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KRASNER (m,n)-HYPERRING OF FRACTIONS
M. ANBARLOEI

ABSTRACT. The formation of rings of fractions and the associated process of lo-
calization are the most important technical tools in commutative algebra. Krasner
(m,n)-hyperrings are a generalization of (m,n)-rings. Let R be a commutative
Krasner (m, n)-hyperring. The aim of this research work is to introduce the concept
of hyperring of fractions generated by R and then investigate the basic properties

such hyperrings.

1. INTRODUCTION

The notion of Krasner hyperrings was introduced by Krasner for the first time
in [17]. Also, we can see some properties on Krasner hyperrings in [22] and [26].
In [11], Davvaz and Vougiouklis defined the notion of n-ary hypergroups which is
a generalization of hypergroups in the sense of Marty. The concept of (m,n)-ary
hyperrings was introduced in [23]. Davvaz and et. al. introduced Krasner (m,n)-
hyperrings as a generalization of (m, n)-rings and studied some results in this context
in [24]. We can see some important hyperideals of the Krasner (m,n)-hyperrings in
[1] and [14]. Also, Ostadhadi and Davvaz studied the isomorphism theorems of ring
theory and Krasner hyperring theory which are derived in the context of Krasner
(m, n)-hyperrings in [27]. Ameri and Norouzi introduced in [1] the notions of n-ary
prime and n-ary primary hyperideals in a Krasner (m, n)-hyperring and proved some
results in this respect. The notion of n-ary 2-absorbing hyperideals in a Krasner

(m,n)-hyperring as a generalization of the n-ary prime hyperideals was introduced in
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[3]. To unify the concepts of the prime and primary hyperideals under one frame, the
notion of d-primary hyperideals was defined in Krasner (m,n)-hyperrings [4]. The
formation of rings of fractions and the associated process of localization are the most
important technical tools in commutative algebra. They correspond in the algebra-
geometric picture to concentratining attention on an open set or near a point, and
the importance of these notions should be self-evident. Procesi and Rota in [28] have
studied ring of fractions in Krasner hyperrings.

In this paper, we aim to define the notion of a hyperring of fractions of Krasner
(m, n)-hyperrings and provide several properties of them. The paper is organized as
follows. In section 2, we have given some basic definitions and results of n-ary hy-
perstructures which we need to develop our paper. In section 3, we have constructed
the Krasner (m,n)-hyperring of fractions. In section 4, we have studied the hyper-
ideals of Krasner (m,n)-hyperring of fractions. In section 5, we have investigated

construction of qutient Krasner (m,n)-hyperring of fractions.

2. PRELIMINARIES

In this section we recall some definitions and results about n-ary hyperstructures
which we need to develop our paper.
A mapping f : H" — P*(H) is called an n-ary hyperoperation, where P*(H) is the
set of all the non-empty subsets of H. An algebraic system (H, f), where f is an
n-ary hyperoperation defined on H, is called an n-ary hypergroupoid.
We shall use the following abbreviated notation:
The sequence ;, Tt 1, ..., x; will be denoted by xf . For j <4, xf is the empty symbol.
In this convention f(Z1, ..., Ti, Yit1, -y Yj, Zj+1, -, 2n) Will be written as f(af, ygﬂ, Z0).
In the case when y;41 = ... = y; = y the last expression will be written in the form
f(ay,yU=9 2, ). For non-empty subsets Ay, ..., A, of H we define

FAY) = f(Aq, .., Ap) = U{f(2}) | s € Ayyi =1, ..., n}.
An n-ary hyperoperation f is called associative if

Flay ™t fag ), angh) = flal ™ 70,
hold for every 1 < i < j < n and all x1,xs,...,x9,1 € H. An n-ary hypergroupoid

with the associative n-ary hyperoperation is called an n-ary semihypergroup. An
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n-ary hypergroupoid (H, f) in which the equation b € f(ai™", z;, a;’ ;) has a solution
x; € H for every a'™*, at.1,b€ H and 1 <14 <, is called an n-ary quasihypergroup,
when (H, f) is an n-ary semihypergroup, (H, f) is called an n-ary hypergroup. An
n-ary hypergroupoid (H, f) is commutative if for all o € S,,, the group of all permuta-
tions of {1,2,3,...,n}, and for every af € H we have f(ai,...,a,) = f(@o1), -, Go(n))-
If an o} € H we denote azg)) as the (ag(1, .-, Go(n)). We assume throughout this paper
that all Krasner (m,n)-hyperrings are commutative. If f is an n-ary hyperoperation
and t = [(n — 1) + 1, then t-ary hyperoperation f( is given by

Fo @) = FOF G P @D, 220700 2 )

Definition 2.1. [24] Let (H, f) be an n-ary hypergroup and B be a non-empty subset
of H. B is called an n-ary subhypergroup of (H, f), if f(x}) C B for 27 € B, and the
equation b € f(bi7! x;, b7, ) has a solution z; € B for every b, b, ,,b € B and 1 <
i <n. An element e € H is called a scalar neutral element if 2 = f(e(~1 z,e9),
for every 1 <4 < n and for every x € H.

An element 0 of an n-ary semihypergroup (H, g) is called a zero element if for every
xy € H we have ¢g(0,2%) = g(22,0,2%) = ... = g(2%,0) = 0. If 0 and 0'are two zero

elements, then 0 = g(0/,0™~Y) = (/ and so the zero element is unique.

Definition 2.2. [18] Let (H, f) be a n-ary hypergroup. (H, f) is called a canonical
n-ary hypergroup if
(1) there exists a unique e € H, such that f(z, e V) = x for every x € H;
(2) for all z € H there exists a unique 27! € H, such that e € f(z, 27!, e 2);
(3) if w € f(a}), then a; € f(x, 2™t . o, 2, . 2 t) for all i
We say that e is the scalar identity of (H, f) and z~' is the inverse of z. Notice

that e ! = ¢

Definition 2.3. [24] A Krasner (m, n)-hyperring is an algebraic hyperstructure (R, f, g)
which satisfies the following axioms:

(1) (R, f) is a canonical m-ary hypergroup;

(2) (R, g) is an n-ary semigroup;

(3) the n-ary operation g is distributive with respect to the m-ary hyperoperation f
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, Le.,

g(ai_1> f), a?—;—l) = f(g(azi_la L1, aZ—l)a e g(ai_1> Lm, a?—;—l))
for every ai”' a2 € Rand 1 <i <n;

(4) 0 is a zero element (absorbing element) of the n-ary operation g, i.e.,
9(0,23) = g(x9,0,2%) = ... = g(25,0) =0

for every zf € R.
We denote the Krasner (m,n)-hyperring (R, f, g) simply by R. We say that R is with
scalar identity if there exists an element 1 such that z = g(z, 1Y) for all z € R.

In this paper, we assume that R is with scalar identity.

A non-empty subset S of R is said to be a subhyperring of R if (S, f, g) is a Krasner
(m,n)-hyperring. Let I be a non-empty subset of R, we say that [ is a hyperideal
of Rif (I, f) is an m-ary subhypergroup of (R, f) and g(z'™*, I, x},) C I, for every

€ Rand 1 <1< n.

Definition 2.4. [1] A proper hyperideal I of a Krasner (m,n)-hyperring R is said to
be an n-ary prime hyperideal if for hyperideals Iy, ..., I,, of R, g(I") C I implies that
L Clorlh,Clor..orl,ClI.

Lemma 2.1. A proper hyperideal I of a Krasner (m,n)-hyperring R is an n-ary
prime hyperideal if for all 7 € R, g(27) € I implies that x1 € I or ... or z, € I.
(Lemma 4.5 in [1])

Definition 2.5. [1] Let R be a Krasner (m,n)-hyperring. A non-empty subset S of

R is called n-ary multiplicative, if g(s) € S for s1,...,s, € S.
In this paper, we assume that 1 € S.

Definition 2.6. [1] A Krasner (m, n)-hyperring R is said to be an n-ary hyperintegral
domain, if R is a commutative Krasner (m,n)-hyperring and g(z}) = 0 implies that

1 =0o0raxzy=0o0r.. orz, =0 for all 7.

Definition 2.7. [1] Let R be a Krasner (m,n)-hyperring. An element x € R is said
to be invertible if there exists y € R with 1 = g(z,y, 1"2).
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Definition 2.8. [24] Let (R, f1, g1) and (Rz, fa, g2) be two Krasner (m, n)-hyperrings.
A mapping ¢ : Ry — R is called a homomorphism if for all 21" € R; and y} € R;
we have

O(fr(@1, s wm)) = fa(d(21), ., d(Tm))

(g1 (Y1, - Yn)) = G2(P(Y1), - P(Yn)-

3. KRASNER (m,n)-HYPERING OF FRACTIONS

Let R be any Krasner (m, n)-hyperring and let S be an n-ary multiplicative subset
of R such that 1 € S. We shall construct the Krasner (m,n)-hyperring of fractions
ST'R. We define a relation ~ on R x S by (r,s) ~ (', s') if and only if there exists
some s € S such that

0€g(s, flg(r,s',1072), g(r", 5,107), 007=2)), 1(n=2),

Theorem 3.1. The relation ~ is an equivalence relation on R x S.

Proof. Clearly, ~ is reflexive and symmetric. Suppose that (ri,s1) ~ (r2,s2) and
(rg, s2) ~ (13, 53). Then there exist s € S such that

0 € g(s, f(g(ri, 59, 1), —g(ry, 81, 1(072)) 0m=2)) 1 (n=2))
and

0 € g(s, f(g(ra, s3,172), —g(rs, 5o, 10072 00m=2)) 1(7=2)),
Since

0 € gls, F(g(rn, 52, 1072)), —g(ry, 51, 10-2),0(m=2) 1(0-2))

= f(g(s, 1,82, 1), —g(s, 79, 51, 10072 0m=2))

we get g(s, 72,51, 177) € f(g(s,71,85,1079)), 00m71),
Thus we have
0 = glg(s, 51, 10-2),00-D)

€ 9(9(37 S1, 1(n—2))’ g(S/, f(g(TQa 53, 1(n—2))’ _g(r?n 52, 1(n—2))’ O(m—2))’ 1(n—2))’
1(n—2))

= g(g(s, 51, 1), f(g(s', 9, 83, 1073)) —g(s, 13, 59, 1(0=3)) 0(m=2)) 1(n=2))
= f(g(s, 81,872,835, 179)), —g(s, 51,8, 73, 59, 1075, 0(m=2))

= Flals' (5,7 51,1079),53), g5, 1, . 7, 85, 1079), 007-9)

C fg(s, f(g(s,r1, 82, 1079),00m71) 53 10079) —g(s, 51, 8", 73, 52, 10779),
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- f(g(‘S’ 8,7 52,11, 83)7 —g(S, Slu 52, T3, 31), 0(m—2))
= g(g(s, 8,52, 1079), f(g(r1, 55, 1072), —g(rs, 51, 172)), 0m=2) 1(=2)),

Since g(s, s, 59,1"™3)) € S, then (ry, 51) ~ (r3, 53). Consequently, ~ is transitive. [J

We denote the equivalence class of (a,s) with £ and let S™'R denote the set of
all equivalence classes. We endow the set S™'R with a Krasner (m,n)-hyperring
structure, by defining the m-ary hyperoperation F' and the n-ary operation G as

follows:

(22, ) = SO A7) (o1 ra L), L)
517" Sm g(sm 1(n— m))

= {g | re f(g(rla Sgn, l(n_m))ag(sbr% 83 ) l(n—m))’ ...,g(ST_l,Tm, ]'(n_m))’ §= g(sgn)}
Gz, .., ) = 2r),

51777 sn g(st)
We need to show that I and G are well defined. If {} = Z—;l, == %,...,% = %,
1 m m
then there exist tq,...,t,, € S such that
0e g(tla f(g(rla Slla 1(71—2))’ _g(/rllﬁ S1, 1(n_2))7 0771—2)’ 1(71—2)) (]‘)
0e g(tQa f(g(TQa S,2a 1(71—2))’ _g(T,Q? 52, 1(n_2))7 0771—2)’ 1(71—2)) (2)
0 € g(tm, F(9(rms 8'ms 1772, =g (1, 5, 10072),0772), 1072 0 (m)

g-producting (1) by g(g(tm, 10m=m+D) g (1n=mt1) gm) g((n=m+1) my q(n=3))
(2) by g(g(ts, 1070 #50), (51, 1007 s32), g(s'1, 107850, 10079))

(m) by g(g(t7", 1) g(s771 10maD), g (s, 1(mm D) 109)),
Thus we get
0€ g(g(tr, 10=™), f(g(g(s", 107™), g(ry, s, 1007m)), 172,
—g((g(s7, 1=m)) g (v, 5", 1=y 1(n=2)) (m=2)) 11 (n=2))
0 € g(g(ty, 10=m), f(g(g(s T, 107, g (1, 51, 87, 107m), 1022)),
—g(g(s, 1= g(rh sy, 85 10=m)) 1 (n=2)) (m=2)) 1(n=2)

0 € g(g(ty, 10=m), fg(s'7, 107m)), g1y, 8771, 107m)) 10072)),
—g(g(sy, 1=y g (rr,, 877 10mm)) (=) gm=2)) 1(n=2)),

Now, we have
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0 € F(F(alglty, 107m), g(57, 10, g(ry, 55, 10-m), 109,
g(g(ﬂlnv 1(n_m))7 g(snln7 1(n_m)>7 g(rl7 817 873717 1(n_m)>7 1(n_3))7

glg(ty, 10m), (s, 1007, g, 771, 1007m) 10079,
—fa(g(ty, 107, g(s7, 107™), g(rf, 8’3", 1007 HD) 1079)),
glg(ty, 10m), g(s7, 107m), g (s, ', 107, 1079)),
gg(ty, 107m), g(s7, 107, g (i, 8771, 107 10079 glm=2),
We put t = g(t7*, 1)) s = g(s7, 1)) and s’ = g(s'7", 10=™).
Therefore we have
0€ flg(t.g(s', f(glry, s57,107™), g(ry.ss, 85, 107™) o g1, 771, 107M),
1020), —g(t, g(s. f(g(rf, o'5', 107™), g(rh.s'y, 875, 107™) o g, 7
1(n—m))’ 1(=2), O(m—2)),
Thus F(%, - g—:) = F(%, s %), i. e., ' is well defined.
Now, suppose that 2—1 = %, Z—z = %, oy P = 2—%, then there exist tq,...,t, € S such
that
0€ g(tr, f(g(ri, 1, 1072)), —g(rf, 51, 1072)), 00m=2)) 1(=2))

0 € g(ta, f(g(ra, sh, 172 —g(rh, 85, 1072)) 0(m=2)) 1(n=2))

0°€ gltn, fg(rn, 51, 1"72)), =g (17, 57, 1072)), 007=2)) 1(n=2)),

n» <n?

Then we conclude that
0€ f(g(g(tb 1, 8/17 1(n—3))’ g(t2a T2, 5/27 1(n—3))’ g(tna Tn, S/n> 1(n—3))’ l(n—m))’

It means

0€ fg(g(th), g(rp), g(s'1), 1079), —g(g(t1), g(r'}), g(s7), 1=9), 00m=2)),
Put t = g(t}). We have

0 fg(t,g(rm), g(s'0), 1=3), —g(t, g(r"}), g(s7), 10=3)), 0(m=2))
and so

0 € gt F(glo(ri). 9(s1), 1), —gg(t (D), g(s), 102),002) 1002,

It implies that g(rli = ggs g; and so G(Z, ..., = :G(i i) i. e., G is well defined.
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Lemma 3.1. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. Then:

1) For all s € S, % = g = 0g-1p.

2) T = 0g-1p, for r € R, s € S if and only if there exists ¢ € S such that

g(t,r,1"72) = 0.
3) For all s € S, i = % = ]-5*1R-
T,’S(mfl)ﬂ(nfm) T,’l(nfl)
4) ;((sf,smfl),l(n—m))) = 5((3/,1@*1)))’ forr € Rand s,s € S.

Proof. (1) Let t € S. Then for all s € S we have
0=g(t s,0,179)
= g(t, 9(0,5,10"7),10=2)
= g(t, f(g9(0,5,10=2)),0m=D) 1(n=2)
= g(t, f(9(0,5,1"7%), —g(1,0,1"=2), 00n=2)), 1(n=2)).
Then we conclude that % = g = Og-15. Now, we show that % = Og-15. Let r € R
and s € S. Then
PO ) = {8 Lue flg(r1079), 9(0,5,1070)0m7D) s = g(s, 1771}
= {4 [u€ flg(r,107V),00 D), 0 = g(s,1"7")}
= {4 [u€ f(r,0" D), s =g(s,1"")}
={%u=rs=g(s, 1" H}
Thus F(Z, %(m_l)) = £. Consequently % = 0g-1p.
(2) (=) : Let £ = 0g-1p for r € R,s € S. By (1), we have £ = 2. Hence there
exists ¢t € .S such that
0 € g(t, fg(r,1779), —g(0,5,1072),00m=2)) 1(»=2),
Therefore 0 € g(t, f(r,00"=D),1=2) It means g(t,r, 1) = 0.
(<=) : Let g(t,r,1m=2)) = 0 for some t € S. Then 0 = g(¢t, f(r, 00" Y),1"=2) Since
r=g(r,1"V) and 0 = ¢(0, s,1™2), we get
0= g(t, f(g(r,1"7), (0, 5,1072)),00=2)) 100=2)),
Then £ = 2 and so £ = 0g-1p, by (1).
(3) Let s € S. It is clear that 0 = g(0,1=1). Then we get
0=g(1, f(g(s,1,0072), —g(1,5,1072),00"=2)), 1(n=2),

It means 2 = % Now, we show that % = 1lg-15. Let r € R and s € S. Then we have
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r 1(n-1) r,1(n=1)
G(s’} >_ ((s 1(n— 1))

1=

This implies that 1 1= 15713.

(4) Let r € R and s,s" € S. Clearly,

F(L Q(m_l)) . f(g(r78(7rl—1)71(n—m))79(8/70’S(m72)71(n—m))(m71))

s’ s - 9(317371(7L—2))

Fg(rstm =D 1nmm)) 0(m D)
g(5/78(m71)71(n7m))

_ glrstmbatnmm)

- g(5/75(m71)71(n—m)) .

On the other hand,
F(Z o (m— 1)) _ fle(r1(n71) g(s7,0,1 (=2 (m D)

71 g(s’,1(n=1))
flg(r, 1" =) 0lm=1)
- g(s',1(n=1))
_ g(ra(nh)
T og(s,1(nmD)y =

Definition 3.1. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplica-
tive subset of R with 1 € S. The mapping ¢ : R — S~'R, defined by r — T, 1s

called natural map.
Theorem 3.2. The natural map ¢ is a homomorphism of Krasner (m, n)-hyperring.

Proof. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative subset

of R with 1 € S. For all r* € R, we get
o(f(7) = H5

_ fle(r,10m7) g(r2, 1Y), g (rm, 1Y)
g(1(m) 1(n—m))

={1 |7 € flglri,1"7),g(r2, 1079), ., g (1, 17D}
= (%, .., ")
= F(¢(r1), .., o(rm)).
Also, for all rf € R, we have
olg(r)) = 452

IG)
g(1(m)

(5 1)
(@(r1); w0 0(rn))- O

G

G

Theorem 3.3. Let = be an nonzero element of S ~IR. Then
1) For all s € S, ¢(s) is an invertible element of S™'R.

2) If ¢(r) = 0, then there exists ¢t € S such that g(¢,r, 17=2) = 0.
3) L= G(¢(r), d(s), 1) forall £ € SR,

71
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Proof. (1) Let s € S. Then we have

n—2 571(”*1)
G( % ( ))_ 9( )

1
1 T g(Ls,1(n=2)

Y

—lw

_ g(s,1(n7h)
T g(s,1(n— D)

=1 by Lemma 3.1 (3)

== 15713.
(2) It is clear by 3.1 (2).
(3) Let £ € ST'R. Then

ro__ g(rvl(nil))

s g(s,1(n=1))
1 1(n—2)
=G(1, 51 )
1

= G(o(r), 6(s) 1),

1
’ 1

O

Theorem 3.4. Let (Ry, f1,h1) and (Ra, f2,92) be two Krasner (m,n)-hyperrings

and S be an n-ary multiplicative subset of R; with 1 € S. Let &k : Ry — Ry be a

homomorphism such that for each s € S, k(s) is an invertible element of Ry. Then

there exists an unique homomorphism h : S™'R; — Ry such that ho¢p = k.

Proof. Let (Ry, fi,h), (Ra, f2,g2) and (ST'Ry, G, F) be Krasner (m,n)-hyperrings
such that S is an n-ary multiplicative subset of Ry and 1 € S. Define mapping h

from ST'R; to Rs as follows:

h(5) = g2(k(a), k(s)~",1072).

We need to show that h is well defined. Let Z—i = ’s"—: Then there exists t € S such

that
0€ gi(t, filgr(r,s',1072), —ga (1, 5,1072)), 00m=2)) 11 (1=2))
= filgr(t,r, 8/, 1072), =gy (8,7, 5, 1072)), 00m=2)),
Hence
0 € k(filgrlt,r,,1072), =g (t,77,5,102), 0m2))
= fo(k(gi(t,r, 8", 1072) k(=g (t, 7", 5,172 k(0)(m—2))
= fa(k(g1(g1(t, 17V), g1 (r, 107D), gi (87, 1071), 10079,
=g an(t 10700, 0101, 107,10, 1070, 1070, k(0)79)
= fa(g2(k(g1(t, 177Y)), k(g (r, 1"79)), k(gu (s, 1071)), 10079),

A/_\

—ga(k(g1 (, 170, k(ga (', 170)), Kk (ga (s, 1071)), 1079))) k(0)m=2)

= fa(g2(k(t), k(r)), k(s"), 1079),
—ga(k(t), k(r'), k(s), 17=%))), 00=2)
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= fa(g2(K(t), ga(k(r)), k(s'), 1 ) 10-2),
—g2(k(t), g2 (k(r"), k(s), 1" ) n=2)),0m=2))
= ga(k(t), f2(ga2(k(r)), k(s'), 1"72)),
—ga(k(r'), k(s), 10"~ 2))),0(”"‘2’),1(”‘2)).
Since k(t), k(s) and k(s') are invertible elements in Ry, we get
0= ga(k(t)™", k(s) ™" k(s') 71, 1071, 0)
c oaloalKE)1 s K() 1 10°9) b0, Flan(h(e), k() 10°9),
—ga(k(r"), k(s), 1(=2))) 00m=2)) 1(»=3))
— ga(gak(6) k(£), 1072)), go k()1 k() 102, fo(ga(k(r), k(s"), 1072),
—g2(k(r'), k(s), 107=2)), 0(m=2)) 1 (n=3))
— (L, go(k(5) ™1 R(") 1, 1072, falgak(r), k(s'), 10-),
—go(k(1"), k(s),1("=2))), 0m=2)) 1(n=3)
= Falgalga(k(s) ™ b, 1072), go(k(r), k(s), 10-2), 10-2)
—92(g2(k(s) ™", k( )7L 1 2) S(k(r), k(s), 10-2)), 1(0=2) ((m=2))
= fo(g2(ga(k(s) 1, k(s'), 1072, gy (k(r), k(s)~1, 1(=2)), 1(n=2))
—92(9a(k(s), k(s ) L1072), ga(k (1), k(s') 1, 1072)), 10072), 00 =2))
= folga(k(r), k(s)™", 1072) — go(k(r"), k(s") ™", 1(=2)) 00m=2))
= fo(h(%), h(%),00"2).
Then we coclude that h(Z) = h(%).
We must show that the mapping A is an homomorphism. Let r* € R; and s" € S.
Then we get
h(E (S 5m)

? Sm
_ (D A0 )1 (7 A )
= g1(8’1”,1("7m))

= go(k(f1(g1(ry, s7, 107 (877 rp, 107)) K (go (s, 1007m)))—1 1(0=2))
= go(fa(k(ga(ry, s, 17™)), L k(ga(sT 0 rn, 107 k(ga (s, 1007m)) =1 1(0=2))
= 2ol (k(r). K(52), - K (5). K)o go((s1), - K51), (),

k(1)) go(k(s1)7h, .o, k(sm) ™8, k(1) (™)), 1(7=2)
= fo(ga(ga(k(51) ™Y, oy E(5m) ™5 B(D) ™), go(k(r1), k(52), ..y k(S
F(1) ), 1072)) L ga(ga(k(s1) ™Y ey (500) ™1 R(1) ™), go(K(s1),
E(Sm—1), k(ry), k(1)(n=m))) 1(=2)))
= fa(g2(k(r1), k(s1) ", 1072), o ga(k(rm), k(sm) 1, 10772)
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= fa(h(5), s h(32))-
Also, we have

hG(ZL, ..., o) = p(2ll))
1

s1’? ’ Sp

(k(g1(
2(92(k(r1), oo k(1)) g2(k(s1) 7", oy K(sa) 1), 10072)
2(ga(k(r1), k(s1) 1), 1072)), o, ga(k(rn), k(s,) 1), 10072)))
S(A(Z2), .. h(Z2))
for r? € Ry and s} € S. Consequently, h is a homomorphism. Now, suppose that h’
is another homomorphism frome S™'R; to Ry with ho¢ = k. Then we obtain
h(z) = h(G(5. 11" 7)

= g2(h(§), h(3), h(3)"~ 2)

= g2(h(o(r)), h(o(s)” 1) )

= g2(h(o(r)) (h((s)) ", 1072)
k(r), k(s)~' 10 )
,(W(g(s))71,1072)
H($)7H1072)

(L), 102
)

=02

(
(
(
(
= ga(
(
(
(
(

T X
~—~ —~ —
L ]

¢(r)
)
)

~—

h

~~

= 92

= ga(h

G
— n(%).

for every = € S “1R. It implies that the homomorphism / is unique. Thus the proof

/

I
=
Y
>

==

is completed. O

Corollary 3.1. Let (Ry, f1,h1) and (Rs, f2, 92) be two Krasner (m,n)-hyperrings
and S be an n-ary multiplicative subset of Ry with 1 € S. Let k : Ry — Ry be a
homomorphism such that

i) k(s) is an invertible element of R, for each s € S.

ii) k(r) = 0 for r; € R, implies that g;(¢,7,12) = 0, for some ¢ € S.

iii) for each ry € Ry, 1o = go(k(r1), k(s)™%, 172 where r; € Ry and s € S.

Then there exists an unique isomomorphism h : ST'R; — R, such that ho¢ = k.

Proof. By using an argument similar to that in the proof of Theorem 3.4, one can

easily complete the proof. O
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Theorem 3.5. If R is an n-ary hyperintegral domain, then S™!'R is an n-ary hyper-
integral domain.

Proof. Let G(%*,...,™) = Og-1p for 7} € R and s} € S. Thus 99%) — (g-1z. By

’ s1 g(st)

Lemma 3.1 (2), we have g(t, g(a}),1"=2) = 0 for some ¢t € S. Since R is an n-ary

hyperintegral domain and ¢ # 0, we have g(a}) = 0 which implies a; = 0 or a; = 0
or ... or a, = 0. Hence we get ¢ “1 = Og-1g or 22 =0g-1g Or ... or & = Og-1p. Thus

52

S71R is an n-ary hyperintegral domain. O

Theorem 3.6. Let R be an n-ary hyperintegral domain and S = R — {0}. Then

each nonzero element of S™'R is invertible.

Proof. Let ~ be an nonzero element of S 'R. Since r # 0, then r € S and so
e SR Thus G(%,2 1= 2)) SN K] R lg-1p, by Lemma 3.1 (3). O

s'r 1 g(s,r,1(n=2)) ™

4. HYPERIDEALS IN KRASNER (m,n)-HYPERRING OF FRACTIONS

Let I be a hyperideal of Krasner (m,n)-hyperring R and S be an n-ary multiplica-
tive subset of R with 1 € S, then we can define that S™'/ = {¢ | a € I,s € S},
which is a hyperideal of S7'R.

Theorem 4.1. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. Let I be a hyperideal of R. Then I NS # & if and only if
S—'I = S7'R.

Proof. (=) : Let a € INS. Then 1 = % € S7'I. Since I is a hyperideal of R, we

1
have G(3,2,4"7%) € =/ for all £ € SR, Since G(4,£,1"7) = i) — ¢
then £ € S7'J. Thus S7'I = S_IR.
(<=) : By the homomorphism ¢ : R — S™'R, it implies that ¢(1) = {. Since
S™I = SR and ¢(1) € ST'R, then ¢(1) € S~'I. Hence, there exist a € I, s € S
such that 1 = ¢(1) = 2. So, there exists t € S such that

= g(t, f(g(a,1"7), —g(s,1071)), 00"=2) 1(n=2)

= f(g(t, g(a, 10"71),107) g(t, —g(s,107), 1(»=2) olm=2)
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= flg(t, a,107), —g(t, 5,10"72),007=2).
Since g(t,a,1"=2) € I, then g(t,s,1"=2) € I. Also, since S is an n-ary multiplica-
tive subset of R, then g(t,s, 1™ ) € S. Consequently, I NS # @. O

If (a,s) € S7'I we don't get necessarily a € I, maybe (a,s) = (da’,s) such that
a €lbutad¢l.

Theorem 4.2. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. Then every hyperideal of S™'R is an extended hyperideal.

Proof. Suppose that J is a hyperideal of ST'R. Put B = {r € R | 3s € S;L € J}.
Easily, it is proved that B is a hyperideal of R. We show that B¢ = S™'B = J.
Let £ € J. Then r € B and so £ € S'B which means J C S™'B. Now, assume
that £ € S™'B. Then there exist ¥ € B and s’ € S such that £ = % It means
there exists ¢ € S such that 0 € g(t, f(g(b, s, 1)), —g(V/, 5,10~ 2)) 0(m=2)), 1(»=2))
= f(g(t,b,s", 1=3)) —g(t, ¥/, 5, 10=3)) 0m=2)) 1(=2)),

Since g(t,b,s,1"3) € B, then g(g(t,s’,1™2),b,1"72) = g(¢,b,s',1"3) € B.
Put t = g(t,s',12). Therefore we have g(#'"™ ™" b, 10"=™) € B. Hence there

g(t/(m 1) bl(n m)
(7T 1 m+1) € J. Then we

t g(t/(mfl) ’b’l(nfm))

7 € J and so

exists ¢ € S such tha

have

e (e i i K I R 7GR K] SN i) W Yoy
g(t’,s,l("*2)) 7g(t//(m—l)71(n7m+1)) - g(g(t//7tl’1(n72))(m71)’S7l(n—7n)) - .

This means S™'B C J. Consequently, S™'B = J. O

Let R be a Krasner (m, n)-hyperring. Then the hyperideal M of R is said to be
maximal if for every hyperideal I of R, M C I C R implies that [ = M or I = R [1].

Lemma 4.1. Let R be a Krasner (m,n)-hyperring such that M is a hyperideal of
R. If each € R — M is invertible, then M is a maximal hyperideal of R.

Proof. The proof is similar to ordinary algebra. U

Theorem 4.3. Let R be a Krasner (m,n)-hyperring and P be an n-ary prime hy-
perideal of R. If S = R — P, then M = {2 | a € P,s € S} is the only maximal
hyperideal of S~!'R.

Proof. Clearly, S = R — P is an n-ary multiplicative subset of R. Let % Ly meM
such that ai* € P and s{* € S. Then



KRASNER (m,n)-HYPERRING OF FRACTIONS 179

(ﬂ a_m) S f(g(al78§7L71(n7m))7g(517a2753 71(n m)) g(s a’"l?l(nim)))
s1 - g(sm 1(n— m)) .

g eeey Sm

Since a* € P, then g(ay, sy, 1), g(s1, ag, 85,107 g(s7" 7 ap,, 1) € P
and so f(g(ay, s3, 1™ g(s1, ag, s7, 1) g(s77, @y, 1™~™)) C P. Thus we
conclude that F/(2,..., 2=) C M.

Clearly, if = € M, then —% = =% € M. Also, since 0 € P,then Og, = 2 € M for all

s € S. Hence (M, F') is a canonical n-ary hypergroup.
Now, let rf € R, s} € S and k € {1,...,n}. Then

GG o S M 2 2) UGG B 20 2 £ € )
a?“
_U{g(S 78’5’2 ) |a e P,seS}.
Since a € P, then g(r®** a,r? ) € P and so G ,5’2*1 M,::—i,...,;"—z) C M.

Thus, (M, F,G) is a hyperideal of Rp.
Suppose that 1z, = % € M. Then there exist a € P and s € S such that % =2 It
implies that there exists ¢ € S such that

0 € g(t, f(g(a, 1,172 —g(1, s, 1(n=2) p(m=2)) 1(n=2))

= f(g(t,a,172) —g(t,s, 1(=2)) 0m=2),

Since g(t,a,1=?) € P, then g(t, s, 1(?)) € P. Since P is an n-ary prime hyperideal
of R, then we obtain t € P or s € P which is a contradiction. Then M is a proper
hyperideal of R.
Now, suppose that v € Rp — M. It means v = % such that r € R — P and s € S.
Then r € S and so £ € M. Hence 1 = G(%, 2, }(n 2)) € M which is a contradiction.

Consequently, M is the only maximal hyperideal of Rp. U

Theorem 4.4. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. If P is an n-ary prime hyperideal of R with PNS = &, then
S~LP is an m-ary prime hyperideal of S7'R.

-1p It

Proof. Let G(%
implies that there exists ¢ € S such that g(t,g(al), 1n=2) ¢ P. Slnce P is an n-ary

L) e ST Pfor @, M e 5™

s17 " 5177777 sp

prime hyperideal of R and P NS = &, then g(a}) € P which means there exists
1 < ¢ < n with a; € P. Hence we conclude that % € S7IP for some 1 < i <n. Thus

S~1P is an n-ary prime hyperideal of S7!R. O
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Example 4.1. The set R = {0, 1,2} with the following 3-ary hyperoeration f and

3-ary operation ¢ is a Krasner (3, 3)-hyperring such that f and g are commutative.
f(()?O’O):O? f(o’()?l):l? f(o’]‘?l):l’ f(171’1):1’ f(171’2):R7

f(071’2):R’ f(070’2):2’ f(072’2):27 f(1’272):R7 f(2’272):27

g(1,1,1)=1, ¢(1,1,2) =¢(1,2,2) = ¢(2,2,2) = 2,
and for z1,29 € R, ¢(0,21,25) = 0.

S ={1,2} is a 3-ary multiplicative subset of Krasner (3, 3)-hyperring (R, f,g) and
hyperideal P = {0} is a 3-ary prime hyperideal of R (see example 4.10 in [1]). Thus
S7'P = {9} is a 3-ary prime hyperideal of S™'R.

Let I be a hyperideal in a Krasner (m,n)-hyperring R with scalar identity. The
radical (or nilradical) of I, denoted by /1 ) is the hyperideal (| P, where the
intersection is taken over all n-ary prime hyperideals P which contain I. If the
set of all n-ary hyperideals containing I is empty, then /1 () is defined to be R.
Ameri and Norouzi showed that if z € /1 (m’n), then there exists ¢ € N such that
g(z®, 15[?_”) €l fort<n,orgy(xW)elfort=1In—1)+1][1].

Lemma 4.2. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. If [ is an n-ary hyperideal of R, then m(m,n) _
S_l\/j(mﬂ@)‘

Proof. Let ¢ € S=17™™  Then there exists k € N with G(2

= k) €SI
for k < n, or Gy(2®) € S for k = I(n — 1) + 1. If G(¢® 1Ny ¢ g-1p
then % € S7I. Therefore g(t,g(a®™, 1°=%)) 10"=2)) € [ for some t € S
and so g(g(t,a, 172k 10=k)) = g(¢t®) g(g®) 1=k 1(=k=1)) ¢ [ It means
g(t,a,1"2) ¢ \/T(m’n) and so g(t™=Y a, 1™ ¢ \/T(m’n). Hence we get

e

by Lemma 3.1 (4). Similarly for the other case. Thus VS—11 o C S 1\/7 e
Now, let ¢ € S‘lfmn . Then we conclude g(t,a,1"2?) ¢ f ! for some t €
S and so g(t™m Y a,17™) € \/_(m "™ It means that there exists k € N with
g(g(tm=b q, 10=m)) &) 1=k} e T for k < n, or ggy(g(t™ =V, a,1=2)k)) € I for

k=1(n—1)+1. If g(g(t™ "V, a,10=2)*) 10=k)) ¢ T then we have

1
1
1(n—
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alk) 1(—k)\ (tm=1 q1-2y (k) | (n_)

G(e™ 1 ) =G mram o1 )

_g(g@tm=1) g 1(n=2)y(k) 1(n— k)) _
Zé(t(m 1) Sl(n 2))(k) 1(n— k)) €S

Therefore we get £ € V.S . Similarly for the other case. Thus S~ 1f )
VST Consequently, VS~ A S‘lﬁmn . O

A hyperideal @ # R in a Krasner (m, n)-hyperring (R, f, g) with the scalar identity
1 is said to be n-ary primary if g(z7) € Q and x; ¢ Q implies that g(z}™', 1,27, ,) €

Vo (1.

Theorem 4.5. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. If P is an n-ary primary hyperideal of R with PN S = &,
then S~!'P is an n-ary primary hyperideal of S~!R.

Proof. Let &, ..., ¢ € S~'R such that G(2, ., ) € S~1P . Then we have ggcﬁ)) €
n n 1

S~1P. It implies that there exists ¢t € S such that g(t, g(a}),1=?) € P. Since P is
an n-ary primary hyperideal of R, then there exist 1 <7 < n such that at least one
of the cases hold: a; € P, g(ai™",1,al,,) € \/7 RS \/ﬁ(m’n) or g(a}) € \/F(m’n).
If a; € P, then ¢ € S7LP and we are done. If g(ai™',1,al,,) € \/ﬁ(m’n), then
G(a, . %1l “”1, L) = glay Lalyy) € S_lx/ﬁ(m’n) = \/S_—lP(m’n), by Lemma

S1 78—’ 17 7,+1 ? sn g(si7ha ST 1)

42. Ift e \/ﬁ ; ' then gtV qy, 10m=m) € \/ﬁ(mm), for all 1 < k < n. Therefore
Zﬁiiiiﬂi’;iﬁﬁiﬁi e 5P = VTP and so =€ VST Therefore
for each i # k, G(‘S‘—i,... Giz1 1 Git1 “") € \/—1P( ). Let g(at) € \/P(m’n).

Vi1 17 siyr 0 ’s

Theorem 4.28. in [1] shows that /P " 5 an n-ary prime hyperideal of R. Hence
there exists 1 < k < n such that a; € \/ﬁ(m’n). It implies that “’“ e S‘lx/_(m’") -
\/S——lP(m’n). Therefore for each i # k, G(‘s’—i,... i1 1, Zitl a”) € \/—1P(mn

7551717 55017 sn

Thus S~ P is an n-ary primary hyperideal of S™'R. U

A proper hyperideal I of a Krasner (m,n)-hyperring (R, f,g) with the scalar
identity 1g is said to be n-ary 2-absorbing if for z}' € R, g(z}) € I implies that

g(x;, x;, 1%_2)) € I for some 1 <i<j<n|[3].

Theorem 4.6. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. If P is an n-ary 2-absorbing hyperideal of R with PNS = &,
then S~!P is an n-ary 2-absorbing hyperideal of S~!R.
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Pt

Proof. Let G(%,..., %) € ST'P, for ¢, ..., %= € ST'R. Then we have ZEZ,?))
implies that there exists ¢ € S such that g(t, g(a?),1m=2) € P. Since P is an n-ary 2-
absorbing hyperideal of R, then there exist 1 <1 < j < n such that g(¢,a;, 1"2) € P
or g(ai;, aj, 1("_2)) € P. Hence we conclude that ‘s’— € S71P for some 1 < i < n. Thus
S~1P is an n-ary prime hyperideal of S~'R. If for some 1 < i < n, g(t,a;,1?) € P,
then g(t™=Y a;,1"=™) € P and so E; 3 Z’ 1((: :3 € S~'P. Hence o€ S=1P, by
Lemma 3.1 (4). Therefore for every 1 < j<n, G ,ZJ : %("_2)) € S7'P and we are

. a;,a;,1(m=2) _
done. If g(a;,a;,1™?) € P, for some 1 < i < j < n, then W e sSp

which means G(%,% l(n_l)) € S71P. Consequently, S~!'P is an n-ary 2-absorbing

si? 8571

hyperideal of S7!R. O

5. QUTIENT KRASNER (m,n)-HYPERRING OF FRACTIONS

Let R be a Krasner (m,n)-hyperring and I be a hyperideal of R. Then we consider
the set R/I as follows:
R/T={f(r,1,00") | r € R}.

Lemma 5.1. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. Let I be a hyperideal of R such that SN I = &. Then
S ={f(s,1,00"2) | s € S} is an n-ary multiplicative subset of R/I.

Proof. Let f(s1,1,00"=2), ... f(s,,1,00"=2) € S, for st € S. Then we have

g(f(51, 1,002 o, flsn, 1,00"72)) = f(g(s7), 1,0m2).
Since S is an n-ary multiplicative subset of R, then g(s?) € S. It implies that
g(f(s1, 1,002 f(sy, 1,00mD)) € S. O

Theorem 5.1. Let R be a Krasner (m, n)-hyperring and S be an n-ary multiplicative
subset of R with 1 € S. Let I be a hyperideal of R such that SNI = @. If
S ={f(s,1,0"2) | s € S}, then S~H(R/I) = S~'R/S™'I.

Proof. Define mapping k : R/I — S™'R/S™I as following:

k(f(r, 1,0072)) = (2, §=11,00" ),
It is easy to see the mapping is a homomorphism. Let f(s,I,0™"2) € S. Then
k(f(s,1,0072))) = F(2,5711,00" 2. Since F(L,5717,09"2) € S7'R/S™'1, then

we obtain
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G(F(3, 871,00 D), F(L, 871,08 2), F(2, 871,04 2)"=2))
= F(G(3,1,107) 571,00 7))
= F(}.57'L0g")).
Assume that k(f(r, 1,00"=) = S='I. Then we have F(£,5~'1,00", 7)) = S~'I. Tt
means = € S7'I. Then there exists ¢ € S such that g(t,r,1=2) ¢ I. Clearly,
f(t, 1,00"2) ¢ S and we have
g(f(t, 1,007 f(r, 1,00"2)), f(1,1,002)=2)
= f(g(t,r,1=2) 1,0m=2)) = I.
Now, suppose that F(£,S7'1,0g-15) € ST'R/S™'I. Thus we have
F(£,57,05-15) = G(F (5,57, 05-15), F(£,57,05-15), F (3,57, 05-15) ")
= G(k(f(r, 1,00 2), k(f(r,1,00"2), F(},57,05-15)"2).
Hence, there exists an isomorphism from S~*(R/I) to S~*R/S~'I, by Corollary 3.1.
It means S~Y(R/I) = S™'R/S™'I. O

Let P be an n-ary prime hyperideal of Krasner (m, n)-hyperring R. Put S = R—P.
Then S is an n-ary multiplicative subset of R such that 1 € S and 0 ¢ S. In this
case, we denote S™'R = Rp. Moreover, If S7'I is a hyperideal of Rp, then it is
denoted by I Rp.

Example 5.1. Let R be a Krasner (m,n)-hyperring such that P is an n-ary prime
hyperideal of R. Put S = R — P. Then S = {f(s,P,0" %) |s € S} = R/P —
{f(P,0"=))} is an n-ary multiplicative subset of R/P. By Theorem 4.6 in [1], R/P
is an n-ary hyperintegral domain. Theorem 3.5 and 3.6 show that S~'(R/P) is
an n-ary hyperintegral domain and each nonzero element of S~!(R/P) is invertible.

Moreover, we have S~ (R/P) = 5= 12 PR , by Theorem 5.1.

Example 5.2. Let R be a Krasner (m,n)-hyperring such that P and @ are two
n-ary prime hyperideals of R such that @ € P. Put S = R — P. Then S =
{f(5,Q,0m=2) |s € S} = R/Q — R/P. 1t is clear that P/Q is an n-ary prime
hyperideal of R/Q. Therefore S™'(R/Q) = (R/Q)pjqo- By Theorem 5.1, we get
(R/Q)pjq = %-
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