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POSITION VECTORS OF A RELATIVELY NORMAL-SLANT

HELIX IN EUCLIDEAN 3-SPACE

ABDERRAZZAK EL HAIMI (1) AND AMINA OUAZZANI CHAHDI(2)

Abstract. In this paper, we give a new characterization of a relatively normal-

slant helix. Thereafter, we construct a vector differential equation of the third

order to determine the parametric representation of a relatively normal-slant helix

according to standard frame in Euclidean 3-space. Finally, we apply this method

to find the position vector of some special cases.

1. Introduction

In the local differential geometry, we think of curves as a geometric set of points,

or locus. Intuitively, we are thinking of a curve as the path traced out by a particle

moving in E3. So, the investigating position vectors of the curves in a classical aim

to determine behavior of the particle (curve).

Helix is one of the most fascinating curves in science and nature. Scientist have long

held a fascinating, sometimes bordering on mystical obsession, for helical structures

in nature. We have a lot of special curves such as circular helices, general helices,

slant helices, k-slant helices etc. Characterizations of these special curves are heavily

studied for a long time and are still studies. We can see the applications of helical

structures in nature and mechanic tools. In the field of computer aided design and

computer graphics, helices can be used for the tool path description, the simulation

of kinematic motion or design of highways. Also we can see the helix curve or helical

structure in fractal geometry.
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In a recent paper, Dogan and Yayli [9] study isophote curves and their character-

izations in Euclidean 3-space. An isophote curve is defined as a curve on a surface

whose unit normal field restricted to the curve makes a constant angle with a fixed

direction. They also obtain the axis of an isophote curve. In 2017, Macit and Duldul

[13] have defined a relatively normal-slant helix on a surface by using the Darboux

frame (T,V,U) along the curve whose vector field V makes a constant angle with a

fixed direction.

The determining of the parametric representation of curves defined by a geometric

property using the intrinsic equation κ = κ (s) and τ = τ (s) (where κ and τ are

the curvature and the torsion of the curve, respectively) is a one of important sub-

jects. Recently, the position vector of general helices([8, 12], slant helices, spherical

slant helices and k-slant helices in Euclidean space E3 are deduced in [1, 2, 4, 5, 6],

respectively. For more details, see also [10, 11, 14, 15, 16].

In this work, we propose to determine the position vector of relatively normal-slant

helix in the case whose the geodesic torsion τg, is non-zero (the case τg = 0, is studied

in [3]).

We first, establish a characterization of relatively normal-slant helix in the case

τg 6= 0. Thereafter, we construct a vector differential equation of third order to

determine the parametric representation of relatively normal-slant helix according to

standard frame e1, e2, e3 in Euclidean 3-space. Finally, we apply this method to find

the position vectors of some special cases.

2. Definition and characterization of relatively normal-slant helix

In this section, we give the definition and a characterization of relatively normal-

slant helices.

Let M be an regular surface, and ϕ : I ⊂ R −→ M be a regular curve with

arc-length parametrization. If we denote the Darboux frame along the curve ϕ by

(T, V, U) , we have the derivative formulae of the Darboux frame as follows:

(2.1)



















T ′ = κgV + κnU,

V ′ = −κgT + τgU,

U ′ = −κnT − τgV,
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where T is the unit tangent vector of the curve ϕ, U is the unit normal vector of the

surface restricted to the curve ϕ, V is the unit vector given by V = U × T, and

κg, κn, τg denote the geodesic curvature, normal curvature, geodesic torsion of the

curve ϕ, respectively [7]

In classic differential geometry, the non-zero geodesic torsion have limitations in

some theorems e.g. Gauss and Weingarten. However, assume that τg 6= 0 and consider

the new parameter t =
∫

κgds,, we get the new Darboux equations [13] as follows :

(2.2)



















dT
dt

= σ1V + σ2U,

dV
dt

= −σ1T + U,

dU
dt

= −σ2T − V,

where σ1 =
κg

τg
, and σ2 =

κg

τg
.

Definition 2.1. [13]Let ϕ be a unit speed curve lying on a regular surface and

(T, V, U) be the Darboux frame along ϕ. The curve ϕ is called a relatively normal-

slant helix if the vector field V of ϕ makes a constant angle with a fixed direction,

i.e. there exists a fixed unit vector W and a constant angle θ such that

(2.3) 〈V,W 〉 = cos (θ) .

3. Position vector of a relatively normal-slant helix

We start this section by giving a characterization of normal-slant helix.

Theorem 3.1. Let ϕ (s) be a unit speed curve lying on a regular surface with τg 6= 0.

The curve ϕ is a relatively normal-slant helix if and only if

(3.1)

(

σ2σ
2
1 + σ2 + σ

′

1

(σ2
1 + 1)

3

2

)

(t) = ∓m,

where t =
∫

τgds, σ1 =
κg

τg
, σ2 =

κg

τg
, m =

n√
1− n2

, n = cos (θ) , and θ is the angle

between the vector V and a fixed direction.

Proof. (⇒) Let W be a unit fixed vector satisfying

(3.2) 〈V,W 〉 = n.
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Differentiating the Eq.(5), with respect to the variable t =
∫

τgds, and using the

derivative formulae (2), we get

(3.3) σ1 〈T,W 〉 = 〈U,W 〉 .

If we put 〈T,W 〉 = b, we can write

W = bT + nV + bσ1U.

From the unitary of the vector W we get

(3.4) b = ±
√

1− n2

1 + σ2
1

.

Differentiating the Eq.(6), we obtain

bσ
′

1 + σ2
1n+ σ1σ2(σ1b) = −σ2b− n.

Then

(3.5) n = −
(

σ2σ
2
1 + σ2 + σ′

1

1 + σ2
1

)

b,

and by Eq.(7) and (8), we get the following equation

σ2σ
2
1 + σ2 + σ′

1

(1 + σ2
1)

3

2

= ∓m,

where m =
n√

1− n2
.

(⇐) Suppose that

(3.6)
σ2σ

2
1 + σ2 + σ′

1

(1 + σ2
1)

3

2

= m,

and let us consider the vector

W (t) =
n

m

(

± 1
√

1 + σ2
1

T +mV ± σ1
√

1 + σ2
1

U

)

(t).

Differentiating the vector W by using the derivative formulae (2) and Eq.(9),

dW

dt
=

n

m

[(

∓ σ
′

1σ1 + σ1σ2(1 + σ2
1)

(1 + σ2
1)

3

2

−mσ1

)

T +

(

m± σ2(1 + σ2
1) + σ

′

1(1 + σ2
1)− σ

′

1σ
2
1

(1 + σ2
1)

3

2

)

U

]

,

=
n

m

[(

∓ σ1
σ

′

1 + σ2 + σ2σ
2
1

(1 + σ2
1)

3

2

−mσ1

)

T +

(

m± σ2 + σ2σ
2
1 + σ

′

1

(1 + σ2
1)

3

2

)

U

]

,

= 0.
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Therefore, the vector V is constant and 〈V,W 〉 = n, which completes the proof. �

To determine the parametric representation of the position vector of a relatively

normal-slant helix (its vector field V make a constant angle with a fixed direction),

we firstly establish that for any arbitrary curve, the vector tangent T satisfies a vector

differential equation as follows:

Theorem 3.2. Let ϕ (s) be a unit speed curve lying on a regular surface with τg 6= 0

Then, the vector T satisfies a vector differential equation as follows :

(3.7) T ′(t)− σ1(t)σ2(t)T (t) = σ1(t)V (t) + σ2(t)V
′(t),

where t =
∫

τgds, σ1 =
κg

τg
, and σ2 =

κn

τg
.

Proof. Let ϕ (s) be a curve lying on a regular surface. If we differentiate the first

equation of the new Darboux Eq.(2), we get:

T ′ = σ1V + σ2U.

We multiply the second equations of (2) by σ2, we obtain:

σ2V
′ = −σ2σ1T + σ2U.

Therefore

T ′ − σ2V
′ = σ1V + σ2σ1T.

�

Following theorem 3.1, if we know the vector V of an arbitrary curve lying on a

regular surface and satisfying τg 6= 0, we can determine the tangent vector of this

curve and hence its parametric representation. Hence the theorem:

Theorem 3.3. Let ϕ (s) be a unit speed curve lying on a regular surface with τg 6= 0.

The position vector of this curve can be determined as follows

(3.8) ϕ(t) =

∫

1

τg
[(

∫

(σ1V + σ2V
′

)e−
∫
σ2σ1dtdt)e

∫
σ2σ1dt + ke

∫
σ2σ1dt]dt.

where t =
∫

τgds, σ1 =
κg

τg
, and σ2 =

κn

τg
. and k as a constant.
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Proof. Let ϕ = ϕ (s) be a curve lying on a regular surface. We construct the solution

of Eq.(10) by the method of variation of a constant. Consider the corresponding

homogeneous equation:

T ′
h(t)− σ1(t)σ2(t)Th(t) = 0

and find its general solution

Th(t) = keσ2σ1dt, where k ∈ IR.

Next, we suppose that k is a function of t and substitute the solution Tp(t) =

k(t)eσ2σ1dt into the initial nonhomogeneous equation (10). We can write

(k
′

e
∫
σ2σ1dt + kσ2σ1e

∫
σ2σ1dt)− σ2σ1e

∫
σ2σ1dt = σ1V + σ2V

′

,

hence

k =

∫

(σ1V + σ2V
′

)e−
∫
σ2σ1dtdt.

As a result, the general solution of the differential equation (10) is given by:

T (t) =

(
∫

(σ1V + σ2V
′

)e−
∫
σ2σ1dtdt

)

e
∫
σ2σ1dt + ke

∫
σ2σ1dt,

where k ∈ IR.

On the other hand, ϕ(t) =
∫ 1

τg
Tdt, which completes the proof.

�

Theorem 3.4. Let ϕ = ϕ(s) be a unit speed curve lying on a regular surface with

τg 6= 0. If ϕ is a relatively normal-slant helix, then the vector V satisfies a vector

differential equation of the third order as follows:

(3.9)
(−(V

′

+ σ1σ2V + (σ2
1 + 1)V )

(σ
′

1 + σ2 + σ2σ
2
1)

)′

(t)+

(

σ2σ1(V
′

+ σ2σ1V + (σ2
1 + 1)V )

(σ
′

1 + σ2 + σ2σ
2
1)

)

(t) = (σ1V+σ2V
′)(t)

where t =
∫

τgds, σ1 =
κg

τg
. and σ2 =

κn

τg
.

Proof. Differentiating the second equation of the new Darboux formulae (2) and using

the first and the third equations, we have:

(3.10) −V
′′

(σ2
1 + 1)V = (σ

′

1 + σ2)T + σ1σ2U,
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from the second equation of (2), we have

σ1σ2V
′

= −σ2σ
2
1T + σ1σ2U,

then

(3.11) σ1σ2V
′

= −σ2σ
2
1T + σ1σ2U + (σ

′

1 + σ2)T − (σ
′

1 + σ2)T

Substituting Eq.(14) in Eq.(13), we obtain

V
′′

+ σ1σ2V
′

+ (σ2
1 + 1)V = −(σ

′

1 + σ2 + σ2σ
2
1)T.

Since ϕ is a relatively normal-slant helix, we get

(3.12) T =
−1

(σ
′

1 + σ2 + σ2σ
2
1)
(V

′′

+ σ1σ2V
′

+ (σ2
1 + 1)V ),

and

(3.13) σ2σ1T =
−σ2σ1

(σ
′

1 + σ2 + σ2σ
2
1)
(V

′′

+ σ1σ2V
′

+ (σ2
1 + 1)V ).

Substituting Eq.(16) and the derivative of Eq.(15) in Eq.(10), we get the formula as

desired. �

Theorem 3.5. Let ϕ = ϕ(s) be a unit speed curve lying on a regular surface with

τg 6= . If ϕ is a relatively normal-slant helix, then the vector V satisfies a vector

differential equation of the third order as follows:

(3.14) V
′′′

(t) + A(t)V
′′

(t) +B(t)V
′

(t) = 0

with






A = −3σ
′

1σ1(σ
2
1 + 1)−1.

B = σ1σ
′

2 + 2σ
′

1σ2 − 3σ
′

1σ
2
1σ2(σ

2
1 + 1)−1 + σ2

1 + σ2
2 + 1,

where t =
∫

τgds, σ1 =
κg

τg
and σ2 =

κn

τg
.

Proof. The curve ϕ is a relatively normal-slant helix lying on a regular surface, i.e.

satisfied Eq.(4), substituting this equation in Eq.(12), we get

V
′′′ − 3σ

′

1σ1

(σ2
1 + 1)

V
′′

+ σ1σ2V
′′

+ σ1σ
′

2V
′

+ σ
′

1σ2V
′ − 3σ

′

1σ1σ1σ2

(σ2
1 + 1)

V
′

+ (σ2
1 + 1)V

′

−σ
′

1σ1V − σ2σ1V
′′ − σ2

1σ
2
2V

′ − σ2σ1(σ
2
1 + 1)V +m(σ2

1 + 1)
3

2σ1V +m(σ2
1 + 1)

3

2σ2V
′

= 0.
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The equation becomes

V
′′′

(t) + A(t)V
′′

(t) +B(t)V
′

+ C(t)V = 0,

where

A =
−3σ

′

1σ1

(σ2
1 + 1)

,

for B, we have

B = σ1σ
′

2 + σ
′

1σ2 −
3σ

′

1σ
2
2σ2

(σ2
1 + 1)

+ σ2
1 + 1− σ2

1σ
2
2 +m(σ2

1 + 1)
3

2σ2,

then

B = σ1σ
′

2 + 2σ
′

1σ2 −
3σ

′

1σ
2
2σ2

(σ2
1 + 1)

+ σ2
1 + σ2

2 + 1,

and

C = 0.

�

Theorem 3.6. Let ϕ = ϕ(s) be a unit speed curve lying on a regular surface. The

position vector ϕ = (ϕ1, ϕ2, ϕ3) of a relatively normal-slant helix lying on a regular

surface satisfying τg 6= 0, with respect to standard frame (e1, e2, e3), is computed in

the parametric form as follows:























































ϕ1(t) =
n

m

∫ eβ

τg

[

∫

(σ1 cos(
∫

α.dt)− σ2α sin(
∫

α.dt))e−βdt

]

dt,

ϕ2(t) =
n

m

∫ eβ

τg

[

∫

(σ1 sin(
∫

α.dt) + σ2α cos(
∫

α.dt))e−βdt

]

dt,

ϕ3(t) = n
∫ eβ

τg

[

∫

σ1e
−βdt

]

dt,

where t =
∫

τgds, σ1 =
κg

τg
, σ2 =

κn

τg
, β =

∫

σ2σ1dt, α =

(

B − 2A2

9
− A

′

3

)
1

2

,

m =
n√

1− n2
, where n = cos(θ) and θ is the angle between e3 (axis of relatively

normal-slant helix) and the vector V.



POSITION VECTORS OF A RELATIVELY NORMAL-SLANT HELIX... 147

Proof. The curve ϕ is a relatively normal-slant helix lying on a regular surface, i.e.

the vector V makes a constant angle with a fixed direction called axis of helix. Then

the vector V satisfies a vector differential equation:

(3.15) V
′′′

(t) + A(t)V
′′

(t) + B(t)V
′

(t) = 0.

So, without loss of generality, we can take the axis of the relatively normal-slant helix

parallel to e3, where (e1, e2, e3) is an orthonormal frame in E3, then

(3.16) V = V1e1 + V2e2 + ne3.

From the unitary of the vector V, we get

(3.17) V 2
1 + V 2

2 = 1− n2 =
n2

m2
,

The solution of Eq.(20) is given as follows:


















V1(t) =
n

m
cos(λ(t)),

V2(t) =
n

m
sin(λ(t)),

where λ is an arbitrary function of t. Every component of the vector V satisfies the

Eq.(18). So, substituting the components V1(t) and V2(t) in the Eq.(19), we have the

following differential equations of the function λ(t)

(−n

m
(λ

′′′

sin(λ) + λ
′′

λ
′

cos(λ) + 2λ
′′

λ
′

cos(λ)− λ
′3 sin(λ))

)

+A

(−n

m
(λ

′′

sin(λ) + λ
′2 cos(λ))) +B(

−n

m
λ

′

(t) sin(λ(t))

)

= 0,

(

n

m
(λ

′′′

cos(λ)− λ
′′

λ
′

sin(λ)− 2λ
′′

λ
′

sin(λ)− λ
′3 cos(λ))

)

+A

(

n

m
(λ

′′

cos(λ)− λ
′2 sin(λ))) +B(

n

m
λ

′

(t) cos(λ(t))

)

= 0.

It is easy to prove that the above two equations lead to the following two equations:

(3.18) −3λ
′

λ
′′ − λ

′2A = 0,

(3.19) −λ
′′′

+ λ
′3 − λ

′′

A− λ
′

B = 0.
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Eq.(21), gives the following equation:

(3.20) λ
′′

= −A

3
λ

′

.

Substituting Eq.(23) and its derivative in Eq.(22), then solving the differtial equation

that we get , we obtain the following condition:

λ(t) =

∫
(

B − 2A2

9
− A

′

3

)
1

2

dt =

∫

α.dt,

where α =

(

B − 2A2

9
− A

′

3

)
1

2

. Now, the vector V take the following form:

(3.21)











































V1(t) =
n

m
cos(

∫

α.dt),

V2(t) =
n

m
sin(

∫

α.dt)),

V3(t) = n.

If we substitute the Eq.(24) in the Eq.(11), which completes the proof. �

Remark 1. if B <
2A2

9
− A

′

3
, it means there does not exist a relatively normal-slant

helix.

4. Applications

In this section, we determine the position vectors of special curves by applying

theorem3.5. We first recall this result.

Lemma 4.1. Let ϕ be a curve lying on a regular surface M:

If κg = 0, then, ϕ is relatively normal-slant helix on M if and only if ϕ is a general

helix [13].

If κn = 0, then, ϕ is relatively normal-slant helix on M if and only if ϕ is a slant

helix [13].

Example 4.1. The position vector of a relatively normal-slant helix with κg = 0

(general helix) and τg 6= 2, is expressed in the natural representation form, with
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respect to standard frame (e1, e2, e3) by :


















ϕ1(s) = ∓n
∫

cos(
√
1 +m2

∫

τgds)ds,

ϕ2(s) = ∓n
∫

sin(
√
1 +m2

∫

τgds)ds,

ϕ3(s) = ncs,

or in the parametric form :






























ϕ1(t) = ∓n
∫ 1

τg
cos

(√
1 +m2t

)

dt,

ϕ2(t) = ∓n
∫ 1

τg
sin

(√
1 +m2t

)

dt,

ϕ3(t) = nc
∫ 1

τg
dt,

where t =
∫

τgds and c as constant.

Example 4.2. The position vector of a relatively normal-slant helix with κn = 0

(slant helix) and τg 6=, is expressed in the natural representation form, with respect

to standard frame (e1, e2, e3) by :



































































ϕ1(s) = ∓n
∫

(

∫ τg
∫

τgds
√

1−m2(
∫

τgds)2
cos

(

1

n
arcsin(m

∫

τgds)

)

ds

)

ds.

ϕ2(s) = ∓n
∫

(

∫ τg
∫

τgds
√

1−m2(
∫

τgds)2
sin

(

1

n
arcsin(m

∫

τgds)

)

ds

)

ds.

ϕ3(s) = ± n

m

∫

√

1−m2

(

∫

τgds

)2

ds.

or in the parametric form :






















































ϕ1(t) = ∓n
∫

(

1

τg

∫ t√
1−m2t2

cos

(

1

n
arcsin(mt)

)

dt

)

dt.

ϕ2(t) = ∓n
∫

(

1

τg

∫ t√
1−m2t2

sin

(

1

n
arcsin(mt)

)

dt

)

dt.

ϕ3(t) = ± n

m

∫ 1

τg

√
1−m2t2dt,

where t = τgds.
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Example 4.3. The position vector of a relatively normal-slant helix with κg = κn =

τg 6=, is expressed in the natural representation form, with respect to standard frame

(e1, e2, e3) by :







































ϕ1(s) =
1√
6

∫

(
√
3 sin(

√
3
∫

τgds) + cos(
√
3
∫

τgds))ds.

ϕ2(s) =
1√
6

∫

(sin(
√
3
∫

τgds)−
√
3 cos(

√
3
∫

τgds))ds.

ϕ3(s) = −ns,

or in the parametric form :



















































ϕ1(t) =
1√
6

∫ 1

τg
(
√
3 sin(

√
3t) + cos(

√
3t))dt.

ϕ2(t) =
1√
6

∫ 1

τg
(sin(

√
3t)−

√
3 cos(

√
3t))dt.

ϕ3(t) = −n
∫ 1

τg
dt,

where t = τgds.
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