ 34\text{N}05,\ 26\text{A}33,\ 26\text{E}70.$

Key words and phrases. Conformable fractional calculus on time scales, conformable fractional

dynamic equation, comparison principles, upper and lower solutions, monotone iterative method.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

fractional differential equations:

$$\begin{cases} D^{\alpha}u(t) = f(t, u(t), v(t)), & t \in (0, T], \\ D^{\alpha}v(t) = g(t, v(t), u(t)), & t \in (0, T], \\ t^{1-\alpha}u(t)|_{t=0} = x_0, \ t^{1-\alpha}v(t)|_{t=0} = y_0, \end{cases}$$

where $0 < T < \infty$, $f, g \in C([0, T] \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$, $x_0, y_0 \in \mathbb{R}$ and $x_0 \leq y_0$, D^{α} is the standard Riemann-Liouville fractional derivative of order $\alpha \in (0, 1]$.

S. Liu et al. in [17], studied the existence of extremal iteration solution to the following coupled system of conformable nonlinear fractional differential equations:

(1.1)
$$\begin{cases} x^{(\alpha)}(t) = f(t, x(t), y(t)), & t \in [a, b], \\ y^{(\alpha)}(t) = g(t, y(t), x(t)), & t \in [a, b], \\ x(a) = x_0^*, \ y(a) = y_0^*, \end{cases}$$

where, $x_0^*, y_0^* \in \mathbb{R}$, $x_0^* \leq y_0^*$, $f, g \in C([a, b] \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $x^{(\alpha)}, y^{(\alpha)}$ are the conformable fractional derivatives with $\alpha \in (0, 1]$.

Motivated by the above works, this paper is concerned with the existence of extremal solutions for the following coupled system of nonlinear conformable fractional dynamic equations on time scales:

(1.2)
$$\begin{cases} x_{\Delta}^{(\alpha)}(t) = f(t, x^{\sigma}(t), y^{\sigma}(t)), & t \in I = [a, b]_{\mathbb{T}}, \\ y_{\Delta}^{(\alpha)}(t) = g(t, y^{\sigma}(t), x^{\sigma}(t)), & t \in I = [a, b]_{\mathbb{T}}, \\ x(a) = \lambda_0, \ y(a) = \beta_0. \end{cases}$$

Here, \mathbb{T} is an arbitrary bounded time scale, $J = [a, \sigma(b)]_{\mathbb{T}}$ with $a, b \in \mathbb{T}$, 0 < a < b, $\lambda_0, \beta_0 \in \mathbb{R}, \lambda_0 \leq \beta_0, f, g : I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuous functions and $x_{\Delta}^{(\alpha)}, y_{\Delta}^{(\alpha)}$ are the conformable fractional derivatives (on time scales) with $\alpha \in (0, 1]$. For this purpose, we use the monotone iterative technique combined with the method of upper and lower solutions. For applications of monotone iterative technique combined with the method of upper and lower solutions, one can refer to literatures [2, 3, 9, 11, 13, 14, 17, 18, 21, 22, 24].

This paper is organized as follows. In Section 2, we introduce the definition of conformable fractional calculus on time scales and their important properties. In Section 3, by use of the monotone iterative technique and the method of upper and lower solutions, we prove the existence of extremal solutions of problem (1.2). Finally, an example is given to illustrate our results.

2. Preliminaries

In this section, we present some necessary definitions and results from conformable fractional calculus on time scales. These definitions and theorems can be found in the literatures [5, 6, 7, 8, 15, 25].

Let \mathbb{T} be a time scale, which is a closed subset of \mathbb{R} . For $t \in \mathbb{T}$, we define the forward jump operator $\sigma: \mathbb{T} \to \mathbb{T}$ by $\sigma(t) := \inf\{s \in \mathbb{T} : s > t\}$. For $a, b \in \mathbb{T}$ we define the closed interval $[a, b]_{\mathbb{T}} := \{t \in \mathbb{T} : a \leq t \leq b\}$.

Definition 2.1. [7] The function $f: \mathbb{T} \to \mathbb{R}$ is called rd-continuous provided it is continuous at right-dense point in \mathbb{T} and has a left-sided limits exist at left-dense points in \mathbb{T} , write $f \in C_{rd}(\mathbb{T}, \mathbb{R})$.

Definition 2.2. [15] Given a function $f:[0,\infty)\to\mathbb{R}$ and a real constant $\alpha\in(0,1]$. The conformable fractional derivative of f of order α is defined by,

(2.1)
$$f^{(\alpha)}(t) := \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}$$

for all t>0. If $f^{(\alpha)}(t)$ exists and is finite, we say that f is α -differentiable at t.

Definition 2.3. [6] Let $f: \mathbb{T} \to \mathbb{R}$, $t \in \mathbb{T}^{\kappa}$, and $\alpha \in]0,1]$. For t > 0, we define $f_{\Delta}^{(\alpha)}(t)$ to be the number (provided it exists) with the property that, given any $\epsilon > 0$, there is a δ -neighborhood $\mathcal{V}_t \subset \mathbb{T}$ (i.e., $\mathcal{V}_t :=]t - \delta, t + \delta[\cap \mathbb{T})$ of $t, \delta > 0$, such that

$$\left| \left[f(\sigma(t)) - f(s) \right] t^{1-\alpha} - f_{\Delta}^{(\alpha)}(t) \left[\sigma(t) - s \right] \right| \le \epsilon \left| \sigma(t) - s \right| \text{ for all } s \in \mathcal{V}_t.$$

We call $f_{\Delta}^{(\alpha)}(t)$ the conformable fractional derivative of f of order α at t, and we define the conformable fractional derivative at 0 as $f_{\Delta}^{(\alpha)}(0) = \lim_{t \to 0^+} f_{\Delta}^{(\alpha)}(t)$.

Remark 1. (1) If $\alpha = 1$, we have $f_{\Delta}^{(\alpha)} = f^{\Delta}$, if $\alpha = 0$, we denote $f_{\Delta}^{(\alpha)} = f$.

(ii) If $\mathbb{T} = \mathbb{R}$, then $f_{\Delta}^{(\alpha)} = f^{(\alpha)}$ is the conformable fractional derivative of f of order α introduced in [15].

We introduce the following space:

 $C^{\alpha}_{rd}(I,\mathbb{R}) = \{f \text{ is conformal fractional differentiable of order } \alpha \text{ on } I$ $and \ f^{(\alpha)}_{\lambda} \in C_{rd}(I,\mathbb{R})\}.$

Theorem 2.1. [15] Assume $f, g : \mathbb{T} \to \mathbb{R}$ are conformable fractional differentiable of order α . Then,

- (i) the sum f + g is conformable fractional differentiable with $(f + g)^{(\alpha)}_{\Delta} = f^{(\alpha)}_{\Delta} + g^{(\alpha)}_{\Delta}$;
- (ii) for any $\lambda \in \mathbb{R}$, λf is conformable fractional differentiable with $(\lambda f)_{\Delta}^{(\alpha)} = \lambda f_{\Delta}^{(\alpha)}$;
- (iii) if f and g are continuous, then the product fg is conformable fractional differentiable with $(fg)^{(\alpha)}_{\Delta} = f^{(\alpha)}_{\Delta}g + (f \circ \sigma)g^{(\alpha)}_{\Delta} = f^{(\alpha)}_{\Delta}(g \circ \sigma) + fg^{(\alpha)}_{\Delta};$
- (iv) if f and g are continuous, then f/g is conformable fractional differentiable with

$$\left(\frac{f}{g}\right)_{\Lambda}^{(\alpha)} = \frac{f_{\Delta}^{(\alpha)}g - fg_{\Delta}^{(\alpha)}}{g(g \circ \sigma)},$$

valid at all points $t \in \mathbb{T}^{\kappa}$ for which $g(t)g(\sigma(t)) \neq 0$.

Now we introduce the α -conformable fractional integral (or α -fractional integral) on time scales.

Definition 2.4. [6] Let $f: \mathbb{T} \to \mathbb{R}$ be a regulated function. Then the α -fractional integral of f, $0 < \alpha \le 1$, is defined by $\int f(t) \Delta^{\alpha} t := \int f(t) t^{\alpha-1} \Delta t$.

Theorem 2.2. [6] Let $\alpha \in (0,1]$, $a,b,c \in \mathbb{T}$, $\lambda \in \mathbb{R}$, and f,g be two rd-continuous functions. Then,

(i)
$$\int_{a}^{b} [\lambda f(t) + g(t)] \Delta^{\alpha} t = \lambda \int_{a}^{b} f(t) \Delta^{\alpha} t + \int_{a}^{b} g(t) \Delta^{\alpha} t;$$

(ii)
$$\int_{a}^{b} f(t)\Delta^{\alpha}t = -\int_{b}^{a} f(t)\Delta^{\alpha}t;$$

(iii)
$$\int_{a}^{b} f(t)\Delta^{\alpha}t = \int_{a}^{c} f(t)\Delta^{\alpha}t + \int_{c}^{b} f(t)\Delta^{\alpha}t;$$

(iv) if there exist $g: \mathbb{T} \to \mathbb{R}$ with $|f(t)| \leq g(t)$ for all $t \in [a, b]$, then $\left| \int_a^b f(t) \Delta^{\alpha} t \right| \leq \int_a^b g(t) \Delta^{\alpha} t$;

(v) if
$$f(t) > 0$$
 for all $t \in [a, b]$, then $\int_a^b f(t) \Delta^{\alpha} t \ge 0$.

Definition 2.5. [25] Let $E \subset \mathbb{T}$ be a Δ -measurable set and let $\varphi : \mathbb{T} \longrightarrow \overline{\mathbb{R}}$ be a Δ -measurable function. Say that φ belongs to $L^1_{\alpha,\Delta}(E,\mathbb{R})$ provided that either

$$\int_{E} |\varphi(s)| \Delta^{\alpha} s < +\infty.$$

Lemma 2.1. [5] The initial problem

(2.2)
$$\begin{cases} x_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}p \ x(\sigma(t)) = h(t), & t \in I = [a, b]_{\mathbb{T}}; \\ x(a) = \lambda_0, \end{cases}$$

with $-p \in \mathcal{R}_{\mu}$, $\lambda_0 \in \mathbb{R}$, and $h \in L^1_{\alpha,\Delta}(I,\mathbb{R})$, has a unique solution $x \in C^{\alpha}_{rd}(J,\mathbb{R})$, given by the following expression

(2.3)
$$x(t) := \int_{[a,t]_{\mathbb{T}}} e_{-p}(s,t)h(s)\Delta^{\alpha}s + \lambda_0 e_{-p}(a,t), \quad t \in J = [a,\sigma(b)]_{\mathbb{T}}.$$

As a direct consequence of expression (2.3), we deduce the following comparison result:

Lemma 2.2. (Comparison principle 1). Let $x \in C^{\alpha}_{rd}(J, \mathbb{R})$, then the following comparison principles hold for every $-p \in \mathcal{R}^+_{\mu}$:

(i) If $\begin{cases} x_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}p \ x(\sigma(t)) \ge 0, & t \in I; \\ x(a) > 0. \end{cases}$

then $x \geq 0$ on J.

(ii) If
$$\begin{cases} x_{\Delta}^{(\alpha)}(t)-t^{1-\alpha}p\ x(\sigma(t))\leq 0,\quad t\in I;\\ x(a)\leq 0, \end{cases}$$

then $x \leq 0$ on J.

3. Main Results

In this section, we prove the existence of extremal solutions for problem (1.2). We introduce the concept of coupled lower and upper solutions of this problem as follows.

Definition 3.1. We say that γ , $\delta \in C^{\alpha}_{rd}(J, \mathbb{R})$ is a pair of coupled lower and upper solutions of the problem (1.2), if $\gamma \leq \delta$ in J and the following inequalities hold:

(3.1)
$$\begin{cases} \gamma_{\Delta}^{(\alpha)}(t) \leq f(t, \gamma^{\sigma}(t), \delta^{\sigma}(t)), & \text{for } t \in I, \ \gamma(a) \leq \lambda_0, \\ \delta_{\Delta}^{(\alpha)}(t) \geq g(t, \delta^{\sigma}(t), \gamma^{\sigma}(t)), & \text{for } t \in I, \ \delta(a) \geq \beta_0. \end{cases}$$

We assume the following hypothesis:

- (H_1) $f, g: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuous functions.
- (H_2) There exists $\gamma, \delta \in C^{\alpha}_{rd}(J, \mathbb{R})$, a pair of coupled lower and upper solutions of the problem (1.2).
- (H_3) There exist constants $p,q\in\mathbb{R}$ with $-p,-q\in\mathcal{R}_{\mu}^+$ and $q\leq 0$ such that

$$\begin{cases} f(t,x,y) - f(t,\overline{x},\overline{y}) \geq t^{1-\alpha}p(x-\overline{x}) + t^{1-\alpha}q(y-\overline{y}), \\ \\ g(t,\overline{y},\overline{x}) - g(t,y,x) \geq t^{1-\alpha}p(\overline{y}-y) + t^{1-\alpha}q(\overline{x}-x), \end{cases}$$

where $\gamma^{\sigma}(t) \leq \overline{x} \leq x \leq \delta^{\sigma}(t)$, $\gamma^{\sigma}(t) \leq y \leq \overline{y} \leq \delta^{\sigma}(t)$ for all $t \in I$, and

$$g(t, y, x) - f(t, x, y) \ge t^{1-\alpha} p(y - x) + t^{1-\alpha} q(x - y),$$

where $\gamma^{\sigma}(t) \leq x \leq y \leq \delta^{\sigma}(t)$ for all $t \in I$.

To study the nonlinear system (1.2), we first consider the associated linear system:

(3.2)
$$\begin{cases} x_{\Delta}^{(\alpha)}(t) = h_1(t) + t^{1-\alpha}p \ x(\sigma(t)) + t^{1-\alpha}q \ y(\sigma(t)), & \text{for } t \in I = [a, b]_{\mathbb{T}}, \\ y_{\Delta}^{(\alpha)}(t) = h_2(t) + t^{1-\alpha}p \ y(\sigma(t)) + t^{1-\alpha}q \ x(\sigma(t)), & \text{for } t \in I = [a, b]_{\mathbb{T}}, \\ x(a) = \lambda_0, \ y(a) = \beta_0, \end{cases}$$

where $\alpha \in (0, 1]$, $(\lambda_0, \beta_0) \in \mathbb{R}^2$, $\lambda_0 \leq \beta_0, -p, -q \in \mathcal{R}_{\mu}, q \leq 0$ and $h_1, h_2 \in C(I, \mathbb{R})$.

Lemma 3.1. The linear system (3.2) has a unique solution $(x,y) \in C^{\alpha}_{rd}(J,\mathbb{R}) \times C^{\alpha}_{rd}(J,\mathbb{R})$, with

$$x(t) = \frac{z(t) + w(t)}{2}, \quad y(t) = \frac{z(t) - w(t)}{2}, \quad t \in J = [a, \sigma(b)]_{\mathbb{T}},$$

where

$$z(t) := \int_{[a,t]_{\mathbb{T}}} e_{-(p+q)}(s,t)(h_1 + h_2)(s)\Delta^{\alpha}s + (\lambda_0 + \beta_0)e_{-(p+q)}(a,t), \quad t \in J,$$

and

$$w(t) := \int_{[a,t]_{\mathbb{T}}} e_{-(p-q)}(s,t)(h_1 - h_2)(s)\Delta^{\alpha}s + (\lambda_0 - \beta_0)e_{-(p-q)}(a,t), \quad t \in J.$$

Proof. The pair $(x,y) \in C^{\alpha}_{rd}(J,\mathbb{R}) \times C^{\alpha}_{rd}(J,\mathbb{R})$ is a solution to system (3.2) if and only if

$$x(t) = \frac{z(t) + w(t)}{2}, \quad y(t) = \frac{z(t) - w(t)}{2}, \text{ for every } t \in J = [a, \sigma(b)]_{\mathbb{T}},$$

where z(t) and w(t) are the solutions to the following problems:

$$\begin{cases} z_{\Delta}^{(\alpha)}(t) = (h_1(t) + h_2(t)) + t^{1-\alpha}(p+q) \ z(\sigma(t)), & \text{for } t \in I = [a,b]_{\mathbb{T}}, \\ z(a) = \lambda_0 + \beta_0, & \end{cases}$$

and

$$\begin{cases} w_{\Delta}^{(\alpha)}(t) = (h_1(t) - h_2(t)) + t^{1-\alpha}(p-q) \ w(\sigma(t)), & \text{for } t \in I = [a, b]_{\mathbb{T}}, \\ w(a) = \lambda_0 - \beta_0. \end{cases}$$

By Lemma 2.1, we have

$$(3.3) z(t) := \int_{[a,t]_{\mathbb{T}}} e_{-(p+q)}(s,t)(h_1 + h_2)(s) \Delta^{\alpha} s + (\lambda_0 + \beta_0) e_{-(p+q)}(a,t), t \in J,$$

$$(3.4) w(t) := \int_{[a,t]_{\mathbb{T}}} e_{-(p-q)}(s,t)(h_1 - h_2)(s)\Delta^{\alpha}s + (\lambda_0 - \beta_0)e_{-(p-q)}(a,t), t \in J.$$

The proof is finished.

Lemma 3.2. (Comparison principle 2). Let $(x,y) \in C^{\alpha}_{rd}(J,\mathbb{R}) \times C^{\alpha}_{rd}(J,\mathbb{R})$ satisfy

$$\begin{cases} x_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}p \ x(\sigma(t)) + t^{1-\alpha}q \ y(\sigma(t)) \ge 0, & \text{for } t \in I = [a,b]_{\mathbb{T}}, \\ y_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}p \ y(\sigma(t)) + t^{1-\alpha}q \ x(\sigma(t)) \ge 0, & \text{for } t \in I = [a,b]_{\mathbb{T}}, \\ x(a) \ge 0, \ y(a) \ge 0, \end{cases}$$

where $\alpha \in (0,1], -p, -q \in \mathcal{R}^+_{\mu}$ and $q \leq 0$. Then $x(t) \geq 0$, $y(t) \geq 0$ for all $t \in J$.

Proof. Let w(t) = x(t) + y(t), then (3.5) is equivalent to the following:

$$\begin{cases} w_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}(p-q) \ w(\sigma(t)) \ge 0, & \text{for } t \in I = [a,b]_{\mathbb{T}}, \\ w(a) \ge 0. \end{cases}$$

By Lemma 2.2, we know that $w(t) \ge 0$, for all $t \in J$, i.e., $x(t) + y(t) \ge 0$, for all $t \in J$,

So.

$$\begin{cases} x_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}(p+q) \ x(\sigma(t)) \ge 0, & \text{for } t \in I = [a,b]_{\mathbb{T}}, \\ y_{\Delta}^{(\alpha)}(t) - t^{1-\alpha}(p+q) \ y(\sigma(t)) \ge 0, & \text{for } t \in I = [a,b]_{\mathbb{T}}, \\ x(a) \ge 0, \ y(a) \ge 0. \end{cases}$$

By Lemma 2.2, we have $x(t) \geq 0$ and $y(t) \geq 0$ for all $t \in J$. The proof is completed.

The obtained result is the following.

Theorem 3.1. Assume that (H_1) , (H_2) and (H_3) hold. Then (1.2) has an extremal system of solutions $(x^*(t), y^*(t)) \in [\gamma(t), \delta(t)] \times [\gamma(t), \delta(t)]$, and there exist two monotone sequences $\{y_n\}_{n\in\mathbb{N}}$ and $\{z_n\}_{n\in\mathbb{N}}$ converging uniformly to $x^*(t), y^*(t)$, respectively, where $y_n(t), z_n(t) \in [\gamma(t), \delta(t)]$, such that

$$\gamma =: y_0 \le y_1 \le \dots \le y_n \le \dots \le z_n \le \dots \le z_1 \le z_0 := \delta, \text{ on } J \text{ for all } n \in \mathbb{N}.$$

Proof. Firstly, for all $y_n, z_n \in C^{\alpha}_{rd}(J, \mathbb{R})$, we consider the linear system:

$$\begin{cases} y_{n+1}^{(\alpha)}(t) = f(t, y_n^{\sigma}(t), z_n^{\sigma}(t)) - t^{1-\alpha} p(y_n^{\sigma}(t) - y_{n+1}^{\sigma}(t)) - t^{1-\alpha} q(z_n^{\sigma}(t) - z_{n+1}^{\sigma}(t)), \\ \text{for } \Delta\text{-a.e. } t \in I, \\ z_{n+1}^{(\alpha)}(t) = g(t, z_n^{\sigma}(t), y_n^{\sigma}(t)) - t^{1-\alpha} p(z_n^{\sigma}(t) - z_{n+1}^{\sigma}(t)) - t^{1-\alpha} q(y_n^{\sigma}(t) - y_{n+1}^{\sigma}(t)), \\ \text{for } \Delta\text{-a.e. } t \in I, \\ y_{n+1}(a) = \lambda_0, \ z_{n+1}(a) = \beta_0, \end{cases}$$

i.e.,

1.e.,
$$(3.6) \begin{cases} y_{n+1}^{(\alpha)}(t) = (f(t, y_n^{\sigma}(t), z_n^{\sigma}(t)) - t^{1-\alpha}(py_n^{\sigma}(t) + qz_n^{\sigma}(t))) + t^{1-\alpha}(py_{n+1}^{\sigma}(t) + qz_{n+1}^{\sigma}(t)), \\ \text{for } \Delta\text{-a.e. } t \in I, \\ z_{n+1}^{(\alpha)}(t) = (g(t, z_n^{\sigma}(t), y_n^{\sigma}(t)) - t^{1-\alpha}(pz_n^{\sigma}(t) + qy_n^{\sigma}(t))) + t^{1-\alpha}(pz_{n+1}^{\sigma}(t) + qy_{n+1}^{\sigma}(t)), \\ \text{for } \Delta\text{-a.e. } t \in I, \\ y_{n+1}(a) = \lambda_0, \ z_{n+1}(a) = \beta_0. \end{cases}$$

By Lemma 3.1, the linear system (3.6) has a unique solution $(y_{n+1}, z_{n+1}) \in C^{\alpha}_{rd}(J, \mathbb{R}) \times$ $C_{rd}^{\alpha}(J,\mathbb{R})$, with

$$y_{n+1}(t) = \frac{v_{n+1}(t) + w_{n+1}(t)}{2}, \ z_{n+1}(t) = \frac{v_{n+1}(t) - w_{n+1}(t)}{2}, \ \text{for every } t \in J = [a, \sigma(b)]_{\mathbb{T}},$$

where

$$v_{n+1}(t) = \int_{[a,t]_{\mathbb{T}}} e_{-(p+q)}(s,t) \Big[f(s,y_n^{\sigma}(s),z_n^{\sigma}(s)) + g(s,z_n^{\sigma}(s),y_n^{\sigma}(s)) \\ - s^{1-\alpha}(p+q)(y_n^{\sigma}(s)+z_n^{\sigma}(s)) \Big] \Delta^{\alpha}s + (\lambda_0+\beta_0)e_{-(p+q)}(a,t), \quad t \in J,$$

and

$$w_{n+1}(t) = \int_{[a,t]_{\mathbb{T}}} e_{-(p-q)}(s,t) \Big[f(s,y_n^{\sigma}(s),z_n^{\sigma}(s)) - g(s,z_n^{\sigma}(s),y_n^{\sigma}(s)) \\ - s^{1-\alpha}(p-q)(y_n^{\sigma}(s)-z_n^{\sigma}(s)) \Big] \Delta^{\alpha}s + (\lambda_0 - \beta_0)e_{-(p-q)}(a,t), \quad t \in J.$$

Secondly, we shall prove that

$$y_n \le y_{n+1} \le z_{n+1} \le z_n$$
, on J for all $n \in \mathbb{N}$.

Let $v := y_1 - y_0 = y_1 - \gamma$, $w := z_0 - z_1 = \delta - z_1$. According to (3.6) and (H_1) - (H_2) , we have

we have
$$\begin{cases} v_{\Delta}^{(\alpha)}(t) \geq -t^{1-\alpha} p\left(y_0(\sigma(t)) - y_1(\sigma(t))\right) - t^{1-\alpha} q\left(z_0(\sigma(t)) - z_1(\sigma(t))\right), \text{ for } \Delta\text{-a.e. } t \in I, \\ v(a) \geq \lambda_0 - \lambda_0 = 0, \\ w_{\Delta}^{(\alpha)}(t) \geq t^{1-\alpha} p\left(z_0(\sigma(t)) - z_1(\sigma(t))\right) + t^{1-\alpha} q\left(y_0(\sigma(t)) - y_1(\sigma(t))\right), \text{ for } \Delta\text{-a.e. } t \in I, \\ w(a) \geq \beta_0 - \beta_0 = 0, \end{cases}$$

i.e.,

$$\begin{cases} v_{\Delta}^{(\alpha)}(t) \geq t^{1-\alpha} pv(\sigma(t)) - t^{1-\alpha} qw(\sigma(t)), \text{ for } \Delta\text{-a.e. } t \in I, \quad v(a) \geq 0, \\ \\ w_{\Delta}^{(\alpha)}(t) \geq t^{1-\alpha} pw(\sigma(t)) - t^{1-\alpha} qv(\sigma(t)), \text{ for } \Delta\text{-a.e. } t \in I, \quad w(a) \geq 0. \end{cases}$$

Then, by Lemma 3.2, we have $v(t) \ge 0$, $w(t) \ge 0$, i.e., $y_1 \ge y_0$, $z_0 \ge z_1$. Let $\xi := z_1 - y_1$. According to (3.6) and (H_3) , we have

$$\begin{split} \xi_{\Delta}^{(\alpha)}(t) &= z_{1\Delta}^{(\alpha)}(t) - y_{1\Delta}^{(\alpha)}(t) \\ &= g(t, z_0^{\sigma}(t), y_0^{\sigma}(t)) - t^{1-\alpha}(pz_0^{\sigma}(t) + qy_0^{\sigma}(t)) + t^{1-\alpha}(pz_1^{\sigma}(t) + qy_1^{\sigma}(t)) \\ &- f(t, y_0^{\sigma}(t), z_0^{\sigma}(t)) + t^{1-\alpha}(py_0^{\sigma}(t) + qz_0^{\sigma}(t)) - t^{1-\alpha}(py_1^{\sigma}(t) + qz_1^{\sigma}(t)) \\ &\geq t^{1-\alpha}p(z_1^{\sigma}(t) - y_1^{\sigma}(t)) - t^{1-\alpha}q(z_1^{\sigma}(t)) - y_1^{\sigma}(t)) = t^{1-\alpha}(p-q)\xi^{\sigma}(t). \end{split}$$

So.

(3.7)
$$\begin{cases} \xi_{\Delta}^{(\alpha)}(t) \ge t^{1-\alpha}(p-q)\xi^{\sigma}(t), \text{ for } \Delta\text{-a.e. } t \in I, \\ \xi(a) = \beta_0 - \lambda_0 \ge 0. \end{cases}$$

By Lemma 2.2, we have $\xi(t) \geq 0$, i.e., $z_1(t) \geq y_1(t)$ for all $t \in J$. By mathematical induction, we can prove that

$$y_n \le y_{n+1} \le z_{n+1} \le z_n$$
, on J for all $n \in \mathbb{N}$.

Thirdly, the sequences $\{y_n\}_{n\in\mathbb{N}}$ and $\{z_n\}_{n\in\mathbb{N}}$ are monotone and bounded, hence

$$\lim_{n \to \infty} y_n = x^*, \quad \lim_{n \to \infty} z_n = y^*,$$

 (x^*, y^*) is an extremal system of solutions to (1.2).

Finally, we prove that (1.2) has at most one extremal system of solutions. Assume that $(x, y) \in [\gamma = y_0, \delta = z_0] \times [y_0, z_0]$ is the system of solutions to (1.2), then

$$y_0 = \gamma \le x, \ y \le z_0 = \delta.$$

For some $k \in \mathbb{N}$, assume that the following relation holds

$$y_k(t) \le x(t), \ y(t) \le z_k(t), \ t \in J.$$

Let $u(t) = x(t) - y_{k+1}(t)$, $\vartheta(t) = z_{k+1}(t) - y(t)$. According to (3.6) and (H_3) , we have

$$\begin{split} u^{(\alpha)}_{\Delta}(t) &= x^{(\alpha)}_{\Delta}(t) - y_{k+1}{}^{(\alpha)}_{\Delta}(t) \\ &= f(t, x^{\sigma}(t), y^{\sigma}(t)) - f(t, y_{k}{}^{\sigma}(t), z_{k}{}^{\sigma}(t)) + t^{1-\alpha}p(y_{k}{}^{\sigma}(t) - y_{k+1}{}^{\sigma}(t)) \\ &+ t^{1-\alpha}q(z_{k}{}^{\sigma}(t) - z_{k+1}{}^{\sigma}(t)) \\ &\geq t^{1-\alpha}p(x^{\sigma}(t) - y_{k}{}^{\sigma}(t)) + t^{1-\alpha}q(y^{\sigma}(t) - z_{k}{}^{\sigma}(t)) + t^{1-\alpha}p(y_{k}{}^{\sigma}(t) - y_{k+1}{}^{\sigma}(t)) \\ &+ t^{1-\alpha}q(z_{k}{}^{\sigma}(t) - z_{k+1}{}^{\sigma}(t)) \\ &= t^{1-\alpha}p(x^{\sigma}(t) - y_{k+1}{}^{\sigma}(t)) + t^{1-\alpha}q(y^{\sigma}(t) - z_{k+1}{}^{\sigma}(t)), \end{split}$$

and

$$\begin{split} \vartheta_{\Delta}^{(\alpha)}(t) &= z_{k+1}{}_{\Delta}^{(\alpha)}(t) - y_{\Delta}^{(\alpha)}(t) \\ &= g(t, z_{k}{}^{\sigma}(t), y_{k}{}^{\sigma}(t)) - g(t, y^{\sigma}(t), x^{\sigma}(t)) - t^{1-\alpha}p(z_{k}{}^{\sigma}(t) - z_{k+1}{}^{\sigma}(t)) \\ &- t^{1-\alpha}q(y_{k}{}^{\sigma}(t) - y_{k+1}{}^{\sigma}(t)) \\ &\geq t^{1-\alpha}p(z_{k}{}^{\sigma}(t) - y^{\sigma}(t)) + t^{1-\alpha}q(y_{k}{}^{\sigma}(t) - x^{\sigma}(t)) - t^{1-\alpha}p(z_{k}{}^{\sigma}(t) - z_{k+1}{}^{\sigma}(t)) \\ &- t^{1-\alpha}q(y_{k}{}^{\sigma}(t) - y_{k+1}{}^{\sigma}(t)) \\ &= t^{1-\alpha}p(z_{k+1}{}^{\sigma}(t) - y^{\sigma}(t)) - t^{1-\alpha}q(x^{\sigma}(t) - y_{k+1}{}^{\sigma}(t)), \end{split}$$

we can get

$$\begin{cases} u_{\Delta}^{(\alpha)}(t) \geq t^{1-\alpha} p u(\sigma(t)) - t^{1-\alpha} q \vartheta(\sigma(t)), \text{ for } \Delta\text{-a.e. } t \in I, \quad u(a) \geq 0, \\ \\ \vartheta_{\Delta}^{(\alpha)}(t) \geq t^{1-\alpha} p \vartheta(\sigma(t)) - t^{1-\alpha} q u(\sigma(t)), \text{ for } \Delta\text{-a.e. } t \in I, \quad \vartheta(a) \geq 0. \end{cases}$$

Then, by Lemma 3.2, we have $u(t) \geq 0$, $\vartheta(t) \geq 0$, i.e., $y_{k+1}(t) \leq x(t)$, $y(t) \leq z_{k+1}(t)$, $t \in J$,

By the induction arguments, the following relation holds

$$y_n(t) \le x(t), \ y(t) \le z_n(t), \ t \in J.$$

Taking the limit as $n \to \infty$, we get that $x^* \le x$, $y \le y^*$ on J. Hence, $(x^*, y^*) \in [\gamma, \delta] \times [\gamma, \delta]$ is the extremal system of solutions to (1.2). So the proof is finished. \square

4. Example

In this section, we present an example where we apply Theorem 3.1.

Example 4.1. Consider the system of nonlinear conformable fractional dynamic equations:

$$\begin{cases} x_{\Delta}^{\left(\frac{1}{3}\right)}(t) = \frac{t(2 - x(\sigma(t)))^2 - y^2(\sigma(t))}{\sqrt[3]{t}}, & t \in I = [1, 2]_{\mathbb{T}}, \\ y_{\Delta}^{\left(\frac{1}{3}\right)}(t) = t^{\frac{2}{3}}(2 - y(\sigma(t)))^3 - t^{-\frac{1}{3}}x^2(\sigma(t)), & t \in I = [1, 2]_{\mathbb{T}}, \\ x(1) = 0, & y(1) = 0.5, \end{cases}$$

where $\alpha = \frac{1}{3}$, $f(t,x,y) = \frac{t(2-x)^2 - y^2}{\sqrt[3]{t}}$ and $g(t,y,x) = t^{\frac{2}{3}}(2-y)^3 - t^{-\frac{1}{3}}x^2$. It is clear that f,g are continuous functions. Take $\gamma(t) = 0 \le \delta(t) = 2$ for $t \in [1,\sigma(2)]_{\mathbb{T}}$, then

$$\gamma_{\Delta}^{(\frac{1}{3})}(t) = 0 \le f(t, \gamma^{\sigma}(t), \delta^{\sigma}(t)) = \frac{4(t-1)}{\sqrt[3]{t}} \text{ for } t \in [1, 2]_{\mathbb{T}}, \ \gamma(1) = 0 \le 0,$$

and

$$\delta_{\Delta}^{(\frac{1}{3})}(t) = 0 \ge g(t, \delta^{\sigma}(t), \gamma^{\sigma}(t)) = 0 \text{ for } t \in [1, 2]_{\mathbb{T}}, \ \delta(1) = 2 \ge 0.5,$$

then assumptions (H_1) and (H_2) holds.

Let $x, \overline{x}, y, \overline{y} \in \mathbb{R}$, then we have:

$$f(t, x, y) - f(t, \overline{x}, \overline{y}) = t^{1 - \frac{1}{3}} \left((2 - x)^2 - (2 - \overline{x})^2 \right) - \frac{1}{\sqrt[3]{t}} (y^2 - \overline{y}^2)$$

$$\geq t^{1 - \frac{1}{3}} \left(-4(x - \overline{x}) + x^2 - \overline{x}^2 \right)$$

$$\geq -4t^{1 - \frac{1}{3}} (x - \overline{x})$$

$$\geq -12t^{1 - \frac{1}{3}} (x - \overline{x}) + 0.t^{1 - \frac{1}{3}} (y - \overline{y}),$$

$$g(t, \overline{y}, \overline{x}) - g(t, y, x) = t^{\frac{2}{3}} \left((2 - \overline{y})^3 - (2 - y)^3 \right) - t^{-\frac{1}{3}} (\overline{x}^3 - x^3)$$

$$\geq t^{\frac{2}{3}} \left(-4(\overline{y} - y) + 2(\overline{y}^2 - y^2) - (\overline{y}^3 - y^3) \right)$$

$$\geq -12t^{1 - \frac{1}{3}} (\overline{y} - y) + 0.t^{1 - \frac{1}{3}} (\overline{x} - x),$$

with $\gamma^{\sigma}(t) \leq \overline{x} \leq x \leq \delta^{\sigma}(t)$, $\gamma^{\sigma}(t) \leq y \leq \overline{y} \leq \delta^{\sigma}(t)$ for all $t \in I$, and we have

$$g(t,y,x) - f(t,x,y) = t^{\frac{2}{3}} \left((2-y)^3 - (2-x)^2 \right) + t^{-\frac{1}{3}} (y^2 - x^2)$$

$$\geq t^{\frac{2}{3}} \left(-4(y-x) + (4-x^2 + 2y^2) - y^3 \right)$$

$$\geq -12t^{1-\frac{1}{3}} (y-x) + 0.t^{1-\frac{1}{3}} (x-y).$$

with $\gamma^{\sigma}(t) \leq x \leq y \leq \delta^{\sigma}(t)$, for all $t \in I$.

Hence the assumption (H_3) holds with p=-12 and q=0. By Theorem 3.1, the nonlinear system (4.1) has the extremal solution $(x^*,y^*) \in C^{\frac{1}{3}}_{rd}([1,\sigma(2)]_{\mathbb{T}}) \times C^{\frac{1}{3}}_{rd}([1,\sigma(2)]_{\mathbb{T}})$, such that $(x^*,y^*) \in [\gamma,\delta] \times [\gamma,\delta]$ on $[1,\sigma(2)]_{\mathbb{T}}$, which can be obtained by taking limits from the iterative sequences:

$$x_{n+1}(t) = \int_{[1,t]_{\mathbb{T}}} s^{\frac{-2}{3}} e_{12}(s,t) \left[\frac{t(2 - x_n(\sigma(t)))^2 - y_n^2(\sigma(t))}{\sqrt[3]{t}} + 12(x_n^{\sigma}(s)) \right] \Delta s,$$

$$t \in J = [1, \sigma(2)]_{\mathbb{T}},$$

$$y_{n+1}(t) = 0.5e_{12}(1,t) + \int_{[1,t]_{\mathbb{T}}} s^{\frac{-2}{3}} e_{12}(s,t) \left[t^{\frac{2}{3}} (2 - y_n(\sigma(t)))^3 - t^{-\frac{1}{3}} x_n^2(\sigma(t)) + 12(y_n^{\sigma}(s)) \right] \Delta s,$$

$$t \in J,$$

CONCLUSION

In this paper, we have considered the existence of extremal solutions for a coupled system of nonlinear conformable fractional dynamic equations on time scales. This result will be obtained by using the monotone iterative technique combined with the method of lower and upper solutions.

Acknowledgement

I would like to thank the editor and the anonymous referees for helpful comments.

References

- [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math, 279 (2015), 57–66.
- [2] T. Abdeljawad, Q. Al-Mdallal and F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, *Chaos, Soli. Fract*, 119 (2019), 94–101.
- [3] S. Ali, K. Shah, H. Khan, M. Arif and S. Mahmood, Monotone iterative techniques and Ulam-Hyers stability analysis for nonlinear fractional order differential equations with integral boundary value conditions, *Eur. J. Pure Appl. Math*, **12**(2)(2019), 432-447.
- [4] B. Bendouma and A. Hammoudi, A nabla conformable fractional calculus on time scales, *Electronic Journal of Mathematical Analysis and Applications*, **7**(1) (2019), 202–216.
- [5] B. Bendouma and A. Hammoudi, Nonlinear functional boundary value problems for conformable fractional dynamic equations on time scales, *Mediterr. J. Math.*, (2019), 16–25 https://doi.org/10.1007/s00009-019-1302-5.
- [6] N. Benkhettou, S. Hassan and D.F.M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci, 28(1), (2016), 93–98.
- [7] M. Bohner, and A. Peterson, Dynamic equations on time scales, Birkhauser, Boston, MA, 2001.
- [8] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhauser, Boston, MA, 2003.
- [9] A. Cabada, The monotone method for first-order problems with linear and nonlinear boundary conditions, *Appl. Math. Comput*, **63** (1994), 163–188.
- [10] A. Cabada and D.R. Vivero, Existence of solutions of first-order dynamic equations with nonlinear functional boundary value conditions, Nonlinear Anal. Theor, Meth, Appl, 63 (5-7) (2005), 697-706.
- [11] H. Chen, S. Meng and Y. Cui, Monotone iterative technique for conformable fractional differential equations with deviating arguments, *Hindawi Discrete Dynamics in Nature and Society*, 2020, Article ID 5827127, 9 pages, 2020.

- [12] T. Gulsen, E. Yilmaz and S. Goktas, Conformable fractional Dirac system on time scales, J. Ineq. Appl, (2017), 1–10.
- [13] S. Heikkilä and V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker, New York, 1994.
- [14] H. Jian, B. Liu and S. Xie, Monotone iterative solutions for nonlinear fractional differential systems with deviating arguments, *Applied Mathematics and Computation*, **262** (2015), 1–14.
- [15] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math, 264 (2014), 65–70.
- [16] A. Kilbas, M.H. Srivastava and J.J. Trujillo, Theory and application of fractional differential equations, North Holland Mathematics Studies, 204 (2006).
- [17] S. Liu, H. Wang, X. Li and H. Li, Extremal iteration solution to a coupled system of nonlinear conformable fractional differential equations, *Journal of Nonlinear Sciences and Applications*, 10(9) (2017), 5082-5089.
- [18] S. Meng and Y. Cui, Extremal solution to conformable fractional differential equations involving integral boundary condition, *Mathematics*, 7, Article ID 186, 2019.
- [19] E.R. Nwaeze, A mean value theorem for the conformable fractional calculus on arbitrary time scales, j. Progr. Fract. Differ. Appl. 2(4)(2016), 287–291.
- [20] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
- [21] K. Shah, M. Sher, A. Ali and T. Abdeljawad, On degree theory for non-monotone type fractional order delay differential equations, *AIMS Mathematics*, **7**(5)(2022), 9479-9492.
- [22] S. Song, H. Li and Y. Zou, Monotone iterative method for fractional differential equations with integral boundary conditions, *Journal of Function Spaces*, 2020 Article ID 7319098, 7 pages, 2020.
- [23] V.E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, *Springer*, *Heidelberg*; *Higher Education Press*, *Beijing*, 2010.
- [24] G. Wang, R. P. Agarwal and A. Cabada, Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, *Applied Mathematics Letters*, 25(6) (2012), 1019-1024.
- [25] Y. Wang, J. Zhou and Y. Li, Fractional Sobolev's spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales, Adv. Math. Phys, (2016), 1–21.

FACULTY OF MATHEMATICS AND INFORMATICS, IBN KHALDOUN, TIARET UNIVERSITY P.O. BOX 78, 14000 ZAÂROURA, TIARET, ALGERIA.

Email address: bendouma73@gmail.com