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A NOTE ON THE BOUNDS OF ZEROS OF POLYNOMIALS AND

CERTAIN CLASS OF TRANSCENDENTAL ENTIRE FUNCTIONS

TANCHAR MOLLA(1) AND SANJIB KUMAR DATTA(2)

Abstract. In the paper we wish to find bounds of zeros of a polynomial. Our

result in some special case sharpen some very well known results obtained for this

purpose. Also, we obtain lower bound for a certain class of transcendental entire

functions by restricting the coefficients of its Taylor’s series expansions to some

conditions.

1. Introduction

Fundamental theorem of algebra asserts that every non constant polynomial of

degree n with complex coefficients has exactly n zeros but gives no information about

location of zeros of a polynomial. All zeros of a polynomial of degree less than or

equal to 4 can be derived algebraically for all possible values of its coefficients. But,

difficulty arises when degree of polynomial is greater than or equal to 5. So, it

is desirable to know bounds of zeros of a polynomial. Problem of finding bounds

for zeros of a polynomial is classical one which is essential in various disciplines

such as controling engineering problems, eigenvalue problems in mathematical physics

and digital audio signal processing problems {cf. [18]}. Gauss and Cauchy were

first contributors in this area [16]. To find bounds for the moduli of the zeros of a

polynomial, Cauchy {cf. [16]} introduced the following classical result:

Theorem A [16]. If P (z) =
∑n

j=0 ajz
j is a polynomial of degree n, then all the

zeros of P (z) lie in |z| ≤ 1 +max0≤j≤(n−1)|
aj

an
|.

Theorem A was improved in several ways by many researchers {cf. [6], [13], [15] &
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[17] }. As an improvement of Theorem A, Joyal et al. [11] gave the following theorem:

Theorem B [11]. If P (z) =
∑n

j=0 ajz
j (an = 1) is a polynomial of degree n and

β = max
0≤j<n−1

|aj |, then all the zeros of P (z) lie in

|z| ≤
1

2

{

1+|an−1|+
√

(1−|an−1|)2 + 4β
}

.

Theorem B gives no improvement of Theorem A if β =|an−1|. Datt and Govil [5]

established following result which is an improvement of Theorem A even if β =|an−1|.

Theorem C [5]. If P (z) =
∑n

j=0 ajz
j (an = 1) is a polynomial of degree n and if

A = max
0≤j≤n−1

|aj|, then P (z) has all its zeros in the ring shaped region

|a0|

2(1 + A)n−1.(nA + 1)
≤|z| ≤ 1 +

(

1−
1

(1 + A)n

)

A.

Again, in a different direction G. Enström and S. Kakeya [9] established following

result known as Enström-Kakeya theorem.

Theorem D [9]. If P (z) =
∑n

j=0 ajz
j is a polynomial of degree n with real coefficients

satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an, then all the zeros of P (z) lie in |z| ≤ 1.

Many improvements and generalizations of Theorem D for polynomials and analytic

functions are seen in the existing literature {cf. [1]- [4],[8],[9],[11], [12] }.

We recall that an entire function f of one complex variable z is a function analytic

in the finite complex plane C and therefore it can be represented by an everywhere

convergent power series like f(z) = c0+ c1z+ ...+ cnz
n + ... where ci, i = 0, 1, ..., n, ...

are real or complex constants. Thus entire functions can be thought of as the natural

generalization of polynomials.

The prime concern of this paper is to improve Theorem A as well as Theorem B and

Theorem C in some special case and also derive lower bound for zeros of a certain class

of transcendental entire functions with restricted coefficients. We do not explain the

standard theories, notations and definitions of entire functions as those are available

in [19].

2. Lemma

In this section we present a lemma which will be needed in the sequel.



A NOTE ON THE BOUNDS OF ZEROS OF POLYNOMIALS AND......... 155

Lemma 2.1. [10] Let {fn(z)}, n = 1, 2, ... be a sequence of functions that are analytic

in a region D and that converges uniformly to a function f(z) in every closed sub

region of D. Let z0 be an interior point of D. If z0 is a limit point of the zeros of fn(z),

then z0 is a zero of f(z). Conversely, if z0 is an m-fold zero of f(z), every sufficiently

small neighborhood of z0 contains exactly m zeros (counted with their multiplicities)

of each fn with n > N for a sufficiently large integer N .

Lemma 2.1 is known as Hurwitz theorem in C.

3. Theorems

Theorem 3.1. Let P (z) = anz
n + an−1z

n−1 + ... + a1z + a0 be a polynomial of

degree n > 1 with M1 = max {|a2 − a1|, |a3 − a2|, ..., |an − an−1|, |an|} and M2 =

max {|a0|, |a1 − a0|, ..., |an−1 − an−2|}.Then all the zeros of P (z) are contained in the

ring shaped region R1 ≤|z| ≤ R2 where

R1 =
2|a0|

|a0|+ |a1 − a0|+
√

(|a0| − |a1 − a0|)2 + 4|a0|M1

,

R2 =
1

2|an|

{

|an|+|an − an−1|+
√

(|an|−|an − an−1|)2 + 4|an|.M2

}

.

Proof. Let Q1(z) = (z − 1)znP (1
z
)

i.e, Q1(z) = a0z
n+1 + (a1 − a0)z

n + (a2 − a1)z
n−1 + ...+ (an − an−1)z − an.

Then,

|Q1(z)| ≥ |a0||z|
n+1−|(a1 − a0)z

n + (a2 − a1)z
n−1 + ... + (an − an−1)z − an|(3.1)

≥ (|a0||z|−|a1 − a0|)|z|
n−|(a2 − a1)z

n−1 + ...+ (an − an−1)z − an|.
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Now for |z| = r(> 1), it follows that

|(a2 − a1)z
n−1 + (a3 − a2)z

n−2 + ... + (an − an−1)z − an|

≤|a2 − a1|r
n−1+|a3 − a2|r

n−2 + ...+|an − an−1|r+|an|

≤ M1.r
n

{

1

r
+

1

r2
+ ...+

1

rn

}

where M1 = max {|a2 − a1|, |a3 − a2|, ..., |an − an−1|, |an|}

≤ M1.r
n

∞
∑

j=1

1

rj

= M1.r
n 1

r − 1
.

Hence from (3.1), we get for |z| = r(> 1) that

|Q1(z)| ≥ (|a0|r−|a1 − a0|)r
n −M1.r

n 1

r − 1

=
rn

r − 1

{

|a0|r
2 − (|a0|+|a1 − a0|)r+|a1 − a0| −M1

}

> 0

if f(r) =|a0|r
2 − (|a0|+|a1 − a0|)r+|a1 − a0| −M1 > 0.

Clearly, f(r) = 0 has only real roots. In view of Descartes’ rule of signs f(r) = 0 has

two positive roots if |a1 − a0| > M1 and only one positive root if |a1 − a0| < M1. For

each case, positive root of f(r) = 0 which lies in 1 < r < ∞ is

1

2|a0|
{|a0|+ |a1 − a0|+

√

(|a0| − |a1 − a0|)2 + 4|a0|M1}.

Since f(+∞) > 0, obviously f(r) > 0 i.e |Q1(z)| > 0 if

|z| = r >
1

2|a0|
{|a0|+ |a1 − a0|+

√

(|a0| − |a1 − a0|)2 + 4|a0|M1}.

Consequently, |P (z)| > 0 if

|z| < R1 =
2|a0|

|a0|+ |a1 − a0|+
√

(|a0| − |a1 − a0|)2 + 4|a0|M1

.

Hence all the zeros of P (z) contain in |z| ≥ R1.

Further, asssuming Q2(z) = (1− z)P (z)

i.e, Q2(z) = −anz
n+1 + (an − an−1)z

n + (an−1 − an−2)z
n−1 + ...+

(a1 − a0)z + a0.
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it follows that

|Q2(z)| ≥ |an||z|
n+1−|(an − an−1)z

n + (an−1 − an−2)z
n−1 + ... + (a1 − a0)z + a0|

≥ (|an||z|−|an − an−1|)|z|
n−|(an−1 − an−2)z

n−1 + ...+ (a1 − a0)z + a0|.

Now calculating in a similar fashion as in Q1(z), we obtain for |z| = r(> 1) that

|Q2(z)| ≥ (|an|r−|an − an−1|)r
n −M2.r

n 1

r − 1

where M2 = max {|a0|, |a1 − a0|, ..., |an−1 − an−2|}

=
rn

r − 1

{

|an|r
2 − (|an|+|an − an−1|)r+|an − an−1| −M2

}

> 0

if |an|r
2 − (|an|+|an − an−1|)r+|an − an−1| −M2 > 0

i.e, if r > R2 =
1

2|an|

{

|an|+|an − an−1|+
√

(|an|−|an − an−1|)2 + 4|an|.M2

}

.

Thus, no zero of Q2(z) outside the unit circle lies in |z| > R2.

Since zeros of P (z) are the zeros of Q2(z), all the zeros of P (z) lie in |z| ≤ R2. This

proves the theorem. �

If M2 >|an − an−1|, Theorem 3.1 is an improvement of Theorem A as well as The-

orem B and Theorem C. Taking P (z) = 4z6 + 3z5 + 2z4 − z2 − z − 4, sharpness of

Theorem 3.1 is followed from the following table.

Sl. no. Theorem Bounds for zeros of P (z)

1 Theorem 3.1 0.53 ≤|z| ≤ 1.69

2 Theorem A |z| ≤ 2

3 Theorem B |z| ≤ 1.88

4 Theorem C 0.0045 ≤|z| ≤ 1.98

An entire function of one complex variable other than a polynomial is known as

transcendental entire function. Zeros of any transcendental entire function, if exist,

may be finite or countably infinite in C. Considering the polynomial znP (1
z
) and

applying Theorem D, it is observed that if P (z) =
∑n

j=0 ajz
j is a polynomial of

degree n with real coefficients satisfying a0 ≥ a1 ≥ ... ≥ an−1 ≥ an > 0 then P (z)

does not vanish in |z| < 1. Analogous to this result, Datta et al. [7] introduced the
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following result:

Theorem E [7]. Let f(z) =
∑∞

k=0
ak
k!
zk be a transcendental entire function with

f(0) = a0 6= 0 such that | a1 |≥| a2 |≥ ... . Then f(z) does not vanish in | z |<

ln(1+ | a0
a1

|).

Apparently, it is observed that Theorem E is not applicable for trascendental entire

functions having Taylor’s series expansion with some missing terms. In this regard,

we develop folloing result.

Theorem 3.2. Let f(z) = a0 + an1
zn1 + ... + anp

znp + anq
znq + ... be an entire

function with f(0) = a0 6= 0 and n1, n2, ..., np, nq, ... are positive integers such that

1 ≤ n1 < ... < np < nq < .... Also let for some positive integer p, |anp
| ≥|anq

| ≥ ... .

Then f(z) does not vanish in

|z| <
|a0|

|a0|+M

where M = max{|an1
|, |an2

|, ..., |anp
|}.

Proof. Let fk(z) = a0 + an1
zn1 + ...+ anl

znl + anm
znm + ...+ ank

znk . Also, let

F (z) = znkfk(
1

z
)

i.e, F (z) = a0z
nk + an1

znk−n1 + ...+ anl
znk−nl + anm

znk−nm + ...+ ank
.

Now for |z| = r(> 1), we get that

|an1
znk−n1 + an2

znk−n2 + ...+ anl
znk−nl + anm

znk−nm + ...+ ank
|

≤|an1
|rnk−n1+|an2

|rnk−n2 + ...+|anl
|rnk−nl+|anm

|rnk−nm + ...+|ank
|

≤ Mrnk

{

1

rn1

+
1

rn2

+ ... +
1

rnl
+

1

rnm
+ ...+

1

rnk

}

where M = max{|an1
|, |an2

|, ..., |anp
|}

≤ Mrnk

{

1

r
+

1

r2
+ ...+

1

rl
+

1

rm
+ ... +

1

rk

}

since ni ≥ i &
1

rni
≤

1

ri
for i = 1, 2, 3, ..., k

≤ Mrnk

∞
∑

j=1

1

rj

= M.rnk
1

r − 1
.
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Hence for |z| = r(> 1), it follows that

|F (z)| ≥|a0|r
nk −Mrnk

1

r − 1
> 0 if r >

|a0|+M

|a0|
.

Therefore,

|F (z)| > 0 if |z| >
|a0|+M

|a0|
.

Consequently,

|fk(z)| > 0 if |z| <
|a0|

|a0|+M
.

Thus, no zero of the partial sum fk(z) is contained in |z| < |a0|
|a0|+M

. Hence by Lemma

2.1, f(z) does not vanish in |z| < |a0|
|a0|+M

.

Thus the theorem is established. �

The following example ensures the validity of Theorem 3.2 .

Example 3.1. Let f(z) = z sin z2 + 4z3 − 3z2 + z + 4.

Then the Taylor’s series expansion of f(z) is

f(z) = 4 + z − 3z2 + 5z3 − z7

3!
+ z11

5!
− z15

7!
+ ... .

Here, a0 = 4 & M = 5.

Hence by Theorem 3.2, f(z) has no zero in |z| < 0.44 .

The above can be validated by using well known Rouche’s theorem also.

Apparently, Theorem 3.2 can not be used for transcendental entire functions having

Taylor’s series expansion with coefficients in different monotonicity conditions. In

view of this, we develop following result imposing monotonicity conditions on even

indexed and odd indexed coefficients separately.

Theorem 3.3. Let f(z) = a0 + a1z + a2z
2 + ... be an entire function with a0 6= 0.

Also, let for some positive integers l, m

|a2l| ≥|a2l+2| ≥|a2l+4| ≥ ...

and

|a2m+1| ≥|a2m+3| ≥|a2m+5| ≥ ... .

Then f(z) does not vanish in |z| < |a0|
|a0|+2M

where M = max
0≤i≤l

0≤j≤m

{|a2i|, |a2j+1|}.
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Proof. Let fn(z) = a0 + a1z + a2z
2 + ... + anz

n

and F (z) = znfn(
1
z
).

Again, let

(3.2) Q(z) = (z2 − 1)F (z)

i.e, Q(z) = (z2 − 1)(a0z
n + a1z

n−1 + a2z
n−2 + ...+ a2lz

n−2l + a2l+1z
n−2l−1 + ...+

a2mz
n−2m + a2m+1z

n−2m−1 + ...+ an)

i.e, Q(z) = a0z
n+2 + a1z

n+1 + (a2 − a0)z
n + (a3 − a1)z

n−1 + ...+ (a2l+1 − a2l−1)z
n−2l+1

+ (a2l+2 − a2l)z
n−2l + ...+ (a2m+1 − a2m−1)z

n−2m+1 + (a2m+2 − a2m)z
n−2m+

...− an−1z − an

i.e, Q(z) = a0z
n+2 + P (z) .

Now for |z| = r(> 1), we get that

|P (z)| =|a1z
n+1 + (a2 − a0)z

n + (a3 − a1)z
n−1 + ... + (a2l+1 − a2l−1)z

n−2l+1+

(a2l+2 − a2l)z
n−2l + ... + (a2m+1 − a2m−1)z

n−2m+1 + (a2m+2 − a2m)z
n−2m+

...− an−1z − an|

≤|a1|r
n+1 + (|a2|+|a0|)r

n + (|a3|+|a1|)r
n−1 + ...+ (|a2l+1|+|a2l−1|)r

n−2l+1+

(|a2l+2|+|a2l|)r
n−2l + ...+ (|a2m+1|+|a2m−1|)r

n−2m+1 + (|a2m+2|+|a2m|)r
n−2m

+ ...+|an−1|r+|an|

≤ 2Mrn+2

{

1

r
+

1

r2
+ ... +

1

rn+2

}

where M = max
0≤i≤l

0≤j≤m

{|a2i|, |a2j+1|}

≤ 2Mrn+2
∞
∑

k=1

1

rk

= 2Mrn+2 1

r − 1
.

Hence for |z| = r(> 1), it follows from (3.2) that

|Q(z)| ≥|a0|r
n+2 − 2Mrn+2.

1

r − 1
> 0 if r >

|a0|+ 2M

|a0|

i.e, |Q(z)| > 0 if |z| >
|a0|+ 2M

|a0|
.
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Therefore,

|F (z)| > 0 if |z| >
|a0|+ 2M

|a0|

i.e, |fn(
1

z
)| > 0 if |z| >

|a0|+ 2M

|a0|

i.e, |fn(z)| > 0 if |z| <
|a0|

|a0|+ 2M
.

Thus, it follows by Lemma 2.1 that

|f(z)| > 0 if |z| <
|a0|

|a0|+ 2M
.

This completes the proof of the theorem. �

Following example justifies difference between Theorem 3.2 & Theorem 3.3 as well

as their sharpness.

Example 3.2. Let f(z) = z2 sin 2z + cos z.

Now the Taylor’s series expansion of f(z) is

f(z) = 1−
z2

2
+ 2z3 +

z4

24
−

4z5

3
− ... .

Here, it follows that the coefficients of the series of f(z) do not satisfy the mono-

tonicity conditions of Theorem 3.2 but satisfy the following conditions.

|a0| ≥|a2| ≥|a4| ≥ ...

and

|a3| ≥|a5| ≥|a7| ≥ ... .

Thus, Theorem 3.2 is not applicable. However, by Theorem 3.3, no zero of f(z) lies

in

|z| < 0.2 .

Again, let g(z) = sin z + cos z. Then its Taylor’s series expansion is

g(z) = 1 + z −
z2

2!
−

z3

3!
+

z4

4!
+

z5

5!
− ... .

Clearly, monotonicity conditions of both Theorem 3.2 & Theorem 3.3 are satisfied by

the coefficients of the series of g(z).
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It is observed that no zero of g(z) by Theorem 3.2 contain in |z| < 0.5 whereas by

Theorem 3.3 in |z| < 0.33.
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