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AN EFFICIENT HAAR WAVELET SERIES METHOD TO SOLVE

HIGHER-ORDER MULTI-PANTOGRAPH EQUATIONS ARISING

IN ELECTRODYNAMICS

AFROZ(1), BASHARAT HUSSAIN(2) AND ABDULLAH(3)

Abstract. The primary aim of this paper is to develop a numerical method based

on Haar wavelets for solving second and higher-order multi-pantograph differen-

tial equations. This method transforms the differential equation into a system of

algebraic equations with undetermined coefficients. These algebraic systems can

be solved either by Newton’s or Broyden’s iterative methods. Finally, few test ex-

amples are taken from the literature to show the computational efficiency of this

method.

1. Introduction

Delay differential equations appeared in the mathematical modeling of many real-

world processes. It has enormous applications in many fields such as probability

theory, number theory, chemical, and biological processes, population and economic

growth modeling, etc. Functional-differential equation with proportional delay is

known as pantograph equation or generalized pantograph equation. The name pan-

tograph first appeared in 1851 and was a device used in the construction of the

electric locomotive. The mathematical model of pantograph was first developed by

Ockendon and Tyler [19]. Pantograph equation is one of the most distinguished de-

lay differential equation and has been an interest of many researchers [5, 9, 10]. The

pantograph differential equations are encountered in studies of population dynamic

model, quantum theory, control theory, cell growth model, disease spread model and
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astrophysics [9]. These equations also have several industrial applications and play

a central role in the mathematical modeling of train’s overhead current collection

system [19]. The continuous electricity supply between the catenary and the train’s

motor is maintained by a device called a z-shape pantograph. The z-shape panto-

graph (also known as half pantograph) resembled the pantograph device for copying,

writing, and drawing. It has a spring mechanism to push the contact shoe against

the wire to draw the electricity needed to run the train.

Most of these equations can not be solvable exactly. Therefore, a numerical

technique is required to obtain their approximate solutions. Variational iteration

method [8], one leg-θ method [26], two-stage R-K method [28], reproducing kernel

Hilbert space method (RKHSM) [15], differential transform method [12], adomain

decomposition method [6], perturbed iteration method [4] are some already estab-

lished numerical techniques to solve such types of differential equations. Recently, in

[3] Time-invariant and time-varying first-order delay differential equations have been

solved using the Haar wavelet collocation method. Some other collocation methods

are also developed using Chebyshev Polynomials, Hermite Polynomials, Bernoulli

Polynomials for detail reader may refer to [14, 24, 29] respectively.

Chen-Hsiao [7] gave an idea of utilizing Haar operational matrix of integration

for solving differential equations. In the existing literature, the development and

application of the Haar wavelet collocation method (HWCM) for solving differential

equations are based on the method given by Chen and Hsiao. Later this idea has

been extended for solving a wide range of problems[13]. Marzban and Razzaghi [18]

adapted the rationalized Haar wavelet approach for solving nonlinear optimal con-

trol problem. Haar wavelet collocation method is also a valuable tool in structural

mechanics, Hariharan [11] applied the Haar wavelet-based technique for solving fi-

nite length beam equation. Lepik [13] discussed buckling of elastic beams using the

Haar wavelet method. In [20] Patra and Saha obtained the solution of stiff point

kinetics equations using wavelet operational method based on Haar wavelet. In the

recent past the Chen-Hsiao’s technique is extended to solve delay differential equa-

tions, Aziz and Amin[3] investigated the approximate solution of delay differential

as well as partial delay differential equations. Raza et al. [21] transform the delay
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term using Taylor series expansion and then applied the Haar wavelet collocation

method to solve singularly perturbed differential-difference equations and singularly

perturbed convection delayed dominated diffusion equations. Abdullah and Rafiq [1]

combined the backward Euler method and Haar wavelet collocation method to obtain

the approximate solution of the Chen-Lee-Liu equation.

Haar wavelets consist of pairs of piece-wise constant functions and are not differ-

entiable. Unlike Daubechies, Coiflet, Symlet, Haar wavelets are the simplest wavelets

that have an analytic mathematical expression. The solution obtained using Haar

wavelets are usually simpler, faster, and computationally attractive.

In [17, 16] Majak et al. discuss the convergence analysis and accuracy issues

of Chen-Hasio’s approach based Haar wavelet collocation method. It is pointed out

in [17] that the order of convergence equals two. In [17] authors have proved the

following convergence theorem:

Theorem 1.1. Let us assume that u(t) = ∂nω(t)
∂tn

be square integrable function with

bounded first derivative on [0, 1], then the Haar wavelet collocation method will be

convergent i.e. ‖EM‖2(L
2 − norm of error function) vanishes as J goes to infinity.

Also, the convergence is of order two

‖EM‖2 = O

[(
1

2J+1

)2
]

.

In the present study, we have applied a modified Haar wavelet series method

(MHWSM) instead of the conventional Haar wavelet collocation method. Here we

have expanded the (n + 1)th order derivative involves in the differential equations

in terms of Haar series instead of the nth (highest) order derivative. The MHWSM

produced a smoother solution than the Haar wavelet collocation method, therefore

a significant decrease in absolute error is expected. The rest of this manuscript is

organized as follows. In section 2, we briefly discuss the definition of the Haar wavelet

family and their integrals. Section 3 deals with the development of the Modified Haar

wavelet series method (MHWSM). Section 4 deals with the algorithm of the scheme.

Brief convergence analysis of the Haar wavelet is provided in Section 5. In Section 6,

several illustrative examples are given to test the ability, accuracy, and convergence

of the method.
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2. Haar wavelet

The Haar wavelet family on the interval [0, 1) is defined as follows:

hi(t) =







1 for t ∈ [t1(i), t2(i))

−1 for t ∈ [t2(i), t3(i))

0 otherwise,

(2.1)

where

t1(i) =
k

m
, t2(i) =

k + 0.5

m
, t3(i) =

k + 1

m
.

Here m = 2j, j = 0, 1, ...J and k = 0, 1, ...m − 1 is the translation parameter and J

is the maximum level of resolution. The wavelet number i is given by i = m+ k+ 1,

for i ≥ 2. For i = 1, the function h1(t) is father wavelet or scaling function for the

family of Haar wavelet which is defined as follows:

h1(t) = χ[0,1)(t),

where χ[0,1)(t) is characteristics function. For more detailed information about Haar

wavelets, we refer to [2, 13, 22].

Any L2-space function defined on [0, 1] can be approximated as the finite sum of Haar

wavelet series as follows:

f(t) =

2M∑

i=1

aihi(t).

In the subsequent section we need the following integrals of Haar wavelets

Iνhi(t) =

∫ t

0

∫ t

0

∫ t

0

· · ·

∫ t

0

hi(z)d
νz =

1

(ν − 1)!

∫ t

0

(t− z)ν−1
hi(z)dz,

where ν = 1, 2 . . . n and i = 1, 2 . . . 2J+1. Integration of (2.1) is carried out analytically

to obtain these integrals and are given below:

(2.2)

Inhi(t) =
1

n!







0 when t ∈ [0, t1(i))

(t− t1(i))
n when t ∈ [t1(i), t2(i))

(t− t1(i))
n − 2(t− t2(i))

n when t ∈ [t2(i), t3(i))

(t− t1(i))
n − 2(t− t2(i))

n + (t− t3(i))
n when t ∈ [t3(i), 1).
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3. Numerical method

Let us assume a nth order pantograph equation of the form

(3.1)

ωn(t) = ϕ (g(t), ω(ρ0t), ω
1(ρ1t), ω

2(ρ2t) . . . ω
n(ρnt)) , ∀ t ∈ [t0, tf ]

with ωη(0) = ωη
0 ,

where ϕ : [t0, tf ]×R× R · · · × R
︸ ︷︷ ︸

(n+1)-times

7→ R is a differentiable function, g(t) is continuous on

[t0, tf ] and ρ0, ρ1 . . . ρn are real constants lies in (0, 1]. Also, ω1, ω2 . . . ωn denotes the

first, second and nth order derivatives, respectively and ωη
0 are initial value conditions

η = 0, 1, 2 . . . n− 1 . Put t = 0 in 3.1 for ωn(0).

In order to solve (3.1) we have established the following algorithm using Haar wavelet

series. Let us suppose ωn+1(t) be square integrable function. Therefore, we can write

ωn+1(t) =

2M∑

i=1

aihi(t).(3.2)

Integrating (3.2) r (r = 1, 2, . . . , n+1) times with respect to t, we have the following

relation

ωn+1−r(t) =

2M∑

i=1

aiIrhi(t) +

n∑

η=n+1−r

ωη(0)(t)η−(n+1−r)

(η − (n+ 1− r))!
.(3.3)

Taking r = n+ 1 in relation (3.3), we have ω(t) as:

ω(t) =
2M∑

i=1

aiIn+1hi(t) +
n∑

η=0

ωη(0)(t)η

(η)!
.(3.4)

Also,

ω(ρ0t) =

2M∑

i=1

aiIn+1hi(ρ0t) +

n∑

η=0

ωη(0)(ρ0t)
η

(η)!
.(3.5)

Similarly,

ω1(ρ1t) =
2M∑

i=1

aiInhi(ρ1t) +
n∑

η=1

ωη(0)(ρ1t)
η−1

(η − 1)!
(3.6)

...

ωn(ρnt) =

2M∑

i=1

aiI1hi(ρnt) + ωn(0).(3.7)



792 AFROZ, BASHARAT HUSSAIN AND ABDULLAH

Now, Substituting Eqs. (3.3 - 3.7) in Eq. (3.1), we get

(3.8)

2M∑

i=1

aiI1hi(t) + ωn(0) = ϕ

(

g(t),
2M∑

i=1

aiIn+1hi(ρ0t) +
n∑

η=0

ωη(0)(ρ0t)
η

(η)!
,

2M∑

i=1

aiInhi(ρ1t) +
n∑

η=1

ωη(0)(ρ1t)
η−1

(η − 1)!
, . . . ,

2M∑

i=1

aiI1hi(ρnt) + ωn(0)

)

Moreover, utilizing collocation points tl, l = 1, 2, . . . 2M in Eq. (3.8), we obtain:

(3.9)

2M∑

i=1

aiI1hi(tl) + ωn(0) = ϕ

[

g(tl),
2M∑

i=1

aiIn+1hi(ρ0tl) +
n∑

η=0

ωη(0)(ρ0tl)
η

(η)!
,

2M∑

i=1

aiInhi(ρ1tl) +

n∑

η=1

ωη(0)(ρ1tl)
η−1

(η − 1)!
, . . . ,

2M∑

i=1

aiI1hi(ρn) + ωn(0)

]

Now, we can easily find the coefficients a,is using any iterative techniques like Newton’s

method or Broyden’s method. Finally, the solution is obtained by substituting a,is in

(3.4).

4. Algorithm

Input: level of resolution M .

Step-1: Set collocation points tl =
(l−0.5)
2M

, l = 1, 2, 3 . . .2M ,M = 2J .

Step-2: Compute Haar wavelets hi(t) and integral of Haar wavelets Inhi(t) from Eqs.

(2.1) and (2.2), respectively.

Step-3: Construct the system (3.9) by using Eqs. (3.3-3.7) and collocation points tl

sets in step 1.

Step-4: Apply Newton’s method to the system (3.9) for unknowns a,is

Step-5: Put a,is in Eq. (3.4).

Output: Approximate solution ωh(tl).

5. Convergence analysis of Haar wavelet

Lemma 5.1. Assume that ω(t) be any L2-space function with bounded first derivative

on [0, 1), then the error norm at J th level satisfies the following inequality

(5.1) ‖ej(t)‖ ≤

√

K

7
C2−(3)2J−1

,

where K and C are some real constants.
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Proof 5.1. For proof see [25].

6. Numerical experiment

To check the applicability and efficiency of our technique we have solved second-

order linear and non-linear differential equations, integro differential equation, a third-

order, and a fourth-order differential equation of pantograph nature. All computer

simulations are carried out in MATLAB R2017a and are reported in Tables and

figures.

Example 6.1. Consider the pantograph equation

(6.1)
ω

′′

(t) =
3

4
ω(t) + ω

(
t

2

)

+ ω
′

(
t

2

)

+
1

2
ω

′′

(
t

2

)

− t2 − t + 1, t ∈ [0, 1]

ω(0) = 0, ω
′

(0) = 0.

The exact solution of (6.1) from [15] is ωe = t2. The present technique is successfully

applied on (6.1) and the result is compared with some existing methods [28, 26,

27, 8, 15]. Wavelet coefficients are calculated using classical Newton’s method by

choosing appropriate initial guess. We observed that Maximum absolute error is zero

for J = 2, 3, 4, . . . , 9. Also, it is evident from Table1 and Table 2 that our method

has easy applicability and produced better results. Figure 1 shows that both exact

and approximate solutions coincide visually.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Approximate solution

Exact solution

Figure 1. Comparison of exact and approximate solution for Example 6.1.
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Table 1. Error comparison with existing method for Example 6.1.

Our Two-stage One-leg [26] VIM[8] VIM[8] RKHSM

method [28] order-one [27] θ-method n = 5 n = 5 [15] n = 100

J = 2 RKM (θ = 0.8) - - -

0 5.34E − 03 2.81E − 01 1.11E − 02 5.55E − 03 4.92E − 04

Table 2. Comparison of exact and approximate solution for Example 6.1.

t(= 1/32) Present method Exact solution

1.0 0.00097656250 0.00097656250

3.0 0.00878906250 0.00878906250

5.0 0.02441406250 0.02441406250

7.0 0.04785156250 0.04785156250

9.0 0.07910156250 0.07910156250

11.0 0.11816406250 0.11816406250

13.0 0.16503906250 0.16503906250

15.0 0.21972656250 0.21972656250

17.0 0.28222656250 0.28222656250

19.0 0.35253906250 0.35253906250

21.0 0.43066406250 0.43066406250

23.0 0.51660156250 0.51660156250

25.0 0.61035156250 0.61035156250

27.0 0.71191406250 0.71191406250

29.0 0.82128906250 0.82128906250

31.0 0.93847656250 0.93847656250

Example 6.2. In this Example we consider a second order nonlinear pantograph

equation

(6.2)
ω

′′

(t) = −ω(t) +

(

ω

(
t

2

))2

, t ∈ [0, 1]

ω(0) = 1, ω
′

(0) = −2.
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Approximate solution of (6.2) is obtained with the present algorithm. Our solution

is compared with exact solution ωe = exp(−2t) in Table 3 and Figure 2. We have

observed that maximum absolute errors are decreased from order of 10−3 for J = 2

to order of 10−7 for J = 9.

Table 3. Comparison of exact and approximate solution for Example 6.2.

J max |yexact − yapprox|

3.0 7.4217E − 04

4.0 1.9187E − 04

5.0 4.8675E − 05

6.0 1.2252E − 05

7.0 3.0729E − 06

8.0 7.6943E − 07

9.0 1.9248E − 07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximate solution

Exact solution

Figure 2. Comparison of exact and approximate solution for Example

6.2 at J = 5.

Example 6.3. Let us consider the following second order pantograph type initial

value problem mention in [15],

(6.3)
ω

′′

(t) = ω
′

(
t

2

)

−
t

2
ω

′′

(
t

2

)

+ 2, t ∈ [0, 1]

ω(0) = 1, ω
′

(0) = 0.
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3 4 5 6 7 8 9

J

10-7

10-6

10-5

10-4

10-3

lo
g

(m
a

x
|y

e
x

a
c

t-y
a

p
p

ro
x
|)

Figure 3. Maximum Absolute Errors vs J for Example 6.2.

We have solve this example using present method. The approximate function to be

sought is

ωh =

2M∑

i=1

ai ∗ I3hi(t) + t2 + 1

The exact solution of the system (6.3) is ωe = 1+ t2. Computer simulation is carried

out and it is observed that the maximum absolute error is zero for J = 2, 3, . . . , 9.

Comparison between approximate solution and exact solution is demonstrated in

Figure 4 and Table 4 which shows that both solutions coincide.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

Approximate solution

Exact solution

Figure 4. Comparison of approximate and exact solution for Example 6.3.
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Table 4. Comparison of exact and approximate solution for Example 6.3

t(= 1/16) Present method Exact solution

1.0 1.003906250 1.003906250

3.0 1.035156250 1.035156250

5.0 1.097656250 1.097656250

7.0 1.191406250 1.191406250

9.0 1.316406250 1.316406250

11.0 1.472656250 1.472656250

13.0 1.660156250 1.660156250

15.0 1.878906250 1.878906250

Example 6.4. We consider a nonlinear integro-differential equation with propor-

tional delay in kernal

(6.4)
ω′(t) +

(
t

2
− 2

)

ω(t)− 2

∫ t

0

(

ω
(s

2

))2

ds = 1, t ∈ [0, 1]

ω(0) = 0.

Equation (6.4) can be reduced to following second order nonlinear pantograph equa-

tion

(6.5)
ω′′(t) +

(
t

2
− 2

)

ω′(t) +
1

2
ω(t)− 2

(

ω

(
t

2

))2

= 1, t ∈ [0, 1]

ω(0) = 0, ω′(0) = 1.

Now, we have applied present algorithm on (6.5) and obtained its approximate so-

lution. The solution is compared with exact solution ωe = t exp(t) and results are

presented in Table 5 and Table 6. We have observed that maximum absolute errors

are decreased from order of 10−4 for J = 3 to order of 10−7 for J = 9. Also, we have

verify in Figure 5 that both solutions visually coincide.
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Table 5. Comparison of exact and approximate solution for Example 6.4.

J max |yexact − yapprox|

3.0 8.2836E − 04

4.0 2.1882E − 04

5.0 5.6115E − 05

6.0 1.4201E − 05

7.0 3.5715E − 06

8.0 8.9555E − 07

9.0 2.2414E − 07

Table 6. Comparison of exact and approximate solution for Example 6.4.

t(= 1/32) Present method Exact solution |yexact − yapprox|

1.0 0.0322421468 0.0322419814 0.1653E − 6

3.0 0.1029618079 0.1029642319 0.2423E − 5

5.0 0.1826661951 0.1826747572 0.8562E − 5

7.0 0.2722202080 0.2722387735 0.1856E − 4

9.0 0.3725622277 0.3725957133 0.3348E − 4

11.0 0.4847113430 0.4847651995 0.5385E − 4

13.0 0.6097726143 0.6098534812 0.8086E − 4

15.0 0.7489450753 0.7490603671 0.1152E − 3

17.0 0.9035281845 0.9036866916 0.1585E − 3

19.0 1.0749307939 1.0751423553 0.2115E − 3

21.0 1.2646789302 1.2649549829 0.2760E − 3

23.0 1.4744259044 1.4747792434 0.3533E − 3

25.0 1.7059615777 1.7064068834 0.4453E − 3

27.0 1.9612238562 1.9617775258 0.5536E − 3

29.0 2.2423096473 2.2429902915 0.6806E − 3

31.0 2.5514879480 2.5523163047 0.8283E − 3
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
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2.5

3

Approximate solution

Exact solution

Figure 5. Comparison of exact and approximate solution for Example

6.4 at J = 3.
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J

10 -7
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10 -4
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e
x
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t-y
a

p
p

ro
x
|)

Figure 6. Maximum Absolute Errors vs J for Example 6.4.

Example 6.5. In this Example we consider a third-order pantograph equation

(6.6)

ω′′′(t) = ω(t) + ω′

(
t

2

)

+ ω′′

(
t

3

)

+
1

2
ω′′′

(
t

4

)

− t4 −
t3

2
−

4

3
t2 + 21t, t ∈ [0, 1]

ω(0) = ω′(0) = ω′′(0) = 0.

We have applied the present algorithm on (6.6). A comparison between approximate

and exact solution ωe = t4 demonstrated in Figure 7 and it shows that both solutions

visually coincide. The wavelet coefficients are calculated using classical Newton’s

method with appropriate initial guess. Also, we observed that maximum absolute

error for J = 2 is of order 10−10. From Tables 7 , 8 , 9 we conclude that present

method is more efficient and produced much better result.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8
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Approximate solution

Exact solution

Figure 7. Comparison of exact and approximate solution for Example

6.5 at J = 3.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

J

10 -13

10 -12

10 -11

10 -10

10 -9

lo
g

(m
a

x
|y

e
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a
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p
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x
|)

Figure 8. Maximum Absolute Errors vs J for Example 6.5.

Table 7. Comparison of exact and approximate solution for Example 6.5.

J max |yexact − yapprox|

2.0 6.9221E − 10

3.0 4.7252E − 10

4.0 2.1423E − 11

5.0 1.9649E − 11

6.0 1.0246E − 12

7.0 9.1538E − 13
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Table 8. Error comparison with existing method for Example 6.5.

Our method Two-stage[28] VIM[8] VIM[8] VIM[8]

J = 2 order-one RKM n = 4 n = 5 n = 6

6.92214E − 10 7.34E − 02 3.21E − 04 4.01E − 05 1.26E − 06

Table 9. Comparison of exact and approximate solution for Example 6.5.

t(= 1
16
) Present method Exact solution |yexact − yapprox|

1.0 0.000015258789160 0.000015258789063 0.00098E − 10

3.0 0.001235961921205 0.001235961914063 0.07143E − 10

5.0 0.009536743166434 0.009536743164063 0.02372E − 10

7.0 0.036636352518005 0.036636352539063 0.21057E − 10

9.0 0.100112915165484 0.100112915039063 1.26421E − 10

11.0 0.223403930795185 0.223403930664063 1.31123E − 10

13.0 0.435806274199234 0.435806274414063 2.14829E − 10

15.0 0.772476195596849 0.772476196289063 6.92214E − 10

Example 6.6. Now we consider a fourth order nonlinear multi-pantograph equation

(6.7)
ωiv(t) = ω′′

(
t

2

)(

ωiv

(
t

4

)

− ω(t)

)

+ λ(t), t ∈ [0, 1]

ω(0) = 0, ω′(0) = 1, ω′′(0) = 2, ω′′′(0) = 2,

where λ(t) is given such that system posses the exact solution ωe = e(t)sin(t). Car-

rying out the numerical technique mention in section 3 we have obtained the ap-

proximate solution of (6.7) for different values of J . Maximum absolute errors are

computed at different resolution 10. Moreover, the exact solution and approximate

solution is plotted in figure 9 for J = 4. Based on obtain result, it is realized that

the method is efficient to tackle such problems.
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Figure 9. Comparison of exact and approximate solution for Example 6.6

at J = 4.

Table 10. Comparison of exact and approximate solution for Example

6.6 .

J max |yexact − yapprox|

3.0 1.6344E − 04

4.0 4.3588E − 05

5.0 1.9020E − 05

6.0 4.8286E − 06

7.0 2.2318E − 06

8.0 5.5998E − 07

9.0 2.6855E − 07

3 4 5 6 7 8 9

J

10-7

10-6

10-5

10-4

10-3

lo
g
(m

a
x
|y

e
x
a
c
t-y

a
p
p
ro

x
|)

Figure 10. Maximum Absolute Errors vs J for Example 6.6.
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7. Conclusion

A numerical method based on Haar wavelets has been developed for solving a

class of delay differential equations known as the pantograph equation. The main ad-

vantage of the proposed method is that it transforms the systems of multi-pantograph

equations into a system of algebraic equations. Numerical simulations carried out in

MATLAB are presented in tables and figures. Comparison with some existing method

given in Table 1 and Table 9 shows that the applied method produced better results.

Moreover, results presented in Tables 2, 5, 7, and 10 shows that the error reduced

with the increase in level of resolution(J). Hence, it is realized that the method is

computationally attractive, simple, and is suitable to tackle multi-pantograph equa-

tions.
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