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3/8-SIMPSON TYPE INEQUALITIES FOR FUNCTIONS WHOSE
MODULUS OF FIRST DERIVATIVES AND ITS ¢-TH POWERS
ARE s-CONVEX IN THE SECOND SENSE

N. LARIBIY AND B. MEFTAH®

ABSTRACT. The purpose of this study is to improve certain existing results con-
cerning the Simpson type inequalities involving four point called Simpson second
formula. First, we prove a new integral identity. Then, we use this identity to
come up with a new Simpson second formula inequalities for functions whose first
derivatives are s-convex. We also deal with situations in which the first derivatives
are bounded and Lipschitzian. In addition, some applications are given to show

how well our main results work.

1. INTRODUCTION

Definition 1.1. [22] A function f: I — R is said to be convex, if

flr+Q—=t)y) <tf(x)+(1—-1)f(y)

holds for all z,y € I and all ¢ € [0, 1].

Due to its rapid growth, a number of researchers have introduced new classes of

convex functions, including the class of s-convex functions established by Breckner.

Definition 1.2. [4] A nonnegative function f : I C [0,00) — R is said to be s-convex

in the second sense for some fixed s € (0, 1], if

fltz+(1—t)y) <t f(z)+(1-1)"f(y)
holds for all z,y € I and t € [0, 1].
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There is no doubt that convexity plays a significant role in the evolution of the the-
ory of inequalities, which explains why there have been so many inequalities-related
studies published. Gronwall type inequalities [1,[14], Lyapunov type inequality [2],
Minkowski inequality [I3], Opial integral inequalities [19], Hadamard type inequali-
ties [I7] and Ostrowski type inequalities [15]16]18].

Note that this mathematical tool is heavily used to estimate the error of quadrature
formulas. Among the well known and widely used of this quadratures are those of
Simpson. Simpson’s quadratures are among the most popular and commonly utilized
of this type.

The first formula also called 1/8-Simpson inequality is as follows:

L) (@ +47 (352) + 7 0) % [ 1@ au] < G319

The second formula called 3/8-Simpson inequality is as follows:

(12) |§ (F (@) +3F (3472) +3F (<2) + £ () — 25 / f (u) du| < S5t || F 9|,

where f is four-times continuously differentiable function on (a,b) and H f(4)HOO =

sup [ (z)].
z€(a,b)

Regarding some papers dealing with inequality ([LI))-(L2) we refer readers to [3|
HHT,0-12,21,24125] and references therein.
Recently, Noor et al. [20], established the following 3/8-Simpson type inequalities

for differentiable convex functions:

b

é(f(a)+3f(2“7“’)+3f(%2")+f(b))—ﬁ/f(U)du

a

1
17 ( 973|f' (a)| 94251 ] f/(B)|7 | ¢
S(b_a){%< 1224 )

1 1
1@+ B[4 17 ( 251]f/(a)|94973[f/(B)|7 | ¢
+ 36 ( 2 ) + 756 ( 1224 ) } )
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b

L(F @)+ 31 (22) +3f (S52) + 1 0) — i [ £ () du
<o { () (Lo p Ly
+ <6P+1?p+1))5 <|f/(a?>)‘ —(:|f/(aT)‘ )q

1
gt yseet o (1852 P |
+ 24P+1(p+1) 6

and

b

L(F @)+ 31 (22) +3f (452) + 1 0) = i [ £ () du

a

1 1
srt1 et \ 7 (51 (@)l @
S (b - CI,) { (24p+1+(p+1)) ( 18 )
1 1
+ (g (Lt
6P 1 (p+1) 6
+ <3p+1+5p+1>§ (f’(a)q+5f’(b)q>‘11}
24P F1(pT1) 18 :

where ¢,p > 1 With%—l—%: 1.
In [8], Erden et al. showed that if the first derivatives are bounded, then the

inequality (L2]) satisfies the following estimate:

Theorem 1.1. Let Let f : [a,b] — R be a differentiable mapping whose derivative is

continuous on (a,b). Then, for all x € |a,b], we have the inequality

b
L(F @)+ 37 (250) + 31 (52) + £ ) — i [ £ (o] < B2 1)

Also they discussed the cases where the first derivative is of bounded variation,
absolutely continuous and Lipschitzian.

Inspired by the above results, in this paper we first prove a new identity as an aux-
iliary result. Based on this identity we establish new 3/8-Simpson type inequalities
for functions whose first derivatives are s-convex in the second sense. We also discuss

the cases where the first derivatives are bounded as well as Lipschitzian functions.
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Some applications are given to show the validity of the fundamental results. It should

be noted that the results obtained are an improvement above [20],23].

2. MAIN RESULTS

In order to prove our results, we need the following lemma

Lemma 2.1. Let f : I C R — R be a differentiable function on I°, a,b € I° with
a<b, and f' € L'[a,b], then the following equality holds

b

é(f(a>+3f(2“7“’)+3f(%2b)+f(b))—ﬁ/f(U)du

a

1
/ "(1—t)a+t252) dt
0

+

((1 —t) 2atb 4 o2t gt

+ ((1—t) L2 4 tb) dt

Z
fi-a

Proof. Let

(t=2) (1 —t)a+t22L)at,

(t=2) f'((1—t) 222 +1b) dt.

1
/
1
3 :/(t—%)f’((l—t)%*bjtt%%)dt,
0
/
0

Integrating by parts I, we obtain

11:Iﬁ—a(t—g)f((l—t)athz”b)‘t Y
—%/f(u—t)ajttz%b)dt
0



3/8-SIMPSON’S INEQUALITIES 83

2a+b
3
1) i () + il @ - 2 [ T
Similarly, we obtain
a a =1
I =52 (= 3) F (1) 252 82 [
1
- [ £ 02 ) a
0
at2b
3
(2.2) :2(b3—a)f (agzb) + 2(b3—a)f (za:;rb) - (b_ga)z / f(u) du
2a-+b
3
a t=1
Iy = 5% (t=5) F (1L =) E2 +1b)|
1
—bf—a/f((l—t)%%%—tb)dt
0
b
2.3) i O+ i f (5) - 2 [ Fwdu
at2b

3

Summing (2.1))-(2.3), and then multiplying the resulting equality by b_T“, we get the
desired result. O

Theorem 2.1. Let f : [a,b] — R be a differentiable function on (a,b) such that
e LY]a,b] with 0 < a < b. If |f'| is s-convex in the second sense for some fized

s € (0, 1], then we have

b

é(f(a)+3f(2“7“’)+3f(%”’)+f(b))—ﬁ/f(U)du

a

<otz (277 +22) (1 @] + 17 ()
(@)@ ) (7 )]+ 7 (=)
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Proof. From Lemma 2.1] properties of modulus and s-convexity in the second sense

of | f'|, we have

é(f(a)+3f(2“7“’)+3f(%2")+f(b))—ﬁ/f(U)du

<ie (/»tmuwwﬂ?b)dt

0
1

+ [le= 11 (-0 2 e
0

1
+/t§f’((1t)c”g)2b+tb)dt)

0

<bo /(g—w (L= 1 (@) + £ | ' (2222)]) at

+

(t=2) (=07 If (@) + [ (252)]) dt

_|_

~—~
[N

=) (A=07|f C5B) + e [ (=52)]) dt

_|_

—~
~
|

3) (L= [ () [+ o[ 1 (+52)]) dt

_|_

O\OOICH MIH\!—‘ O\MI!—‘ OOIOJ\H

—
oot

=) (L =) | f (“22) [+ 5| £ (b)]) dt

N e ICERN T C O RR IO

<t (277 +252) (17 (@] + 17 0))
(10 @) @ - m2) (1 ()] + 7 (=2)])
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where we have used the fact that
3
3
L/ﬁ 1 —-t dt
0

(2.5) 7 (2 —t)e°dt =

s s+2 s—
(Y — S

I
OOICH\)—!

s s+2
( g) (1—t)"dt = (s+1)1(s+2) (%) " ’

s s+2
(8 - t)t dt = (s+1)1(s+2) (g) ’ J

(2.6) /(t—g) (1—t)dt
(1) (1= 0 dt = gl ()7 + 2522).

(2.7) / (t—32)e°at :7

)s+2>

N[

(t—%)tsdtzm@ﬂ%

(2.8) /(%—t) (1—1t)"dt =

(3= 1)t = il (3)

The proof is completed. l

Corollary 2.1. In Theorem[2.1), if we take s = 1, then we get

LT @)+ (52) +3F (552) + £ ) - 5% [ £ )

<tssr (157 (IF (@) + 1F (®)) + 443 (|5 (352) | + [/ (<52)]) -

Corollary 2.2. In Theorem [21, if we assume that |f' (z)| < M = ||f||., then we

obtain

b

é(f(a)+3f(2“7“’)+3f(%2")+f(b))—ﬁ/f(U)du

a

25(b—
< P52 1l
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Remark 1. The result of Corollary is the same result obtained in Corollary 4
from [§].

Theorem 2.2. Let f : [a,b] — R be a differentiable function on (a,b) such that
e L' [a,b] with 0 < a < b. If|f'|? is s-convez in the second sense for some fized

€ (0,1] where ¢ > 1 with % +% =1, then we have

b

é(f(a)+3f(2“7“’)+3f(%2b)+f(b))—ﬁ/f(@du

a
l
b—a 3p+15p+1 I (a) |q+|f (2a+b)|
9(p+1) 8ot )
. 1
(lﬂ%)mﬁ(#)v)q (g’ (U(Mb” o ))
s+ 8P 1 st1 :

Proof. From Lemma 2.1l properties of modulus, Holder’s inequality and s-convexity

IN

S|

+

N[

in the second sense of |f/|, we have

g(f<a>+3f(@)+sf(%%>+f<b>)—ﬁ/f(u)du

1 v/ 1 a
<t || [le=gpae) | [1r@@-narez)a
0 0
1 1
P 1 q
[le-sra) ([1r@-nzme s eopa
0

1 1
/\t_g\pdt /\f’((l—t)%%ﬂb)\th
0 0

Q=

1

31’*;:511’“ / 1 —t |q+ts }f (2a+b)} )dt

0

IN
T
IS}

[y
Q=

s [a=orlr ey () a
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1

+ <3p+;pt51p+1 p / l—t }f (a+2b)‘ +t5|f ( )| )

0

1
_ ba gt g\ o [ 1P @] (252)[) @
" oprn)? st s+l
1 1
+ 1 <|f’(%)|q+|f’(%2b)|q>q + (3p+1+5p+1> <|f(a+2b)| + (O )q>
2 s+1 8gp+1 s+1 :

The proof is completed. l

Q=

Remark 2. Theorem[2.2 will be reduced to Corollary 3.5 from [20], if we take s = 1.

Theorem 2.3. Let f : [a,b] — R be a differentiable function on (a,b) such that
e L' [a,b] with 0 < a < b. If|f'|? is s-convez in the second sense for some fized
€ (0,1] where ¢ > 1, then we have

é(f(a)+3f(2“7“’)+3f(%”’)+f(b))—ﬁ/f(U)du

<t5e (m)é (&7 (@) +52) 1 @I
e (@52 I @)
ORI (YGRS MACOIENRCSIPE
@ (@72 17 ()

1

(@) o)),

Proof. From Lemmal2.1] properties of modulus, power mean inequality and s-convexity

in the second sense of |f'|, we have

b
é(f(a)+3f(2“—ﬁ)+3f(%2b)+f(b))—ﬁ/f(U)du

1 1-
<ba /\t__\dt /\t__uf (1= t)at 120) |7 at
0
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(/t—;«%) (/w—;uf<u Zﬁb+wﬂbvﬁ)
+(/tgdt) (/tgf’((l t) 2 4+ th) \th )
zaﬁyfé(/t—zua—w3f<q+fv ()

1

+<b1q</t—;<a—08f0?%>+ﬁw'M% )

0

+<gfé(/t8<utf«“%+ff

O\OOIOJ \_/

(2 —¢)todt

be ((11)1‘11 (f’ (a)|q/(§ — 1) (1 =) dt + | f (22)]*

1
2

T [ G a0 |7 (=] [ (-0 e
! fo

‘l‘}f 2a+b ‘q 1—t dt—l—}f a+2b ‘Q/ t—— tdt)

[N
N

5 5
5 5

+(5)1_5 (f («£2) \q/ E—t)(1—t)dt+|f (b /g— t) t°dt
0 0
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Q=

1 1

+ }f’(%%)\q/(t—g) (1—t)Sdt+|f'(b)|q/(t—g)m

Q= oojot
cojont

(G (@7 +252) 17 @r

_b-a 2
9 ((s+1)(s+2))

O CEIORDRUAC SIEVIC SRk

1 1 1
(2.10) /‘t—%‘dt:/}t—g‘dt:gand/‘t_%‘dt:i
0 0 0
The proof is achieved. l

Corollary 2.3. In Theorem[2.3, if we take s =1, then we get

é(f(a)+3f(2“7“’)+3f(%2b)+f(b))—ﬁ/f(U)du

16 408 2

1
17 (2514 (#52) st o1 ¢
+ 16 408 :

3. FURTHER RESULTS

1 1
<boo <g (157f’<a>q+251|f'<%|q)q ! (|f’<@>|ﬁ|f'<%%>|q)q

This section is not connected to the previous one. Here, we will discuss the case
where the first derivative is bounded as well as the case where it satisfy the Lipschitz

condition in a general way.

Theorem 3.1. Let f : [a,b] — R be a differentiable function on (a,b) such that

[ € L' [a,b] with 0 < a <b. If there exist constants —oo < m < M < +oo such that
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m < f'(z) < M for all x € |a,b], then we have

b

é(f(a)+3f(2“T“’)+3f(%2b)+f(b))—ﬁ/f(U)du

a

Proof. From Lemma 2.1, we have

b

L@+ 35 (52) 4 3F (552) + £ ) - it [ £ (w)d

1
bg(/ (A —t)a+t22) dt
0

_'_ 1_t 2a+b +ta+2b) dt

+

fi-a
f1-a

) L2 4 1h) dt)

1
_b 2a+b m+M m+M
9</ "((1—t)a+ t2ef) — miA . mEM) gt
0

2a+b + ta+2b) _ m—|2—M + m—|2—M) dt

Hmwmww%ﬂ

%(/@@u«lwau%ﬂ@ﬂwt

(1= 3) (7 (1= 1) 22 gy — et gy

(3.1) + [ (E=2) (f ((1—t) L2 4 tp) — M) dt) :
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where we have taken into account that:

1

(3.2) /( )dt+/ dt+/ : t:](Bt—%)dtzo.

0 0
Applying the absolute value to both sides of (B1l), we get

b

é(ﬂ®+ﬁf@%ﬁ+&ﬂﬁﬁ)+f@)—i;/ﬂwdu

a

1
d;(/tsfmwaw%wﬁ%w

0

1
s [le= 41 (@ -0+ e2) - 25
0

1
33) +/ﬁ—zwm-wﬁ+m—@%m)
0
Since m < f’ (z) < M for all z € [a, b], we have
34 (1= ) e — ] < s,
35 (1= )+ ) — mptt| < 2o
and
39 ()25 ) - 2] <

Using (B.4)-(3.6) in (B.3), we get

%(f()+3f(2a+b)+3f(a+2b ‘l‘f ba/.f

1
<lmallom) (/}t—gdt+/t—dt+/t—}dt)
0

b—a)(M —m),

576 (

where we have used (Z.I0). The proof is completed. O
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Theorem 3.2. Let f : [a,b] — R be a differentiable function on (a,b) such that
fl € LY [a,b] with 0 < a <b. If f' is L-Lipschitzian function on [a,b], then we have

41(b—a)?
S 1728 L.

g(f<a>+3f(%>+sf<%%>+f<b»—ﬁ/f( ) du

Proof. From Lemma 2.1, we have

L(F @)+ (B2) 37 (552) + £ ) - & [ )

1
__b—a 2a+b
9</ (1 —t)a+t2aL)dt
0

+ 2a+b _I_ ta+2b) dt

s
s

+ ) 2 4 1h) dt)
%(/ 1—ta+t2“+b) [ (a)+ f'(a)) dt
0
n (1= t) 20b 4 gokaby _ g7 2000y | pr (2abb)) g

_|_

i
s

)2 )~ (=2) 4 (“*f"))dt)

@‘
QD

(/ (1 —t)a+t2at) — f'(a)) dt

+ ((1—t)2eth 4 pat2hy _ f7 (2280)) gy

3

+ ) 2y th) — f(£E2)) dt

3

] Hdt+ f 2“*"/ Dt +f' “*2*’/ )

0 0 0

fios
fios
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—boe (/ (= 2) (F (L=t a+e22) — f (22)) de

(1= 3) (7 (1) 2 o) g (2020))

—~
~
|
oo|ut

) (f (=) =52 + 1) = f(452)) di+ 5 /' (a) = 5 (“E%)) :

Applying the absolute value in both sides of (3.7)), and by using the fact that f’ is

L-Lipschitzian on [a, b], we obtain

b

g(f<a>+3f(@)+sf(%%>+f<b>)—ﬁ/f(u)du

a

d;(/t—yu«r%m+ﬂM> F )]

0
+/v—uf {2 e — g (22| gy
0
1
+ -2l twbwwfw?>ﬁ+;fm>f%ﬁ%)
0

1
<ter (/tg(lt)aﬂ?“;badt
0

+/‘t—%H(1—t) 2a;b+ta§2b—2a;b}dt

+/t_§H(1—t)‘“§,%+tb—f”ff’}dt+éa—‘“gfb)

1 1 1
—bza, (/t—gtb;dt+/t—;}tb;dt+/}t—gtbgadtﬂl(b;’)

0 0 0
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1 1 1
—(afy /\t—g}tdt+/}t—%\tdt+/}t—§}tdt+i
0 0 0
:41(b—a)2L
1728 ’

where we have used

1 1
3 _ 9251 1 1
/}t—g\tdt—mvf\t—ﬂtdt—g
0 0
and
1
5 _ 157
/}t—g\tdt—ﬁ-
0
The proof is completed. O

4. APPLICATIONS

4.1. Second Simpson’s quadrature formula. Let T be the partition of the points

a=1xy<x <..<uz,=D>of the interval [a,b], and consider the quadrature formula

/f(u)du=A<f,T>+R<f,T>,

where

i
L

AFY) =) B (f () + 3F (F552) +3F (B2 + f (2i41))

7

I
o

and R (f,T) denotes the associated approximation error.

Proposition 4.1. Let n € N and f : [a,b] — R be a differentiable function on (a,b)
with 0 < a < b and f' € L' [a,b]. If | f'] is s-convex function in the second sense for

some fized s € (0,1], we have

R(f,7) <ZJZZ¢1 0 (207 +22) 1 @)l + 1 (@en)))

F (@) () ) (1 () 4 | (222
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Proof. Applying Theorem 2.1 on the subintervals [z;, x;+1] (¢ = 0,1,...,n — 1) of the
partition T, we get

Tit+1

/f(u)du

T

L(f (o) +3f (B55) 4 3 (25552) + f (wi41)) —

Ti+1—T;

<seetem (277 +22) (1 @) +1f (@)
an = (@) @) I ] I (=)

Multiplying both sides of (£1l) by (2,41 — x;), then summing the obtained inequalities
for all ¢+ = 0,1,....,n — 1 and using the triangular inequality, we get the desired

result. O

4.2. Application to special means. For arbitrary real numbers a, ay,as, ..., a,,b

we have:

) — ai1tas+t..4an

The Arithmetic mean: A (aq,as, ..., a, =

The Geometric mean: G (a,b) = vab, a,b > 0.

pp+1_gp+1

1
W)pa a,b > 0,a # b and p €

The p-Logarithmic mean: L, (a,b) = (
R\ {—1,0}.

Proposition 4.2. Let a,b € R with 0 < a < b, then we have

|A (a®,b*) + 34%(a,a,b) + 3A% (a,b,b) — 8L3 (a, b)]

Q=

<o (17 (BLat + BLA (a,0,b)) % + 27 (A7 (a,0,b) + A7 (a,h,0))

+ 17 (BLA (a,b,b) + 157bq)5)

408 408

Proof. The assertion follows from Corollary 23] applied to the function f (z) = 2%

O

Proposition 4.3. Let a,b € R with 0 < a < b, then we have

A%, 57) +34 ((222)°, (#£2)") - 4L} (a,)

<B (A (a*0°) — G (a.b) A(a,b)) .

Proof. The assertion follows from Theorem 3.1 applied to the function f (z) = z3.
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5. CONCLUSION

In this study, we considered Simpson’s second formula. The main results of the

article can be summarized as follows:

(1) A new four-point integral identity is introduced.

(2) New inequalities of 3/8-Simpson type inequalities for functions whose first
derivatives are s-convex, bounded as well as Lipschitzian are established.

(3) Some special cases are derived.

(4) Applications of the acquired results are provided.

This paper’s findings can inspire additional research in this fascinating topic, as

well as generalizations in other types of calculations, such as time scale calculus,

multiplicative calculus, and quantum calculus.
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