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KRASNER (m,n)-HYPERRING OF FRACTIONS

M. ANBARLOEI

Abstract. The formation of rings of fractions and the associated process of lo-

calization are the most important technical tools in commutative algebra. Krasner

(m,n)-hyperrings are a generalization of (m,n)-rings. Let R be a commutative

Krasner (m,n)-hyperring. The aim of this research work is to introduce the concept

of hyperring of fractions generated by R and then investigate the basic properties

such hyperrings.

1. Introduction

The notion of Krasner hyperrings was introduced by Krasner for the first time

in [17]. Also, we can see some properties on Krasner hyperrings in [22] and [26].

In [11], Davvaz and Vougiouklis defined the notion of n-ary hypergroups which is

a generalization of hypergroups in the sense of Marty. The concept of (m,n)-ary

hyperrings was introduced in [23]. Davvaz and et. al. introduced Krasner (m,n)-

hyperrings as a generalization of (m,n)-rings and studied some results in this context

in [24]. We can see some important hyperideals of the Krasner (m,n)-hyperrings in

[1] and [14]. Also, Ostadhadi and Davvaz studied the isomorphism theorems of ring

theory and Krasner hyperring theory which are derived in the context of Krasner

(m, n)-hyperrings in [27]. Ameri and Norouzi introduced in [1] the notions of n-ary

prime and n-ary primary hyperideals in a Krasner (m,n)-hyperring and proved some

results in this respect. The notion of n-ary 2-absorbing hyperideals in a Krasner

(m,n)-hyperring as a generalization of the n-ary prime hyperideals was introduced in
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[3]. To unify the concepts of the prime and primary hyperideals under one frame, the

notion of δ-primary hyperideals was defined in Krasner (m,n)-hyperrings [4]. The

formation of rings of fractions and the associated process of localization are the most

important technical tools in commutative algebra. They correspond in the algebra-

geometric picture to concentratining attention on an open set or near a point, and

the importance of these notions should be self-evident. Procesi and Rota in [28] have

studied ring of fractions in Krasner hyperrings.

In this paper, we aim to define the notion of a hyperring of fractions of Krasner

(m,n)-hyperrings and provide several properties of them. The paper is organized as

follows. In section 2, we have given some basic definitions and results of n-ary hy-

perstructures which we need to develop our paper. In section 3, we have constructed

the Krasner (m,n)-hyperring of fractions. In section 4, we have studied the hyper-

ideals of Krasner (m,n)-hyperring of fractions. In section 5, we have investigated

construction of qutient Krasner (m,n)-hyperring of fractions.

2. Preliminaries

In this section we recall some definitions and results about n-ary hyperstructures

which we need to develop our paper.

A mapping f : Hn −→ P ∗(H) is called an n-ary hyperoperation, where P ∗(H) is the

set of all the non-empty subsets of H . An algebraic system (H, f), where f is an

n-ary hyperoperation defined on H , is called an n-ary hypergroupoid.

We shall use the following abbreviated notation:

The sequence xi, xi+1, ..., xj will be denoted by xj
i . For j < i, xj

i is the empty symbol.

In this convention f(x1, ..., xi, yi+1, ..., yj, zj+1, ..., zn) will be written as f(xi
1, y

j
i+1, z

n
j+1).

In the case when yi+1 = ... = yj = y the last expression will be written in the form

f(xi
1, y

(j−i), znj+1). For non-empty subsets A1, ..., An of H we define

f(An
1 ) = f(A1, ..., An) =

⋃
{f(xn

1 ) | xi ∈ Ai, i = 1, ..., n}.
An n-ary hyperoperation f is called associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ),

hold for every 1 ≤ i < j ≤ n and all x1, x2, ..., x2n−1 ∈ H . An n-ary hypergroupoid

with the associative n-ary hyperoperation is called an n-ary semihypergroup. An
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n-ary hypergroupoid (H, f) in which the equation b ∈ f(ai−1
1 , xi, a

n
i+1) has a solution

xi ∈ H for every ai−1
1 , ani+1, b ∈ H and 1 ≤ i ≤ n, is called an n-ary quasihypergroup,

when (H, f) is an n-ary semihypergroup, (H, f) is called an n-ary hypergroup. An

n-ary hypergroupoid (H, f) is commutative if for all σ ∈ Sn, the group of all permuta-

tions of {1, 2, 3, ..., n}, and for every an1 ∈ H we have f(a1, ..., an) = f(aσ(1), ..., aσ(n)).

If an an1 ∈ H we denote a
σ(n)
σ(1) as the (aσ(1), ..., aσ(n)). We assume throughout this paper

that all Krasner (m,n)-hyperrings are commutative. If f is an n-ary hyperoperation

and t = l(n− 1) + 1, then t-ary hyperoperation f(l) is given by

f(l)(x
l(n−1)+1
1 ) = f(f(..., f(f(xn

1), x
2n−1
n+1 ), ...), x

l(n−1)+1
(l−1)(n−1)+1).

Definition 2.1. [24] Let (H, f) be an n-ary hypergroup and B be a non-empty subset

of H . B is called an n-ary subhypergroup of (H, f), if f(xn
1 ) ⊆ B for xn

1 ∈ B, and the

equation b ∈ f(bi−1
1 , xi, b

n
i+1) has a solution xi ∈ B for every bi−1

1 , bni+1, b ∈ B and 1 ≤
i ≤ n. An element e ∈ H is called a scalar neutral element if x = f(e(i−1), x, e(n−i)),

for every 1 ≤ i ≤ n and for every x ∈ H .

An element 0 of an n-ary semihypergroup (H, g) is called a zero element if for every

xn
2 ∈ H we have g(0, xn

2) = g(x2, 0, x
n
3 ) = ... = g(xn

2 , 0) = 0. If 0 and 0′are two zero

elements, then 0 = g(0′, 0(n−1)) = 0′ and so the zero element is unique.

Definition 2.2. [18] Let (H, f) be a n-ary hypergroup. (H, f) is called a canonical

n-ary hypergroup if

(1) there exists a unique e ∈ H , such that f(x, e(n−1)) = x for every x ∈ H ;

(2) for all x ∈ H there exists a unique x−1 ∈ H , such that e ∈ f(x, x−1, e(n−2));

(3) if x ∈ f(xn
1 ), then xi ∈ f(x, x−1, ..., x−1

i−1, x
−1
i+1, ..., x

−1
n ) for all i .

We say that e is the scalar identity of (H, f) and x−1 is the inverse of x. Notice

that e−1 = e

Definition 2.3. [24] A Krasner (m,n)-hyperring is an algebraic hyperstructure (R, f, g)

which satisfies the following axioms:

(1) (R, f) is a canonical m-ary hypergroup;

(2) (R, g) is an n-ary semigroup;

(3) the n-ary operation g is distributive with respect to the m-ary hyperoperation f
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, i.e.,

g(ai−1
1 , f(xm

1 ), a
n
i+1) = f(g(ai−1

1 , x1, a
n
i+1), ..., g(a

i−1
1 , xm, a

n
i+1))

for every ai−1
1 , ani+1, x

m
1 ∈ R and 1 ≤ i ≤ n;

(4) 0 is a zero element (absorbing element) of the n-ary operation g, i.e.,

g(0, xn
2) = g(x2, 0, x

n
3) = ... = g(xn

2 , 0) = 0

for every xn
2 ∈ R.

We denote the Krasner (m,n)-hyperring (R, f, g) simply by R. We say that R is with

scalar identity if there exists an element 1 such that x = g(x, 1(n−1)) for all x ∈ R.

In this paper, we assume that R is with scalar identity.

A non-empty subset S of R is said to be a subhyperring of R if (S, f, g) is a Krasner

(m,n)-hyperring. Let I be a non-empty subset of R, we say that I is a hyperideal

of R if (I, f) is an m-ary subhypergroup of (R, f) and g(xi−1
1 , I, xn

i+1) ⊆ I, for every

xn
1 ∈ R and 1 ≤ i ≤ n.

Definition 2.4. [1] A proper hyperideal I of a Krasner (m,n)-hyperring R is said to

be an n-ary prime hyperideal if for hyperideals I1, ..., In of R, g(In1 ) ⊆ I implies that

I1 ⊆ I or I2 ⊆ I or ...or In ⊆ I.

Lemma 2.1. A proper hyperideal I of a Krasner (m,n)-hyperring R is an n-ary

prime hyperideal if for all xn
1 ∈ R, g(xn

1) ∈ I implies that x1 ∈ I or ... or xn ∈ I.

(Lemma 4.5 in [1])

Definition 2.5. [1] Let R be a Krasner (m,n)-hyperring. A non-empty subset S of

R is called n-ary multiplicative, if g(sn1 ) ∈ S for s1, ..., sn ∈ S.

In this paper, we assume that 1 ∈ S.

Definition 2.6. [1] A Krasner (m,n)-hyperring R is said to be an n-ary hyperintegral

domain, if R is a commutative Krasner (m,n)-hyperring and g(xn
1) = 0 implies that

x1 = 0 or x2 = 0 or ... or xn = 0 for all xn
1 .

Definition 2.7. [1] Let R be a Krasner (m,n)-hyperring. An element x ∈ R is said

to be invertible if there exists y ∈ R with 1 = g(x, y, 1(n−2)).
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Definition 2.8. [24] Let (R1, f1, g1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings.

A mapping φ : R1 −→ R2 is called a homomorphism if for all xm
1 ∈ R1 and yn1 ∈ R1

we have

φ(f1(x1, ..., xm)) = f2(φ(x1), ..., φ(xm))

φ(g1(y1, ..., yn)) = g2(φ(y1), ..., φ(yn)).

3. Krasner (m,n)-hypering of fractions

Let R be any Krasner (m,n)-hyperring and let S be an n-ary multiplicative subset

of R such that 1 ∈ S. We shall construct the Krasner (m,n)-hyperring of fractions

S−1R. We define a relation ∼ on R× S by (r, s) ∼ (r′, s′) if and only if there exists

some s ∈ S such that

0 ∈ g(s, f(g(r, s′, 1(n−2)), g(r′, s, 1(n−2)), 0(m−2)), 1(n−2)).

Theorem 3.1. The relation ∼ is an equivalence relation on R× S.

Proof. Clearly, ∼ is reflexive and symmetric. Suppose that (r1, s1) ∼ (r2, s2) and

(r2, s2) ∼ (r3, s3). Then there exist s ∈ S such that

0 ∈ g(s, f(g(r1, s2, 1
(n−2)),−g(r2, s1, 1

(n−2)), 0(m−2)), 1(n−2))

and

0 ∈ g(s′, f(g(r2, s3, 1
(n−2)),−g(r3, s2, 1

(n−2)), 0(m−2)), 1(n−2)).

Since

0 ∈ g(s, f(g(r1, s2, 1
(n−2)),−g(r2, s1, 1

(n−2)), 0(m−2)), 1(n−2))

= f(g(s, r1, s2, 1
(n−3)),−g(s, r2, s1, 1

(n−2)), 0(m−2)),

we get g(s, r2, s1, 1
(n−2)) ∈ f(g(s, r1, s2, 1

(n−3)), 0(m−1)).

Thus we have

0 = g(g(s, s1, 1
(n−2)), 0(n−1))

∈ g(g(s, s1, 1
(n−2)), g(s′, f(g(r2, s3, 1

(n−2)),−g(r3, s2, 1
(n−2)), 0(m−2)), 1(n−2)),

1(n−2))

= g(g(s, s1, 1
(n−2)), f(g(s′, r2, s3, 1

(n−3)),−g(s′, r3, s2, 1
(n−3)), 0(m−2)), 1(n−2))

= f(g(s, s1, s
′, r2, s3, 1

(n−5)),−g(s, s1, s
′, r3, s2, 1

(n−5)), 0(m−2))

= f(g(s′, g(s, r2, s1, 1
(n−3)), s3),−g(s, s1, s

′, r3, s2, 1
(n−3)), 0(m−3))

⊆ f(g(s′, f(g(s, r1, s2, 1
(n−3)), 0(m−1)), s3, 1

(n−3)),−g(s, s1, s
′, r3, s2, 1

(n−3)),

0(m−3))
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= f(g(s, s′, s2, r1, s3),−g(s, s′, s2, r3, s1), 0
(m−2))

= g(g(s, s′, s2, 1
(n−3)), f(g(r1, s3, 1

(n−2)),−g(r3, s1, 1
(n−2)), 0(m−2)), 1(n−2)).

Since g(s, s′, s2, 1
(n−3)) ∈ S, then (r1, s1) ∼ (r3, s3). Consequently, ∼ is transitive. �

We denote the equivalence class of (a, s) with r
s
and let S−1R denote the set of

all equivalence classes. We endow the set S−1R with a Krasner (m,n)-hyperring

structure, by defining the m-ary hyperoperation F and the n-ary operation G as

follows:

F ( r1
s1
, ..., rm

sm
) =

f(g(r1,sm2 ,1(n−m)),g(s1,r2,sm3 ,1(n−m)),...,g(sm−1
1 ,rm,1(n−m))

g(sm1 ,1(n−m))

= { r
s
| r ∈ f(g(r1, s

m
2 , 1

(n−m)), g(s1, r2, s
m
3 , 1

(n−m)), ..., g(sm−1
1 , rm, 1

(n−m)), s = g(sm1 )}
G( r1

s1
, ..., rn

sn
) =

g(rn1 )

g(sn1 )
.

We need to show that F and G are well defined. If r1
s1

=
r′1
s′1
, r2

s2
=

r′2
s′2
, ..., rm

sm
= r′m

s′m
,

then there exist t1, ..., tm ∈ S such that

0 ∈ g(t1, f(g(r1, s
′

1, 1
(n−2)),−g(r′1, s1, 1

(n−2)), 0m−2), 1(n−2)) (1)

0 ∈ g(t2, f(g(r2, s
′

2, 1
(n−2)),−g(r′2, s2, 1

(n−2)), 0m−2), 1(n−2)) (2)

...

0 ∈ g(tm, f(g(rm, s
′

m, 1
(n−2)),−g(r′m, sm, 1

(n−2)), 0m−2), 1(n−2)). (m)

g-producting (1) by g(g(tm2 , 1
(n−m+1)), g(1(n−m+1), sm2 ), g(1

(n−m+1), s′m2 ), 1
(n−3)),

(2) by g(g(t1, 1
(n−m+1), tm3 ), (s1, 1

(n−m+1), sm3 ), g(s
′

1, 1
(n−m+1), s′m3 ), 1

(n−3))
...

(m) by g(g(tm−1
1 , 1(n−m+1)), g(sm−1

1 , 1(n−m+1)), g(s′m−1
1 , 1(n−m+1)), 1(n−3)).

Thus we get

0 ∈ g(g(tm1 , 1
(n−m)), f(g(g(s′m1 , 1

(n−m)), g(r1, s
m
2 , 1

(n−m)), 1(n−2)),

−g((g(sm1 , 1
(n−m)), g(r′1, s

′m
2 , 1

(n−m)), 1(n−2)), 0(m−2)), 1(n−2))

0 ∈ g(g(tm1 , 1
(n−m)), f(g(g(s′m1 , 1

(n−m)), g(r1, s1, s
m
3 , 1

(n−m)), 1(n−2)),

−g(g(sm1 , 1
(n−m)), g(r′2.s

′

1, s
′m
3 , 1

(n−m)), 1(n−2)), 0(m−2)), 1(n−2))
...

0 ∈ g(g(tm1 , 1
(n−m)), f(g(s′m1 , 1

(n−m)), g(rm, s
m−1
1 , 1(n−m)), 1(n−2)),

−g(g(sm1 , 1
(n−m)), g(r′m, s

′m−1
1 , 1(n−m)), 1(n−2)), 0(m−2)), 1(n−2)).

Now, we have
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0 ∈ f(f(g(g(tm1 , 1
(n−m)), g(s′m1 , 1

(n−m)), g(r1, s
m
2 , 1

(n−m)), 1(n−3)),

g(g(tm1 , 1
(n−m)), g(s′m1 , 1

(n−m)), g(r1, s1, s
m
3 , 1

(n−m)), 1(n−3)),

· · · ,
g(g(tm1 , 1

(n−m)), g(s′m1 , 1
(n−m)), g(rm, s

m−1
1 , 1(n−m)), 1(n−3))),

−f(g(g(tm1 , 1
(n−m)), g(sm1 , 1

(n−m)), g(r′1, s
′m
2 , 1

(n−m+1)), 1(n−3)),

g(g(tm1 , 1
(n−m)), g(sm1 , 1

(n−m)), g(r′2.s
′

1, s
′m
3 , 1

(n−m)), 1(n−3)),

· · · ,
g(g(tm1 , 1

(n−m)), g(sm1 , 1
(n−m)), g(r′m, s

′m−1
1 , 1(n−m)), 1(n−3)), 0(m−2)).

We put t = g(tm1 , 1
(n−m)), s = g(sm1 , 1

(n−m))) and s′ = g(s′m1 , 1
(n−m)).

Therefore we have

0 ∈ f(g(t, g(s′, f(g(r1, s
m
2 , 1

(n−m)), g(r′2.s
′

1, s
′m
3 , 1

(n−m)), · · · , g(rm, sm−1
1 , 1(n−m)),

1(n−2)),−g(t, g(s, f(g(r′1, s
′m
2 , 1

(n−m)), g(r′2.s
′

1, s
′m
3 , 1

(n−m)), · · · , g(r′m, s′m−1
1 ,

1(n−m)), 1(n−2), 0(m−2)).

Thus F ( r1
s1
, ..., rm

sm
) = F (

r′1
s′1
, ..., r′m

s′m
), i. e., F is well defined.

Now, suppose that r1
s1

=
r′1
s′1
, r2

s2
=

r′2
s′2
, ..., rn

sn
= r′n

s′n
, then there exist t1, ..., tn ∈ S such

that

0 ∈ g(t1, f(g(r1, s
′

1, 1
(n−2)),−g(r′1, s1, 1

(n−2)), 0(m−2)), 1(n−2))

0 ∈ g(t2, f(g(r2, s
′

2, 1
(n−2)),−g(r′2, s2, 1

(n−2)), 0(m−2)), 1(n−2))
...

0 ∈ g(tn, f(g(rn, s
′

n, 1
(n−2)),−g(r′n, s

′

n, 1
(n−2)), 0(m−2)), 1(n−2)).

Then we conclude that

0 ∈ f(g(g(t1, r1, s
′

1, 1
(n−3)), g(t2, r2, s

′

2, 1
(n−3)), ..., g(tn, rn, s

′

n, 1
(n−3)), 1(n−m)),

−g(g(t1, r
′

1, s1, 1
(n−3)), g(t2, r

′

2, s2, 1
(n−3)), ..., g(tn, r

′

n, s
′

n, 1
(n−3)), 1(n−m)), 0(m−2)).

It means

0 ∈ f(g(g(tn1), g(r
n
1 ), g(s

′n
1 ), 1

(n−3)),−g(g(tn1), g(r
′n
1 ), g(s

n
1), 1

(n−3)), 0(m−2)).

Put t = g(tn1). We have

0 ∈ f(g(t, g(rn1 ), g(s
′n
1 ), 1

(n−3)),−g(t, g(r′n1 ), g(s
n
1), 1

(n−3)), 0(m−2))

and so

0 ∈ g(t, f(g(g(rn1 ), g(s
′n
1 ), 1

(n−2)),−g(g(t, g(r′n1 ), g(s
n
1), 1

(n−2)), 0(m−2)), 1(n−2)).

It implies that
g(rn1 )

g(sn1 )
= g(r′n1 )

g(s′n1 )
and so G( r1

s1
, ..., rn

sn
) = G(

r′1
s′1
, ..., r′n

s′n
), i. e., G is well defined.
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Lemma 3.1. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. Then:

1) For all s ∈ S, 0
1
= 0

s
= 0S−1R.

2) r
s
= 0S−1R, for r ∈ R, s ∈ S if and only if there exists t ∈ S such that

g(t, r, 1n−2) = 0.

3) For all s ∈ S, s
s
= 1

1
= 1S−1R.

4) g(r,s(m−1),1(n−m))

g(s′,s(m−1),1(n−m))
= g(r,1(n−1))

g(s′,1(n−1))
, for r ∈ R and s, s′ ∈ S.

Proof. (1) Let t ∈ S. Then for all s ∈ S we have

0 = g(t, s, 0, 1(n−3))

= g(t, g(0, s, 1(n−2)), 1(n−2))

= g(t, f(g(0, s, 1(n−2)), 0(m−1)), 1(n−2))

= g(t, f(g(0, s, 1(n−2)),−g(1, 0, 1(n−2)), 0(m−2)), 1(n−2)).

Then we conclude that 0
1
= 0

s
= 0S−1R. Now, we show that 0

1
= 0S−1R. Let r ∈ R

and s ∈ S. Then

F ( r
s
, 0
1

(m−1)
) = {u

v
| u ∈ f(g(r, 1(n−1)), g(0, s, 1(n−2))(m−1)), s = g(s, 1n−1)}

= {u
v
| u ∈ f(g(r, 1(n−1)), 0(m−1)), v = g(s, 1n−1)}

= {u
v
| u ∈ f(r, 0(m−1)), s = g(s, 1n−1)}

= {u
v
| u = r, s = g(s, 1n−1)}.

Thus F ( r
s
, 0
1

(m−1)
) = r

s
. Consequently 0

1
= 0S−1R.

(2) (=⇒) : Let r
s
= 0S−1R for r ∈ R, s ∈ S. By (1), we have r

s
= 0

1
. Hence there

exists t ∈ S such that

0 ∈ g(t, f(g(r, 1n−1)),−g(0, s, 1(n−2)), 0(m−2)), 1(n−2)).

Therefore 0 ∈ g(t, f(r, 0(m−1)), 1(n−2)). It means g(t, r, 1(n−2)) = 0.

(⇐=) : Let g(t, r, 1(n−2)) = 0 for some t ∈ S. Then 0 = g(t, f(r, 0(m−1)), 1(n−2)). Since

r = g(r, 1n−1)) and 0 = g(0, s, 1(n−2)), we get

0 = g(t, f(g(r, 1n−1)), g(0, s, 1(n−2)), 0(m−2)), 1(n−2)).

Then r
s
= 0

1
and so r

s
= 0S−1R, by (1).

(3) Let s ∈ S. It is clear that 0 = g(0, 1(n−1)). Then we get

0 = g(1, f(g(s, 1, 0(n−2)),−g(1, s, 1(n−2)), 0(m−2)), 1(n−2)).

It means s
s
= 1

1
. Now, we show that 1

1
= 1S−1R. Let r ∈ R and s ∈ S. Then we have
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G( r
s
, 1
1

(n−1)
) = g(r,1(n−1)

g(s,1(n−1))
= r

s
.

This implies that 1
1
= 1S−1R.

(4) Let r ∈ R and s, s′ ∈ S. Clearly,

F ( r
s′
, 0
s

(m−1)
) = f(g(r,s(m−1),1(n−m)),g(s′,0,s(m−2),1(n−m))(m−1))

g(s′,s,1(n−2))

= f(g(r,s(m−1),1(n−m)),0(m−1))

g(s′,s(m−1),1(n−m))

= g(r,s(m−1),1(n−m))

g(s′,s(m−1),1(n−m))
.

On the other hand,

F ( r
s′
, 0
1

(m−1)
) = f(g(r,1(n−1)),g(s′,0,1(n−2))(m−1))

g(s′,1(n−1))

= f(g(r,1(n−1)),0(m−1))

g(s′,1(n−1))

= g(r,1(n−1))

g(s′,1(n−1))
. �

Definition 3.1. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplica-

tive subset of R with 1 ∈ S. The mapping φ : R −→ S−1R, defined by r −→ r
1
, is

called natural map.

Theorem 3.2. The natural map φ is a homomorphism of Krasner (m,n)-hyperring.

Proof. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative subset

of R with 1 ∈ S. For all rm1 ∈ R, we get

φ(f(rm1 )) =
f(rm1 )

1

= f(g(r1,1(n−1)),g(r2,1(n−1)),...,g(rm,1(n−1)))

g(1(m) ,1(n−m))

= { r
1
| r ∈ f(g(r1, 1

(n−1)), g(r2, 1
(n−1)), ..., g(rm, 1

(n−1))}
= F ( r1

1
, ..., rm

1
)

= F (φ(r1), ..., φ(rm)).

Also, for all rn1 ∈ R, we have

φ(g(rn1 )) =
g(rn1 )

1

=
g(rn1 )

g(1(n))

= G( r1
1
, ..., r1

1
)

= G(φ(r1), ..., φ(rn)). �

Theorem 3.3. Let r
s
be an nonzero element of S−1R. Then

1) For all s ∈ S, φ(s) is an invertible element of S−1R.

2) If φ(r) = 0, then there exists t ∈ S such that g(t, r, 1(n−2)) = 0.

3) r
s
= G(φ(r), φ(s)−1, 1

1

(n−2)
), for all r

s
∈ S−1R.
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Proof. (1) Let s ∈ S. Then we have

G( s
1
, 1
s
, 1
1

(n−2)
) = g(s,1(n−1))

g(1,s,1(n−2))

= g(s,1(n−1))

g(s,1(n−1))

= 1
1

by Lemma 3.1 (3)

= 1S−1R.

(2) It is clear by 3.1 (2).

(3) Let r
s
∈ S−1R. Then

r
s
= g(r,1(n−1))

g(s,1(n−1))

= G( r
1
, 1
s
, 1
1

(n−2)
)

= G(φ(r), φ(s)−1, 1
1

(n−2)
). �

Theorem 3.4. Let (R1, f1, h1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings

and S be an n-ary multiplicative subset of R1 with 1 ∈ S. Let k : R1 −→ R2 be a

homomorphism such that for each s ∈ S, k(s) is an invertible element of R2. Then

there exists an unique homomorphism h : S−1R1 −→ R2 such that hoφ = k.

Proof. Let (R1, f1, h1), (R2, f2, g2) and (S−1R1, G, F ) be Krasner (m,n)-hyperrings

such that S is an n-ary multiplicative subset of R1 and 1 ∈ S. Define mapping h

from S−1R1 to R2 as follows:

h( r
s
) = g2(k(a), k(s)

−1, 1(n−2)).

We need to show that h is well defined. Let r1
s1

= r′

s′
. Then there exists t ∈ S such

that

0 ∈ g1(t, f1(g1(r, s
′, 1(n−2)),−g1(r

′, s, 1(n−2)), 0(m−2)), 1(n−2)).

= f1(g1(t, r, s
′, 1(n−2)),−g1(t, r

′, s, 1(n−2)), 0(m−2)).

Hence

0 ∈ k(f1(g1(t, r, s
′, 1(n−2)),−g1(t, r

′, s, 1(n−2)), 0(m−2))

= f2(k(g1(t, r, s
′, 1(n−2)), k(−g1(t, r

′, s, 1(n−2)), k(0)(m−2))

= f2(k(g1(g1(t, 1
(n−1)), g1(r, 1

(n−1)), g1(s
′, 1(n−1)), 1(n−3))),

k(−g1(g1(t, 1
(n−1)), g1(r

′, 1(n−1)), g1(s, 1
(n−1)), 1(n−3))), k(0)(m−2))

= f2(g2(k(g1(t, 1
(n−1))), k(g1(r, 1

(n−1))), k(g1(s
′, 1(n−1))), 1(n−3)),

−g2(k(g1(t, 1
(n−1))), k(g1(r

′, 1(n−1))), k(g1(s, 1
(n−1))), 1(n−3))), k(0)(m−2))

= f2(g2(k(t), k(r)), k(s
′), 1(n−3)),

−g2(k(t), k(r
′), k(s), 1(n−3))), 0(m−2))
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= f2(g2(k(t), g2(k(r)), k(s
′), 1(n−2)), 1(n−2)),

−g2(k(t), g2(k(r
′), k(s), 1(n−2)), 1(n−2)), 0(m−2))

= g2(k(t), f2(g2(k(r)), k(s
′), 1(n−2)),

−g2(k(r
′), k(s), 1(n−2))), 0(m−2)), 1(n−2)).

Since k(t), k(s) and k(s′) are invertible elements in R2, we get

0 = g2(k(t)
−1, k(s)−1, k(s′)−1, 1(n−4), 0)

∈ g2(g2(k(t)
−1, k(s)−1, k(s′)−1, 1(n−3)), k(t), f2(g2(k(r), k(s

′), 1(n−2)),

−g2(k(r
′), k(s), 1(n−2))), 0(m−2)), 1(n−3))

= g2(g2(k(t)
−1, k(t), 1(n−2)), g2(k(s)

−1, k(s′)−1, 1(n−2)), f2(g2(k(r), k(s
′), 1(n−2)),

−g2(k(r
′), k(s), 1(n−2))), 0(m−2)), 1(n−3))

= g2(1, g2(k(s)
−1, k(s′)−1, 1(n−2)), f2(g2(k(r), k(s

′), 1(n−2)),

−g2(k(r
′), k(s), 1(n−2))), 0(m−2)), 1(n−3))

= f2(g2(g2(k(s)
−1, k(s′)−1, 1(n−2)), g2(k(r), k(s

′), 1(n−2)), 1(n−2))

−g2(g2(k(s)
−1, k(s′)−1, 1(n−2)), g2(k(r

′), k(s), 1(n−2)), 1(n−2)), 0(m−2))

= f2(g2(g2(k(s
′)−1, k(s′), 1(n−2)), g2(k(r), k(s)

−1, 1(n−2)), 1(n−2))

−g2(g2(k(s), k(s)
−1, 1(n−2)), g2(k(r

′), k(s′)−1, 1(n−2)), 1(n−2)), 0(m−2))

= f2(g2(k(r), k(s)
−1, 1(n−2))− g2(k(r

′), k(s′)−1, 1(n−2)), 0(m−2))

= f2(h(
r
s
), h( r

′

s′
), 0(m−2)).

Then we coclude that h( r
s
) = h( r

′

s′
).

We must show that the mapping h is an homomorphism. Let rm1 ∈ R1 and sm1 ∈ S.

Then we get

h(F ( r1
s1
, ..., rm

sm
)

= h(
f1(g1(r1,sm2 ,1(n−m)),g1(s1,r2,sm3 ,1(n−m)),...,g1(s

m−1
1 ,rm,1(n−m))

g1(sm1 ,1(n−m))
)

= g2(k(f1(g1(r1, s
m
2 , 1

(n−m)), ..., g1(s
m−1
1 , rm, 1

(n−m))), k(g1(s
m
1 , 1

(n−m)))−1, 1(n−2))

= g2(f2(k(g1(r1, s
m
2 , 1

(n−m)), ..., k(g1(s
m−1
1 , rm, 1

(n−m))), k(g1(s
m
1 , 1

(n−m)))−1, 1(n−2))

= g2(f2(g2((k(r1), k(s2), ..., k(sm), k(1)
(n−m)), ..., g2(k(s1), ..., k(sm−1), k(rm),

k(1)(n−m)), g2(k(s1)
−1, ..., k(sm)

−1, k(1)(n−m))), 1(n−2))

= f2(g2(g2(k(s1)
−1, ..., k(sm)

−1, k(1)(n−m)), g2(k(r1), k(s2), ..., k(sm),

k(1)(n−m), 1(n−2))), ..., g2(g2(k(s1)
−1, ..., k(sm)

−1, k(1)(n−m)), g2(k(s1), ...,

k(sm−1), k(rm), k(1)
(n−m))), 1(n−2)))

= f2(g2(k(r1), k(s1)
−1, 1(n−2)), ..., g2(k(rm), k(sm)

−1, 1(n−2)))
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= f2(h(
r1
s1
), ..., h( rm

sm
)).

Also, we have

h(G( r1
s1
, ..., rn

sn
) = h(

g1(rn1 )

g1(sn1 )
)

= g2(k(g1(r
n
1 )), k(g1(s

n
1 ))

−1, 1(n−2))

= g2(g2(k(r1), ..., k(rn)), g2(k(s1)
−1, ..., k(sn)

−1), 1(n−2))

= g2(g2(k(r1), k(s1)
−1), 1(n−2)), ..., g2(k(rn), k(sn)

−1), 1(n−2)))

= g2(h(
r1
s1
), ..., h( rn

sn
))

for rn1 ∈ R1 and sn1 ∈ S. Consequently, h is a homomorphism. Now, suppose that h′

is another homomorphism frome S−1R1 to R2 with h′oφ = k. Then we obtain

h( r
s
) = h(G( r

1
, 1
s
, 1
1

(n−2)
))

= g2(h(
r
1
), h(1

s
), h(1

1
)(n−2))

= g2(h(φ(r)), h(φ(s)
−1), 1(n−2))

= g2(h(φ(r)), (h(φ(s))
−1, 1(n−2))

= g2(k(r), k(s)
−1, 1(n−2))

= g2(h
′(φ(r)), (h′(φ(s))−1, 1(n−2))

= g2(h
′( r

1
)), (h′( s

1
))−1, 1(n−2))

= g2(h
′( r

1
)), h′(1

s
), 1(n−2))

= h′(G( r
1
, 1
s
, 1
1

(n−2)
))

= h′( r
s
).

for every r
s
∈ S−1R. It implies that the homomorphism h is unique. Thus the proof

is completed. �

Corollary 3.1. Let (R1, f1, h1) and (R2, f2, g2) be two Krasner (m,n)-hyperrings

and S be an n-ary multiplicative subset of R1 with 1 ∈ S. Let k : R1 −→ R2 be a

homomorphism such that

i) k(s) is an invertible element of R2 for each s ∈ S.

ii) k(r1) = 0 for r1 ∈ R1 implies that g1(t, r1, 1
(n−2)) = 0, for some t ∈ S.

iii) for each r2 ∈ R2, r2 = g2(k(r1), k(s)
−1, 1(n−2)) where r1 ∈ R1 and s ∈ S.

Then there exists an unique isomomorphism h : S−1R1 −→ R2 such that hoφ = k.

Proof. By using an argument similar to that in the proof of Theorem 3.4, one can

easily complete the proof. �
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Theorem 3.5. If R is an n-ary hyperintegral domain, then S−1R is an n-ary hyper-

integral domain.

Proof. Let G( r1
s1
, ..., r1

s1
) = 0S−1R for rn1 ∈ R and sn1 ∈ S. Thus

g(an1 )

g(sn1 )
= 0S−1R. By

Lemma 3.1 (2), we have g(t, g(an1), 1
(n−2)) = 0 for some t ∈ S. Since R is an n-ary

hyperintegral domain and t 6= 0, we have g(an1 ) = 0 which implies a1 = 0 or a2 = 0

or ... or an = 0. Hence we get a1
s1

= 0S−1R or a2
s2

= 0S−1R or ... or an
sn

= 0S−1R. Thus

S−1R is an n-ary hyperintegral domain. �

Theorem 3.6. Let R be an n-ary hyperintegral domain and S = R − {0}. Then

each nonzero element of S−1R is invertible.

Proof. Let r
s
be an nonzero element of S−1R. Since r 6= 0, then r ∈ S and so

s
r
∈ S−1R. Thus G( r

s
, s
r
, 1
1

(n−2)
) = g(r,s,1(n−2))

g(s,r,1(n−2))
= 1

1
= 1S−1R, by Lemma 3.1 (3). �

4. hyperideals in Krasner (m,n)-hyperring of fractions

Let I be a hyperideal of Krasner (m,n)-hyperring R and S be an n-ary multiplica-

tive subset of R with 1 ∈ S, then we can define that S−1I = {a
s
| a ∈ I, s ∈ S},

which is a hyperideal of S−1R.

Theorem 4.1. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. Let I be a hyperideal of R. Then I ∩ S 6= ∅ if and only if

S−1I = S−1R.

Proof. (=⇒) : Let a ∈ I ∩ S. Then 1
1
= a

a
∈ S−1I. Since I is a hyperideal of R, we

have G(1
1
, r
s
, 1
1

(n−2)
) ∈ S−1I for all r

s
∈ S−1R. Since G(1

1
, r
s
, 1
1

(n−2)
) = g(1,r,1(n−2))

g(1,s,1(n−2))
= r

s
,

then r
s
∈ S−1I. Thus S−1I = S−1R.

(⇐=) : By the homomorphism φ : R −→ S−1R, it implies that φ(1) = 1
1
. Since

S−1I = S−1R and φ(1) ∈ S−1R, then φ(1) ∈ S−1I. Hence, there exist a ∈ I, s ∈ S

such that 1
1
= φ(1) = a

s
. So, there exists t ∈ S such that

0 ∈ g(t, f(g(a, 1, 1(n−2)),−g(1, s, 1(n−2)), 0(m−2)), 1(n−2))

= g(t, f(g(a, 1(n−1)),−g(s, 1(n−1)), 0(m−2)), 1(n−2))

= f(g(t, g(a, 1(n−1)), 1(n−2)), g(t,−g(s, 1(n−1)), 1(n−2)), 0(m−2))
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= f(g(t, a, 1(n−2)),−g(t, s, 1(n−2)), 0(m−2)).

Since g(t, a, 1(n−2)) ∈ I, then g(t, s, 1(n−2)) ∈ I. Also, since S is an n-ary multiplica-

tive subset of R, then g(t, s, 1(n−2)) ∈ S. Consequently, I ∩ S 6= ∅. �

If (a, s) ∈ S−1I we don,t get necessarily a ∈ I, maybe (a, s) = (a′, s) such that

a′ ∈ I but a /∈ I.

Theorem 4.2. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. Then every hyperideal of S−1R is an extended hyperideal.

Proof. Suppose that J is a hyperideal of S−1R. Put B = {r ∈ R | ∃s ∈ S; r
s
∈ J}.

Easily, it is proved that B is a hyperideal of R. We show that Be = S−1B = J .

Let r
s
∈ J . Then r ∈ B and so r

s
∈ S−1B which means J ⊆ S−1B. Now, assume

that b
s
∈ S−1B. Then there exist b′ ∈ B and s′ ∈ S such that b

s
= b′

s′
. It means

there exists t ∈ S such that 0 ∈ g(t, f(g(b, s′, 1(n−2)),−g(b′, s, 1(n−2)), 0(m−2)), 1(n−2))

= f(g(t, b, s′, 1(n−3)),−g(t, b′, s, 1(n−3)), 0(m−2)), 1(n−2)).

Since g(t, b′, s, 1(n−3)) ∈ B, then g(g(t, s′, 1(n−2), b, 1(n−2)) = g(t, b, s′, 1(n−3)) ∈ B.

Put t′ = g(t, s′, 1(n−2). Therefore we have g(t′(m−1), b, 1(n−m)) ∈ B. Hence there

exists t′′ ∈ S such that g(t′(m−1),b,1(n−m))
t′′

∈ J and so g(t′(m−1),b,1(n−m))

g(t′′(m−1),1(n−m+1))
∈ J . Then we

have

G( g(t
′′(m−1),1(n−m+1))

g(t′,s,1(n−2))
, g(t′(m−1),b,1(n−m))

g(t′′(m−1),1(n−m+1))
) = g(g(t′′,t′,1(n−2))(m−1) ,b,1(n−m))

g(g(t′′,t′,1(n−2))(m−1),s,1(n−m))
= b

s
∈ J .

This means S−1B ⊆ J . Consequently, S−1B = J . �

Let R be a Krasner (m, n)-hyperring. Then the hyperideal M of R is said to be

maximal if for every hyperideal I of R, M ⊆ I ⊆ R implies that I = M or I = R [1].

Lemma 4.1. Let R be a Krasner (m,n)-hyperring such that M is a hyperideal of

R. If each x ∈ R−M is invertible, then M is a maximal hyperideal of R.

Proof. The proof is similar to ordinary algebra. �

Theorem 4.3. Let R be a Krasner (m,n)-hyperring and P be an n-ary prime hy-

perideal of R. If S = R − P , then M = {a
s
| a ∈ P, s ∈ S} is the only maximal

hyperideal of S−1R.

Proof. Clearly, S = R− P is an n-ary multiplicative subset of R. Let a1
s1
, ..., am

sm
∈ M

such that am1 ∈ P and sm1 ∈ S. Then
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F (a1
s1
, ..., am

sm
) =

f(g(a1,sm2 ,1(n−m)),g(s1,a2,sm3 ,1(n−m)),...,g(sm−1
1 ,am,1(n−m)))

g(sm1 ,1(n−m))
.

Since am1 ∈ P , then g(a1, s
m
2 , 1

(n−m)), g(s1, a2, s
m
3 , 1

(n−m)), ..., g(sm−1
1 , am, 1

(n−m)) ∈ P

and so f(g(a1, s
m
2 , 1

(n−m)), g(s1, a2, s
m
3 , 1

(n−m)), ..., g(sm−1
1 , am, 1

(n−m))) ⊆ P . Thus we

conclude that F (a1
s1
, ..., am

sm
) ⊆ M .

Clearly, if a
r
∈ M , then −a

r
= −a

r
∈ M . Also, since 0 ∈ P ,then 0RP

= 0
s
∈ M for all

s ∈ S. Hence (M,F ) is a canonical n-ary hypergroup.

Now, let rn1 ∈ R, sn1 ∈ S and k ∈ {1, ..., n}. Then
G( r1

s1
, ..., rk−1

sk−1
,M, rk+1

sk+1
, ..., rn

sn
) =

⋃{G( r1
s1
, ..., rk−1

sk−1
, a
s
, rk+1

sk+1
, ..., rn

sn
) | a

s
∈ M}

=
⋃
{ g(rk−1

1 ,a,rn
k−1)

g(sk−1
1 ,s,sn

k−1)
| a ∈ P, s ∈ S}.

Since a ∈ P , then g(rk−1
1 , a, rnk−1) ∈ P and so G( r1

s1
, ..., rk−1

sk−1
,M, rk+1

sk+1
, ..., rn

sn
) ⊆ M .

Thus, (M,F,G) is a hyperideal of RP .

Suppose that 1RP
= 1

1
∈ M . Then there exist a ∈ P and s ∈ S such that 1

1
= a

s
. It

implies that there exists t ∈ S such that

0 ∈ g(t, f(g(a, 1, 1(n−2)),−g(1, s, 1(n−2)), 0(m−2)), 1(n−2))

= f(g(t, a, 1(n−2)),−g(t, s, 1(n−2)), 0(m−2)).

Since g(t, a, 1(n−2)) ∈ P , then g(t, s, 1(n−2)) ∈ P . Since P is an n-ary prime hyperideal

of R, then we obtain t ∈ P or s ∈ P which is a contradiction. Then M is a proper

hyperideal of R.

Now, suppose that γ ∈ RP −M . It means γ = r
s
such that r ∈ R − P and s ∈ S.

Then r ∈ S and so s
r
∈ M . Hence 1

1
= G( r

s
, s
r
, 1
1

(n−2)
) ∈ M which is a contradiction.

Consequently, M is the only maximal hyperideal of RP . �

Theorem 4.4. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. If P is an n-ary prime hyperideal of R with P ∩S = ∅, then

S−1P is an n-ary prime hyperideal of S−1R.

Proof. Let G(a1
s1
, ..., an

sn
) ∈ S−1P for a1

s1
, ..., an

sn
∈ S−1R. Then we have

g(an1 )

g(sn1 )
∈ S−1P . It

implies that there exists t ∈ S such that g(t, g(an1), 1
(n−2)) ∈ P . Since P is an n-ary

prime hyperideal of R and P ∩ S = ∅, then g(an1 ) ∈ P which means there exists

1 ≤ i ≤ n with ai ∈ P . Hence we conclude that ai
si
∈ S−1P for some 1 ≤ i ≤ n. Thus

S−1P is an n-ary prime hyperideal of S−1R. �
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Example 4.1. The set R = {0, 1, 2} with the following 3-ary hyperoeration f and

3-ary operation g is a Krasner (3, 3)-hyperring such that f and g are commutative.

f(0, 0, 0) = 0, f(0, 0, 1) = 1, f(0, 1, 1) = 1, f(1, 1, 1) = 1, f(1, 1, 2) = R,

f(0, 1, 2) = R, f(0, 0, 2) = 2, f(0, 2, 2) = 2, f(1, 2, 2) = R, f(2, 2, 2) = 2,

g(1, 1, 1) = 1, g(1, 1, 2) = g(1, 2, 2) = g(2, 2, 2) = 2,

and for x1, x2 ∈ R, g(0, x1, x2) = 0.

S = {1, 2} is a 3-ary multiplicative subset of Krasner (3, 3)-hyperring (R, f, g) and

hyperideal P = {0} is a 3-ary prime hyperideal of R (see example 4.10 in [1]). Thus

S−1P = {0
1
} is a 3-ary prime hyperideal of S−1R.

Let I be a hyperideal in a Krasner (m,n)-hyperring R with scalar identity. The

radical (or nilradical) of I, denoted by
√
I
(m,n)

is the hyperideal
⋂

P , where the

intersection is taken over all n-ary prime hyperideals P which contain I. If the

set of all n-ary hyperideals containing I is empty, then
√
I
(m,n)

is defined to be R.

Ameri and Norouzi showed that if x ∈
√
I
(m,n)

, then there exists t ∈ N such that

g(x(t), 1
(n−t)
R ) ∈ I for t ≤ n, or g(l)(x

(t)) ∈ I for t = l(n− 1) + 1 [1].

Lemma 4.2. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. If I is an n-ary hyperideal of R, then
√
S−1I

(m,n)
=

S−1
√
I
(m,n)

.

Proof. Let a
s
∈

√
S−1I

(m,n)
. Then there exists k ∈ N with G(a

s
(k), 1

1

(n−k)
) ∈ S−1I

for k ≤ n, or G(l)(
a
s
(k)) ∈ S−1I for k = l(n − 1) + 1. If G(a

s
(k), 1

1

(n−k)
) ∈ S−1I,

then g(a(k),1(n−k))

g(a(k),1(n−k))
∈ S−1I. Therefore g(t, g(a(k), 1(n−k)), 1(n−2)) ∈ I for some t ∈ S

and so g(g(t, a, 1(n−2))(k), 1(n−k)) = g(t(k), g(a(k), 1(n−k)), 1(n−k−1)) ∈ I. It means

g(t, a, 1(n−2)) ∈
√
I
(m,n)

and so g(t(m−1), a, 1(n−m)) ∈
√
I
(m,n)

. Hence we get

g(t(m−1) ,a,1(n−m))

g(t(m−1) ,s,1(n−m))
= a

s
∈ S−1

√
I
(m,n)

,

by Lemma 3.1 (4). Similarly for the other case. Thus
√
S−1I

(m,n) ⊆ S−1
√
I
(m,n)

.

Now, let a
s
∈ S−1

√
I
(m,n)

. Then we conclude g(t, a, 1(n−2)) ∈
√
I
(m,n)

for some t ∈
S and so g(t(m−1), a, 1(n−m)) ∈

√
I
(m,n)

. It means that there exists k ∈ N with

g(g(t(m−1), a, 1(n−m))(k), 1(n−k)) ∈ I for k ≤ n, or g(l)(g(t
(m−1), a, 1(n−2))(k)) ∈ I for

k = l(n− 1) + 1. If g(g(t(m−1), a, 1(n−2))(k), 1(n−k)) ∈ I, then we have
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G(a
s
(k), 1

1

(n−k)
) = G( g(t

(m−1) ,a,1(n−2))

g(t(m−1) ,s,1(n−2))

(k)
, 1
1

(n−k)
)

= g(g(t(m−1) ,a,1(n−2))(k),1(n−k))

g(g(t(m−1) ,s,1(n−2))(k),1(n−k))
∈ S−1I.

Therefore we get a
s
∈
√
S−1I

(m,n)
. Similarly for the other case. Thus S−1

√
I
(m,n) ⊆

√
S−1I

(m,n)
. Consequently,

√
S−1I

(m,n)
= S−1

√
I
(m,n)

. �

A hyperideal Q 6= R in a Krasner (m,n)-hyperring (R, f, g) with the scalar identity

1R is said to be n-ary primary if g(xn
1) ∈ Q and xi /∈ Q implies that g(xi−1

1 , 1R, x
n
i+1) ∈

√
Q

(m,n)
[1].

Theorem 4.5. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. If P is an n-ary primary hyperideal of R with P ∩ S = ∅,

then S−1P is an n-ary primary hyperideal of S−1R.

Proof. Let a1
s1
, ..., an

sn
∈ S−1R such that G(a1

s1
, ..., an

sn
) ∈ S−1P . Then we have

g(an1 )

g(sn1 )
∈

S−1P . It implies that there exists t ∈ S such that g(t, g(an1), 1
(n−2)) ∈ P . Since P is

an n-ary primary hyperideal of R, then there exist 1 ≤ i ≤ n such that at least one

of the cases hold: ai ∈ P , g(ai−1
1 , 1, ani+1) ∈

√
P

(m,n)
, t ∈

√
P

(m,n)
or g(an1 ) ∈

√
P

(m,n)
.

If ai ∈ P , then ai
si

∈ S−1P and we are done. If g(ai−1
1 , 1, ani+1) ∈

√
P

(m,n)
, then

G(a1
s1
, ..., ai−1

si−1
, 1
1
, ai+1

si+1
, ..., an

sn
) =

g(ai−1
1 ,1,ani+1)

g(si−1
1 ,1,sni+1)

∈ S−1
√
P

(m,n)
=

√
S−1P

(m,n)
, by Lemma

4.2. If t ∈
√
P

(m,n)
, then g(t(m−1), ak, 1

(m−n)) ∈
√
P

(m,n)
, for all 1 ≤ k ≤ n. Therefore

g(t(m−1) ,ak,1
(m−n))

g(t(m−1) ,sk,1(m−n))
∈ S−1

√
P

(m,n)
=

√
S−1P

(m,n)
and so ak

sk
∈

√
S−1P

(m,n)
. Therefore

for each i 6= k, G(a1
s1
, ..., ai−1

si−1
, 1
1
, ai+1

si+1
, ..., an

sn
) ∈

√
S−1P

(m,n)
. Let g(an1 ) ∈

√
P

(m,n)
.

Theorem 4.28. in [1] shows that
√
P

(m,n)
is an n-ary prime hyperideal of R. Hence

there exists 1 ≤ k ≤ n such that ai ∈
√
P

(m,n)
. It implies that ak

sk
∈ S−1

√
P

(m,n)
=

√
S−1P

(m,n)
. Therefore for each i 6= k, G(a1

s1
, ..., ai−1

si−1
, 1
1
, ..., ai+1

si+1
, an
sn
) ∈

√
S−1P

(m,n)
.

Thus S−1P is an n-ary primary hyperideal of S−1R. �

A proper hyperideal I of a Krasner (m,n)-hyperring (R, f, g) with the scalar

identity 1R is said to be n-ary 2-absorbing if for xn
1 ∈ R, g(xn

1 ) ∈ I implies that

g(xi, xj , 1
(n−2)
R ) ∈ I for some 1 ≤ i < j ≤ n [3].

Theorem 4.6. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. If P is an n-ary 2-absorbing hyperideal of R with P ∩S = ∅,

then S−1P is an n-ary 2-absorbing hyperideal of S−1R.
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Proof. Let G(a1
s1
, ..., an

sn
) ∈ S−1P , for a1

s1
, ..., an

sn
∈ S−1R. Then we have

g(an1 )

g(sn1 )
∈ S−1P . It

implies that there exists t ∈ S such that g(t, g(an1), 1
(n−2)) ∈ P . Since P is an n-ary 2-

absorbing hyperideal of R, then there exist 1 ≤ i < j ≤ n such that g(t, ai, 1
(n−2)) ∈ P

or g(ai, aj , 1
(n−2)) ∈ P . Hence we conclude that ai

si
∈ S−1P for some 1 ≤ i ≤ n. Thus

S−1P is an n-ary prime hyperideal of S−1R. If for some 1 ≤ i ≤ n, g(t, ai, 1
(n−2)) ∈ P ,

then g(t(m−1), ai, 1
(n−m)) ∈ P and so g(t(m−1) ,ai,1

(n−m))

g(t(m−1) ,si,1(n−m))
∈ S−1P . Hence ai

si
∈ S−1P , by

Lemma 3.1 (4). Therefore for every 1 ≤ j ≤ n, G(ai
si
,
aj
sj
, 1
1

(n−2)
) ∈ S−1P and we are

done. If g(ai, aj , 1
(n−2)) ∈ P , for some 1 ≤ i < j ≤ n, then

g(ai,aj ,1(n−2))

g(si,sj ,1(n−2))
∈ S−1P

which means G(ai
si
,
aj
sj
, 1
1

(n−1)
) ∈ S−1P . Consequently, S−1P is an n-ary 2-absorbing

hyperideal of S−1R. �

5. qutient Krasner (m,n)-hyperring of fractions

Let R be a Krasner (m,n)-hyperring and I be a hyperideal of R. Then we consider

the set R/I as follows:

R/I = {f(r, I, 0(m−2)) | r ∈ R}.

Lemma 5.1. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. Let I be a hyperideal of R such that S ∩ I = ∅. Then

S̄ = {f(s, I, 0(m−2)) | s ∈ S} is an n-ary multiplicative subset of R/I.

Proof. Let f(s1, I, 0
(m−2)), ..., f(sn, I, 0

(m−2)) ∈ S̄, for sn1 ∈ S. Then we have

g(f(s1, I, 0
(m−2)), ..., f(sn, I, 0

(m−2))) = f(g(sn1), I, 0
m−2)).

Since S is an n-ary multiplicative subset of R, then g(sn1) ∈ S. It implies that

g(f(s1, I, 0
(m−2)), ..., f(sn, I, 0

(m−2))) ∈ S̄. �

Theorem 5.1. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative

subset of R with 1 ∈ S. Let I be a hyperideal of R such that S ∩ I = ∅. If

S̄ = {f(s, I, 0(m−2)) | s ∈ S}, then S̄−1(R/I) ∼= S−1R/S−1I.

Proof. Define mapping k : R/I −→ S−1R/S−1I as following:

k(f(r, I, 0(m−2)) = F ( r
1
, S−1I, 0

(m−2)

S−1R ).

It is easy to see the mapping is a homomorphism. Let f(s, I, 0(m−2)) ∈ S̄. Then

k(f(s, I, 0(m−2))) = F ( s
1
, S−1I, 0

(m−2)
S−1R ). Since F (1

s
, S−1I, 0

(m−2)
S−1R ) ∈ S−1R/S−1I, then

we obtain
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G(F ( s
1
, S−1I, 0

(m−2)
S−1R ), F (1

s
, S−1I, 0

(m−2)
S−1R ), F (1

1
, S−1I, 0

(m−2)
S−1R )(n−2)))

= F (G( s
1
, 1
s
, 1
1

(n−2)
), S−1I, 0

(m−2)

S−1R )

= F (1
1
, S−1I, 0

(m−2)

S−1R )).

Assume that k(f(r, I, 0(m−2)) = S−1I. Then we have F ( r
1
, S−1I, 0

(m−2)
S−1R ) = S−1I. It

means r
1
∈ S−1I. Then there exists t ∈ S such that g(t, r, 1(n−2)) ∈ I. Clearly,

f(t, I, 0(m−2)) ∈ S̄ and we have

g(f(t, I, 0(m−2), f(r, I, 0(m−2)), f(1, I, 0(m−2))(n−2))

= f(g(t, r, 1(n−2)), I, 0(m−2)) = I.

Now, suppose that F ( r
s
, S−1I, 0S−1R) ∈ S−1R/S−1I. Thus we have

F ( r
s
, S−1I, 0S−1R) = G(F ( r

1
, S−1I, 0S−1R), F (1

s
, S−1I, 0S−1R), F (1

1
, S−1I, 0S−1R)

(n−2))

= G(k(f(r, I, 0(m−2)), k(f(r, I, 0(m−2)), F (1
1
, S−1I, 0S−1R)

(n−2)).

Hence, there exists an isomorphism from S̄−1(R/I) to S−1R/S−1I, by Corollary 3.1.

It means S̄−1(R/I) ∼= S−1R/S−1I. �

Let P be an n-ary prime hyperideal of Krasner (m,n)-hyperring R. Put S = R−P .

Then S is an n-ary multiplicative subset of R such that 1 ∈ S and 0 /∈ S. In this

case, we denote S−1R = RP . Moreover, If S−1I is a hyperideal of RP , then it is

denoted by IRP .

Example 5.1. Let R be a Krasner (m,n)-hyperring such that P is an n-ary prime

hyperideal of R. Put S = R − P . Then S̄ = {f(s, P, 0(n−2)) |s ∈ S} = R/P −
{f(P, 0(n−1))} is an n-ary multiplicative subset of R/P . By Theorem 4.6 in [1], R/P

is an n-ary hyperintegral domain. Theorem 3.5 and 3.6 show that S̄−1(R/P ) is

an n-ary hyperintegral domain and each nonzero element of S̄−1(R/P ) is invertible.

Moreover, we have S̄−1(R/P ) ∼= S−1R
S−1P

= Rp

PRp
, by Theorem 5.1.

Example 5.2. Let R be a Krasner (m,n)-hyperring such that P and Q are two

n-ary prime hyperideals of R such that Q ⊆ P . Put S = R − P . Then S̄ =

{f(s,Q, 0(n−2)) |s ∈ S} = R/Q − R/P. It is clear that P/Q is an n-ary prime

hyperideal of R/Q. Therefore S̄−1(R/Q) = (R/Q)P/Q. By Theorem 5.1, we get

(R/Q)P/Q
∼= RP

QRP
.
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