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MONOTONE ITERATIVE TECHNIQUE FOR A COUPLED

SYSTEM OF NONLINEAR CONFORMABLE FRACTIONAL

DYNAMIC EQUATIONS ON TIME SCALES

BOUHARKET BENDOUMA

Abstract. In this paper, we investigate the existence of extremal solutions for

a coupled system of nonlinear conformable fractional dynamic equations on time

scales, by applying the monotone iterative technique combined with the method

of lower and upper solutions. At last, an example is given to illustrate our main

result.

1. Introduction

Fractional differential equations plays an important role in describing many phe-

nomena and processes in various fields of science such as physics, chemistry, control

systems, population dynamics, etc., see [16, 20, 23]. In [6], Benkhettou et al. intro-

duced a conformable fractional calculus on an arbitrary time scale, which provides a

natural extension of the conformable fractional calculus. The notion of conformable

fractional calculus on an arbitrary time scales was developed in [1, 4, 5, 6, 12, 19, 25].

In [24], G. Wang et al. adopted the method of monotone iteration combined with

the method of upper and lower solutions to consider the following system of nonlinear
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fractional differential equations:






























Dαu(t) = f(t, u(t), v(t)), t ∈ (0, T ],

Dαv(t) = g(t, v(t), u(t)), t ∈ (0, T ],

t1−αu(t)|t=0 = x0, t1−αv(t)|t=0 = y0,

where 0 < T < ∞, f, g ∈ C([0, T ] × R × R,R), x0, y0 ∈ R and x0 ≤ y0, D
α is the

standard Riemann-Liouville fractional derivative of order α ∈ (0, 1].

S. Liu et al. in [17], studied the existence of extremal iteration solution to the

following coupled system of conformable nonlinear fractional differential equations:

(1.1)































x(α)(t) = f(t, x(t), y(t)), t ∈ [a, b],

y(α)(t) = g(t, y(t), x(t)), t ∈ [a, b],

x(a) = x∗

0, y(a) = y∗0,

where, x∗

0, y
∗

0 ∈ R, x∗

0 ≤ y∗0, f, g ∈ C([a, b]×R×R,R) and x(α), y(α) are the conformable

fractional derivatives with α ∈ (0, 1].

Motivated by the above works, this paper is concerned with the existence of ex-

tremal solutions for the following coupled system of nonlinear conformable fractional

dynamic equations on time scales:

(1.2)































x
(α)
∆ (t) = f(t, xσ(t), yσ(t)), t ∈ I = [a, b]T,

y
(α)
∆ (t) = g(t, yσ(t), xσ(t)), t ∈ I = [a, b]T,

x(a) = λ0, y(a) = β0.

Here, T is an arbitrary bounded time scale, J = [a, σ(b)]T with a, b ∈ T, 0 < a < b,

λ0, β0 ∈ R, λ0 ≤ β0, f, g : I × R × R → R are continuous functions and x
(α)
∆ , y

(α)
∆

are the conformable fractional derivatives (on time scales) with α ∈ (0, 1]. For this

purpose, we use the monotone iterative technique combined with the method of upper

and lower solutions. For applications of monotone iterative technique combined with

the method of upper and lower solutions, one can refer to literatures [2, 3, 9, 11, 13,

14, 17, 18, 21, 22, 24].



MONOTONE ITERATIVE TECHNIQUE FOR A COUPLED SYSTEM 43

This paper is organized as follows. In Section 2, we introduce the definition of

conformable fractional calculus on time scales and their important properties. In

Section 3, by use of the monotone iterative technique and the method of upper and

lower solutions, we prove the existence of extremal solutions of problem (1.2). Finally,

an example is given to illustrate our results.

2. Preliminaries

In this section, we present some necessary definitions and results from conformable

fractional calculus on time scales. These definitions and theorems can be found in

the literatures [5, 6, 7, 8, 15, 25].

Let T be a time scale, which is a closed subset of R. For t ∈ T, we define the

forward jump operator σ : T → T by σ(t) := inf{s ∈ T : s > t}. For a, b ∈ T we

define the closed interval [a, b]T := {t ∈ T : a ≤ t ≤ b}.

Definition 2.1. [7] The function f : T → R is called rd-continuous provided it is

continuous at right-dense point in T and has a left-sided limits exist at left-dense

points in T, write f ∈ Crd (T,R) .

Definition 2.2. [15] Given a function f : [0,∞) → R and a real constant α ∈ (0, 1].

The conformable fractional derivative of f of order α is defined by,

(2.1) f (α)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0. If f (α)(t) exists and is finite, we say that f is α-differentiable at t.

Definition 2.3. [6] Let f : T → R, t ∈ T
κ, and α ∈]0, 1]. For t > 0, we define f

(α)
∆ (t)

to be the number (provided it exists) with the property that, given any ǫ > 0, there

is a δ-neighborhood Vt ⊂ T (i.e.,Vt := ]t− δ, t + δ[ ∩ T) of t, δ > 0, such that

∣

∣

∣
[f(σ(t))− f(s)] t1−α − f

(α)
∆ (t) [σ(t)− s]

∣

∣

∣
≤ ǫ |σ(t)− s| for all s ∈ Vt.

We call f
(α)
∆ (t) the conformable fractional derivative of f of order α at t, and we

define the conformable fractional derivative at 0 as f
(α)
∆ (0) = lim

t→0+
f
(α)
∆ (t).

Remark 1. (1) If α = 1, we have f
(α)
∆ = f∆, if α = 0, we denote f

(α)
∆ = f .
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(ii) If T = R, then f
(α)
∆ = f (α) is the conformable fractional derivative of f of

order α introduced in [15].

We introduce the following space:

Cα
rd(I,R) = {f is conformal fractional differentiable of order α on I

and f
(α)
∆ ∈ Crd(I,R)}.

Theorem 2.1. [15] Assume f, g : T → R are conformable fractional differentiable of

order α. Then,

(i) the sum f + g is conformable fractional differentiable with (f + g)
(α)
∆ = f

(α)
∆ +

g
(α)
∆ ;

(ii) for any λ ∈ R, λf is conformable fractional differentiable with (λf)
(α)
∆ =

λf
(α)
∆ ;

(iii) if f and g are continuous, then the product fg is conformable fractional dif-

ferentiable with (fg)
(α)
∆ = f

(α)
∆ g + (f ◦ σ)g(α)∆ = f

(α)
∆ (g ◦ σ) + fg

(α)
∆ ;

(iv) if f and g are continuous, then f/g is conformable fractional differentiable

with
(

f

g

)(α)

∆

=
f
(α)
∆ g − fg

(α)
∆

g(g ◦ σ) ,

valid at all points t ∈ T
κ for which g(t)g(σ(t)) 6= 0.

Now we introduce the α-conformable fractional integral (or α-fractional integral)

on time scales.

Definition 2.4. [6] Let f : T → R be a regulated function. Then the α-fractional

integral of f , 0 < α ≤ 1, is defined by
∫

f(t)∆αt :=
∫

f(t)tα−1∆t.

Theorem 2.2. [6] Let α ∈ (0, 1], a, b, c ∈ T, λ ∈ R, and f, g be two rd-continuous

functions. Then,

(i)

∫ b

a

[λf(t) + g(t)]∆αt = λ

∫ b

a

f(t)∆αt+

∫ b

a

g(t)∆αt;

(ii)

∫ b

a

f(t)∆αt = −
∫ a

b

f(t)∆αt;

(iii)

∫ b

a

f(t)∆αt =

∫ c

a

f(t)∆αt+

∫ b

c

f(t)∆αt;
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(iv) if there exist g : T → R with |f(t)| ≤ g(t) for all t ∈ [a, b], then
∣

∣

∣

∫ b

a
f(t)∆αt

∣

∣

∣
≤

∫ b

a
g(t)∆αt;

(v) if f(t) > 0 for all t ∈ [a, b], then

∫ b

a

f(t)∆αt ≥ 0.

Definition 2.5. [25] Let E ⊂ T be a ∆-measurable set and let ϕ : T −→R be a

∆-measurable function. Say that ϕ belongs to L1
α,∆ (E,R) provided that either

∫

E

|ϕ(s)|∆αs < +∞.

Lemma 2.1. [5] The initial problem

(2.2)















x
(α)
∆ (t)− t1−αp x(σ(t)) = h(t), t ∈ I = [a, b]T;

x(a) = λ0,

with −p ∈ Rµ, λ0 ∈ R, and h ∈ L1
α,∆(I,R), has a unique solution x ∈ Cα

rd(J,R),

given by the following expression

(2.3) x(t) :=

∫

[a,t]T

e−p(s, t)h(s)∆
αs+ λ0e−p(a, t), t ∈ J = [a, σ(b)]T.

As a direct consequence of expression (2.3), we deduce the following comparison

result:

Lemma 2.2. (Comparison principle 1). Let x ∈ Cα
rd(J,R), then the following com-

parison principles hold for every −p ∈ R+
µ :

(i) If














x
(α)
∆ (t)− t1−αp x(σ(t)) ≥ 0, t ∈ I;

x(a) ≥ 0,

then x ≥ 0 on J .

(ii) If














x
(α)
∆ (t)− t1−αp x(σ(t)) ≤ 0, t ∈ I;

x(a) ≤ 0,

then x ≤ 0 on J .
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3. Main Results

In this section, we prove the existence of extremal solutions for problem (1.2). We

introduce the concept of coupled lower and upper solutions of this problem as follows.

Definition 3.1. We say that γ, δ ∈ Cα
rd(J,R) is a pair of coupled lower and upper

solutions of the problem (1.2), if γ ≤ δ in J and the following inequalities hold:

(3.1)















γ
(α)
∆ (t) ≤ f(t, γσ(t), δσ(t)), for t ∈ I, γ(a) ≤ λ0,

δ
(α)
∆ (t) ≥ g(t, δσ(t), γσ(t)), for t ∈ I, δ(a) ≥ β0.

We assume the following hypothesis:

(H1) f, g : I × R× R → R are continuous functions.

(H2) There exists γ, δ ∈ Cα
rd(J,R), a pair of coupled lower and upper solutions of

the problem (1.2).

(H3) There exist constants p, q ∈ R with −p,−q ∈ R+
µ and q ≤ 0 such that















f(t, x, y)− f(t, x, y) ≥ t1−αp(x− x) + t1−αq(y − y),

g(t, y, x)− g(t, y, x) ≥ t1−αp(y − y) + t1−αq(x− x),

where γσ(t) ≤ x ≤ x ≤ δσ(t), γσ(t) ≤ y ≤ y ≤ δσ(t) for all t ∈ I, and

g(t, y, x)− f(t, x, y) ≥ t1−αp(y − x) + t1−αq(x− y),

where γσ(t) ≤ x ≤ y ≤ δσ(t) for all t ∈ I.

To study the nonlinear system (1.2), we first consider the associated linear system:

(3.2)































x
(α)
∆ (t) = h1(t) + t1−αp x(σ(t)) + t1−αq y(σ(t)), for t ∈ I = [a, b]T,

y
(α)
∆ (t) = h2(t) + t1−αp y(σ(t)) + t1−αq x(σ(t)), for t ∈ I = [a, b]T,

x(a) = λ0, y(a) = β0,

where α ∈ (0, 1], (λ0, β0) ∈ R
2, λ0 ≤ β0, −p,−q ∈ Rµ, q ≤ 0 and h1, h2 ∈ C(I,R).
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Lemma 3.1. The linear system (3.2) has a unique solution (x, y) ∈ Cα
rd(J,R) ×

Cα
rd(J,R), with

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, t ∈ J = [a, σ(b)]T,

where

z(t) :=

∫

[a,t]T

e−(p+q)(s, t)(h1 + h2)(s)∆
αs+ (λ0 + β0)e−(p+q)(a, t), t ∈ J,

and

w(t) :=

∫

[a,t]T

e−(p−q)(s, t)(h1 − h2)(s)∆
αs+ (λ0 − β0)e−(p−q)(a, t), t ∈ J.

Proof. The pair (x, y) ∈ Cα
rd(J,R)×Cα

rd(J,R) is a solution to system (3.2) if and only

if

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, for every t ∈ J = [a, σ(b)]T,

where z(t) and w(t) are the solutions to the following problems:















z
(α)
∆ (t) = (h1(t) + h2(t)) + t1−α(p+ q) z(σ(t)), for t ∈ I = [a, b]T,

z(a) = λ0 + β0,

and














w
(α)
∆ (t) = (h1(t)− h2(t)) + t1−α(p− q) w(σ(t)), for t ∈ I = [a, b]T,

w(a) = λ0 − β0.

By Lemma 2.1, we have

(3.3) z(t) :=

∫

[a,t]T

e−(p+q)(s, t)(h1 + h2)(s)∆
αs+ (λ0 + β0)e−(p+q)(a, t), t ∈ J,

(3.4) w(t) :=

∫

[a,t]T

e−(p−q)(s, t)(h1 − h2)(s)∆
αs+ (λ0 − β0)e−(p−q)(a, t), t ∈ J.

The proof is finished. �
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Lemma 3.2. (Comparison principle 2). Let (x, y) ∈ Cα
rd(J,R)× Cα

rd(J,R) satisfy

(3.5)































x
(α)
∆ (t)− t1−αp x(σ(t)) + t1−αq y(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

y
(α)
∆ (t)− t1−αp y(σ(t)) + t1−αq x(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

x(a) ≥ 0, y(a) ≥ 0,

where α ∈ (0, 1], −p,−q ∈ R+
µ and q ≤ 0. Then x(t) ≥ 0, y(t) ≥ 0 for all t ∈ J .

Proof. Let w(t) = x(t) + y(t), then (3.5) is equivalent to the following:















w
(α)
∆ (t)− t1−α(p− q) w(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

w(a) ≥ 0.

By Lemma 2.2, we know that w(t) ≥ 0, for all t ∈ J , i.e., x(t) + y(t) ≥ 0, for all

t ∈ J ,

So.






























x
(α)
∆ (t)− t1−α(p+ q) x(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

y
(α)
∆ (t)− t1−α(p+ q) y(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

x(a) ≥ 0, y(a) ≥ 0.

By Lemma 2.2, we have x(t) ≥ 0 and y(t) ≥ 0 for all t ∈ J . The proof is completed.

�

The obtained result is the following.

Theorem 3.1. Assume that (H1), (H2) and (H3) hold. Then (1.2) has an extremal

system of solutions (x∗(t), y∗(t)) ∈ [γ(t), δ(t)]× [γ(t), δ(t)], and there exist two mono-

tone sequences {yn}n∈N and {zn}n∈N converging uniformly to x∗(t), y∗(t), respectively,

where yn(t), zn(t) ∈ [γ(t), δ(t)], such that

γ =: y0 ≤ y1 ≤ ... ≤ yn ≤ ... ≤ zn ≤ ... ≤ z1 ≤ z0 := δ, on J for all n ∈ N.
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Proof. Firstly, for all yn, zn ∈ Cα
rd(J,R), we consider the linear system:



































































yn+1
(α)
∆ (t) = f(t, yσn(t), z

σ
n(t))− t1−αp(yσn(t)− yσn+1(t))− t1−αq(zσn(t)− zσn+1(t)),

for ∆-a.e. t ∈ I,

zn+1
(α)
∆ (t) = g(t, zσn(t), y

σ
n(t))− t1−αp(zσn(t)− zσn+1(t))− t1−αq(yσn(t)− yσn+1(t)),

for ∆-a.e. t ∈ I,

yn+1(a) = λ0, zn+1(a) = β0,

i.e.,

(3.6)


































































yn+1
(α)
∆ (t) = (f(t, yσn(t), z

σ
n(t))− t1−α(pyσn(t) + qzσn(t))) + t1−α(pyσn+1(t) + qzσn+1(t)),

for ∆-a.e. t ∈ I,

zn+1
(α)
∆ (t) = (g(t, zσn(t), y

σ
n(t))− t1−α(pzσn(t) + qyσn(t))) + t1−α(pzσn+1(t) + qyσn+1(t)),

for ∆-a.e. t ∈ I,

yn+1(a) = λ0, zn+1(a) = β0.

By Lemma 3.1, the linear system (3.6) has a unique solution (yn+1, zn+1) ∈ Cα
rd(J,R)×

Cα
rd(J,R), with

yn+1(t) =
vn+1(t) + wn+1(t)

2
, zn+1(t) =

vn+1(t)− wn+1(t)

2
, for every t ∈ J = [a, σ(b)]T,

where

vn+1(t) =

∫

[a,t]T

e−(p+q)(s, t)
[

f(s, yσn(s), z
σ
n(s)) + g(s, zσn(s), y

σ
n(s))

− s1−α(p + q)(yσn(s) + zσn(s))
]

∆αs+ (λ0 + β0)e−(p+q)(a, t), t ∈ J,

and

wn+1(t) =

∫

[a,t]T

e−(p−q)(s, t)
[

f(s, yσn(s), z
σ
n(s))− g(s, zσn(s), y

σ
n(s))

− s1−α(p− q)(yσn(s)− zσn(s))
]

∆αs + (λ0 − β0)e−(p−q)(a, t), t ∈ J.
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Secondly, we shall prove that

yn ≤ yn+1 ≤ zn+1 ≤ zn, on J for all n ∈ N.

Let v := y1− y0 = y1−γ, w := z0− z1 = δ− z1. According to (3.6) and (H1)-(H2),

we have


















































v
(α)
∆ (t) ≥ −t1−αp (y0(σ(t))− y1(σ(t)))− t1−αq (z0(σ(t))− z1(σ(t))) , for ∆-a.e. t ∈ I,

v(a) ≥ λ0 − λ0 = 0,

w
(α)
∆ (t) ≥ t1−αp (z0(σ(t))− z1(σ(t))) + t1−αq (y0(σ(t))− y1(σ(t))) , for ∆-a.e. t ∈ I,

w(a) ≥ β0 − β0 = 0,

i.e.,














v
(α)
∆ (t) ≥ t1−αpv(σ(t))− t1−αqw(σ(t)), for ∆-a.e. t ∈ I, v(a) ≥ 0,

w
(α)
∆ (t) ≥ t1−αpw(σ(t))− t1−αqv(σ(t)), for ∆-a.e. t ∈ I, w(a) ≥ 0.

Then, by Lemma 3.2, we have v(t) ≥ 0, w(t) ≥ 0, i.e., y1 ≥ y0, z0 ≥ z1.

Let ξ := z1 − y1. According to (3.6) and (H3), we have

ξ
(α)
∆ (t) = z1

(α)
∆ (t)− y1

(α)
∆ (t)

= g(t, zσ0 (t), y
σ
0 (t))− t1−α(pzσ0 (t) + qyσ0 (t)) + t1−α(pzσ1 (t) + qyσ1 (t))

− f(t, yσ0 (t), z
σ
0 (t)) + t1−α(pyσ0 (t) + qzσ0 (t))− t1−α(pyσ1 (t) + qzσ1 (t))

≥ t1−αp(zσ1 (t)− yσ1 (t))− t1−αq(zσ1 (t))− yσ1 (t)) = t1−α(p− q)ξσ(t).

So.

(3.7)















ξ
(α)
∆ (t) ≥ t1−α(p− q)ξσ(t), for ∆-a.e. t ∈ I,

ξ(a) = β0 − λ0 ≥ 0.

By Lemma 2.2, we have ξ(t) ≥ 0, i.e., z1(t) ≥ y1(t) for all t ∈ J .

By mathematical induction, we can prove that

yn ≤ yn+1 ≤ zn+1 ≤ zn, on J for all n ∈ N.
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Thirdly, the sequences {yn}n∈N and {zn}n∈N are monotone and bounded, hence

lim
n→∞

yn = x∗, lim
n→∞

zn = y∗,

(x∗, y∗) is an extremal system of solutions to (1.2).

Finally, we prove that (1.2) has at most one extremal system of solutions.

Assume that (x, y) ∈ [γ = y0, δ = z0]× [y0, z0] is the system of solutions to (1.2), then

y0 = γ ≤ x, y ≤ z0 = δ.

For some k ∈ N, assume that the following relation holds

yk(t) ≤ x(t), y(t) ≤ zk(t), t ∈ J.

Let u(t) = x(t)−yk+1(t), ϑ(t) = zk+1(t)−y(t). According to (3.6) and (H3), we have

u
(α)
∆ (t) = x

(α)
∆ (t)− yk+1

(α)
∆ (t)

= f(t, xσ(t), yσ(t))− f(t, yk
σ(t), zk

σ(t)) + t1−αp(yk
σ(t)− yk+1

σ(t))

+ t1−αq(zk
σ(t)− zk+1

σ(t))

≥ t1−αp(xσ(t)− yk
σ(t)) + t1−αq(yσ(t)− zk

σ(t)) + t1−αp(yk
σ(t)− yk+1

σ(t))

+ t1−αq(zk
σ(t)− zk+1

σ(t))

= t1−αp(xσ(t)− yk+1
σ(t)) + t1−αq(yσ(t)− zk+1

σ(t)),

and

ϑ
(α)
∆ (t) = zk+1

(α)
∆ (t)− y

(α)
∆ (t)

= g(t, zk
σ(t), yk

σ(t))− g(t, yσ(t), xσ(t))− t1−αp(zk
σ(t)− zk+1

σ(t))

− t1−αq(yk
σ(t)− yk+1

σ(t))

≥ t1−αp(zk
σ(t)− yσ(t)) + t1−αq(yk

σ(t)− xσ(t))− t1−αp(zk
σ(t)− zk+1

σ(t))

− t1−αq(yk
σ(t)− yk+1

σ(t))

= t1−αp(zk+1
σ(t)− yσ(t))− t1−αq(xσ(t)− yk+1

σ(t)),
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we can get















u
(α)
∆ (t) ≥ t1−αpu(σ(t))− t1−αqϑ(σ(t)), for ∆-a.e. t ∈ I, u(a) ≥ 0,

ϑ
(α)
∆ (t) ≥ t1−αpϑ(σ(t))− t1−αqu(σ(t)), for ∆-a.e. t ∈ I, ϑ(a) ≥ 0.

Then, by Lemma 3.2, we have u(t) ≥ 0, ϑ(t) ≥ 0, i.e., yk+1(t) ≤ x(t), y(t) ≤
zk+1(t), t ∈ J ,

By the induction arguments, the following relation holds

yn(t) ≤ x(t), y(t) ≤ zn(t), t ∈ J.

Taking the limit as n → ∞, we get that x∗ ≤ x, y ≤ y∗ on J. Hence, (x∗, y∗) ∈
[γ, δ]× [γ, δ] is the extremal system of solutions to (1.2). So the proof is finished. �

4. Example

In this section, we present an example where we apply Theorem 3.1.

Example 4.1. Consider the system of nonlinear conformable fractional dynamic

equations:

(4.1)



































x
( 1
3
)

∆ (t) =
t(2− x(σ(t)))2 − y2(σ(t))

3
√
t

, t ∈ I = [1, 2]T,

y
( 1
3
)

∆ (t) = t
2

3 (2− y(σ(t)))3 − t−
1

3x2(σ(t)), t ∈ I = [1, 2]T,

x(1) = 0, y(1) = 0.5,

where α = 1
3
, f(t, x, y) =

t(2− x)2 − y2

3
√
t

and g(t, y, x) = t
2

3 (2− y)3 − t−
1

3x2.

It is clear that f, g are continuous functions. Take γ(t) = 0 ≤ δ(t) = 2 for t ∈
[1, σ(2)]T, then

γ
( 1
3
)

∆ (t) = 0 ≤ f(t, γσ(t), δσ(t)) =
4(t− 1)

3
√
t

for t ∈ [1, 2]T, γ(1) = 0 ≤ 0,

and

δ
( 1
3
)

∆ (t) = 0 ≥ g(t, δσ(t), γσ(t)) = 0 for t ∈ [1, 2]T, δ(1) = 2 ≥ 0.5,
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then assumptions (H1) and (H2) holds.

Let x, x, y, y ∈ R, then we have:

f(t, x, y)− f(t, x, y) = t1−
1

3

(

(2− x)2 − (2− x)2
)

− 1
3
√
t
(y2 − y2)

≥ t1−
1

3

(

−4(x− x) + x2 − x2
)

≥ −4t1−
1

3 (x− x)

≥ −12t1−
1

3 (x− x) + 0.t1−
1

3 (y − y),

g(t, y, x)− g(t, y, x) = t
2

3

(

(2− y)3 − (2− y)3
)

− t−
1

3 (x3 − x3)

≥ t
2

3

(

−4(y − y) + 2(y2 − y2)− (y3 − y3)
)

≥ −12t1−
1

3 (y − y) + 0.t1−
1

3 (x− x),

with γσ(t) ≤ x ≤ x ≤ δσ(t), γσ(t) ≤ y ≤ y ≤ δσ(t) for all t ∈ I, and we have

g(t, y, x)− f(t, x, y) = t
2

3

(

(2− y)3 − (2− x)2
)

+ t−
1

3 (y2 − x2)

≥ t
2

3

(

−4(y − x) + (4− x2 + 2y2)− y3)
)

≥ −12t1−
1

3 (y − x) + 0.t1−
1

3 (x− y).

with γσ(t) ≤ x ≤ y ≤ δσ(t), for all t ∈ I.

Hence the assumption (H3) holds with p = −12 and q = 0. By Theorem 3.1,

the nonlinear system (4.1) has the extremal solution (x∗, y∗) ∈ C
1

3

rd([1, σ(2)]T) ×
C

1

3

rd([1, σ(2)]T), such that (x∗, y∗) ∈ [γ, δ]× [γ, δ] on [1, σ(2)]T, which can be obtained

by taking limits from the iterative sequences:

xn+1(t) =

∫

[1,t]T

s
−2

3 e12(s, t)

[

t(2− xn(σ(t)))
2 − y2n(σ(t))

3
√
t

+ 12(xσ
n(s))

]

∆s,

t ∈ J = [1, σ(2)]T,

yn+1(t) = 0.5e12(1, t) +

∫

[1,t]T

s
−2

3 e12(s, t)
[

t
2

3 (2− yn(σ(t)))
3 − t−

1

3x2
n(σ(t)) + 12(yσn(s))

]

∆s,

t ∈ J,
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Conclusion

In this paper, we have considered the existence of extremal solutions for a coupled

system of nonlinear conformable fractional dynamic equations on time scales. This

result will be obtained by using the monotone iterative technique combined with the

method of lower and upper solutions.
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