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TIGHT EXPONENTIAL BOUNDS FOR HYPERBOLIC TANGENT

YOGESH J. BAGUL(1), RAMKRISHNA M. DHAIGUDE(2), CHRISTOPHE CHESNEAU∗(3)

AND MARKO KOSTIĆ(4)

Abstract. In this article, we aim to obtain very tight exponential bounds for the

hyperbolic tangent function. Our inequalities refine a double inequality recently

proved by Zhang and Chen. In addition, graphical and numerical analysis are

carried out, and a number of auxiliary lemmas may be of use on their own.

1. Introduction

The hyperbolic tangent function is the function tanh : R → (−1, 1) defined by

tanh x = (ex−e−x)/(ex+e−x). Clearly, it is a continuous, differentiable, and bounded

function that can produce negative, positive, and zero outputs. It occurs in many

branches of pure and applied mathematics. In particular, in differential equations, it

is at the heart of the so-called “tanh method” (see [10] and [11]), and in statistics, it

is known to be one of the most important zero-centered activation function (see [9],

and the references therein). The tight and tractable bounds of tanh can therefore be

useful in the fields of concern, mainly to evaluate mathematical quantities involving

it. Even so, very little can be found related to the bounds of this function in the

literature. For instance, L. Zhu in [13] proved the following inequalities:

(

r2 − x2

r2 + x2

)β

≤ tanh x

x
≤
(

r2 − x2

r2 + x2

)α

, x ∈ (0, r),(1.1)
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where α ≤ 0 and β ≥ r2/6. Also, for all x ∈ (0,∞), the inequalities

1

1 + 2 log
(

sinhx
x

) <
tanhx

x
<

1

1 + log
(

sinhx
x

)(1.2)

appeared in [4] and [6]. It can be shown that the inequalities in (1.1) are weaker

than those in (1.2). On his side, Bhayo et al. [5] obtained a tight algebraic bound

for tanh x as follows:

tanhx <
2x√

4x2 + 9− 1
, x > 0.(1.3)

Very recently, Zhang and Chen [12] proposed an alternative by proving the following

inequalities:

√

1− exp

(

− x2

√
x2 + 1

)

< tanh x < 3

√

1− exp

(

− x3

√
x3 + 1

)

, x > 0.(1.4)

The bounds in (1.3) and (1.4) are tighter than the corresponding bounds in (1.1) and

(1.2). It is unnecessary to say that the algebraic bounds are better than transcen-

dental bounds due to their computational efficiency, and hence an upper bound of

tanh x in (1.3) is better. However, in terms of tightness, the inequality (1.4) is the

strongest of all the inequalities listed above, except in (0, ζ), ζ ≈ 1.557, where an

upper bound of tanh x in (1.3) is the best.

In this paper, we aim to refine the inequalities in (1.3) and (1.4). The rest of the

paper is organized as follows: The main theorems are presented in Section 2. The

proofs of the main results are based on auxiliary results involving differentiation,

series and integration methods, which are collected in Section 3. These auxiliary

results give us simple algebraic bounds for tanh x, which may be of independent

interest. Section 4 contains the proofs of the main results. While obtaining these

proofs, we also establish tight exponential bounds for the hyperbolic cosine function.

As a complementary study, a discussion on the tightness of (1.3) near the point zero

is finally given in Section 5. Section 6 concludes the paper.

2. Main results

Our main results are presented as the following theorems:



TIGHT EXPONENTIAL BOUNDS FOR tanhx 809

Theorem 2.1. For x > 0, the inequalities

√

1− exp

{

(15)5/7

2
[(15)2/7 − (7x2 + 15)2/7]

}

< tanh x

<

√

√

√

√1− exp

{

2
√
15

7

(√
15−

√
7x2 + 15

)

}

(2.1)

hold.

Theorem 2.2. The inequalities

√

1− exp
[

2
(

1−
√
1 + x2

)]

< tanh x <

√

√

√

√1− exp

[

3

(

1−
√

1 +
2

3
x2

)]

(2.2)

are fulfilled for x > 0.

We claim that the inequalities in (2.1) and (2.2) are very tight and they are clear

refinements of the inequalities in (1.4). In order to support this claim,

• we point out that

1−
√
1 + x2 = − x2

1 +
√
1 + x2

≤ − x2

2
√
1 + x2

,

implying that the lower bound in (2.2) is uniformly better than the one in

(1.4).

• a graphical analysis is performed for the comparison of the involved lower and

upper bounds in (1.4), (2.1) and (2.2) in Figures 1 and 2, respectively.
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Figure 1. Selected plot of tanh(x) and the presented lower bounds;

the one by Zhang and Chen [9] and the two candidates in Theorems

2.1 and 2.2.
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Figure 2. Selected plot of tanh(x) and the presented upper bounds;

the one by Zhang and Chen [9] and the two candidates in Theorems

2.1 and 2.2.

For a zoom reason, in Figure 1, the mentioned lower bounds are plotted for x ∈
(1.2, 1.5). In this setting, we can see that the black and green curves, which corre-

spond to tanh x and the lower bound of (2.1), are almost confounded. The related
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upper bounds are displayed in Figure 2 for x ∈ (0.6, 1), still for a zoom reason. In

this figure, the upper bound of (2.2) is the best.

In fact, with the help of any graphing calculator, it can be found that the double

inequalities in (2.2) is a refinement of those in (2.1) except in the interval (0, γ), with

γ ≈ 4.279, where the lower bound of (2.1) dominates the corresponding lower bound

of (2.2).

We complete the above remarks by investigating the following global L2 error:

G(φ) =
∫ 10

0

[tanh x− φ(x)]2dx,

where φ(x) is a function considered among the lower and upper bounds in (1.4), (2.1)

and (2.2). The limit of 10 is taken as arbitrary. The numerical results are collected

in Table 1.

Table 1. Values of G(φ) for the lower and upper bounds in (1.4), (2.1)

and (2.2).

Lower bound Upper bound

(1.4) 0.005688297 0.001200189

(2.1) 7.632127×10−7 0.0002079122

(2.2) 0.0001644162 1.562102×10−5

Table 1 thus confirms the “ultra tightness” of the lower bound in (2.1), and that

of the upper bound in (2.2).

In order to prove the theorems above, we need several Lemmas that are recalled in

the next section. Simple algebraic bounds for tanh x are also established.

3. Lemmas

We begin by presenting some well-known results in Lemmas 3.1 and 3.2.

Lemma 3.1. [1, p.10] Let f, g : [m,n] → R be two continuous functions which are

differentiable on (m,n) and g′(x) 6= 0 for x ∈ (m,n). If f ′(x)/g′(x) is increasing

(or decreasing) on (m,n), then the ratio functions [f(x) − f(m)]/[g(x)− g(m)] and

[f(x)−f(n)]/[g(x)−g(n)] are also increasing (or decreasing) on (m,n). If f ′(x)/g′(x)

is strictly monotone, then the monotonicity in the conclusion is also strict.
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Lemma 3.2. ([8]) Let A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k be convergent for

x ∈ (−R,R), where ak and bk are real numbers for k = 0, 1, 2, · · · such that bk > 0. If

the sequence ak/bk is strictly increasing(or decreasing), then the function A(x)/B(x)

is also strictly increasing(or decreasing) on (0, R).

Besides, we state and prove the following important lemmas.

Lemma 3.3. For a > 0, define the function

fa(x) =
log
(

tanh x
x

)

log
(

a
a+x2

) , x > 0.

Then, the function fa(x) is strictly decreasing over (0,∞) if a ≥ 15/7.

Proof. Let us decompose fa(x) as

fa(x) =
log
(

tanh x
x

)

log
(

a
a+x2

) :=
g(x)

ga(x)
, x > 0,

where g(x) = log (tanh x/x) and ga(x) = log [a/(a+ x2)] with g(0+) = 0 = ga(0).

Upon differentiation, it comes

g′(x)

g′a(x)
=

(a+ x2)

2

tanh x− x sech2 x

x2 tanhx
=

(a+ x2)

2

sinh(2x)− 2x

x2 sinh(2x)
:=

1

2

L(t)

M(t)
,

where L(t) = (4a + t2)(sinh t − t), M(t) = t2 sinh t and t = 2x. Using the well-

established series expansion of sinh t, we can write

L(t) = (4a + t2)

∞
∑

k=1

t2k+1

(2k + 1)!
=

∞
∑

k=1

4a · t2k+1

(2k + 1)!
+

∞
∑

k=1

t2k+3

(2k + 1)!

= −t3 +
∞
∑

k=1

4a · t2k+1

(2k + 1)!
+

∞
∑

k=0

t2k+3

(2k + 1)!

and

M(t) =

∞
∑

k=0

t2k+3

(2k + 1)!
.

Therefore,

L(t)

M(t)
:= 1 +

A(t)

B(t)
,
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where

A(t) = −t3 +
∞
∑

k=1

4a · t2k+1

(2k + 1)!
= −t3 +

∞
∑

k=0

4a · t2k+3

(2k + 3)!

=

(

2a

3
− 1

)

t3 +

∞
∑

k=1

4a · t2k+3

(2k + 3)!
:=

∞
∑

k=0

akt
2k+3

and

B(t) = M(t) =

∞
∑

k=0

t2k+3

(2k + 1)!
= t3 +

∞
∑

k=1

t2k+3

(2k + 1)!
:=

∞
∑

k=0

bkt
2k+3.

Here, we have a0 = 2a/3− 1, b0 = 1, ak = 4a/(2k + 3)!, bk = 1/(2k + 1)!, k ≥ 1 with

k ∈ N. Consider

ak
bk

=
2a

(k + 1)(2k + 3)
, k ≥ 1.

Clearly {ak/bk}∞k=1 is a strictly decreasing sequence. By Lemma 3.2, A(t)/B(t) and

hence L(t)/M(t) or g′(x)/g′a(x) will be strictly decreasing if

a0
b0

≥ a1
b1
,

which is equivalent to a ≥ 15/7. Therefore, by Lemma 3.1, fa(x) is strictly decreasing

if a ≥ 15/7. This completes the proof. �

Corollary 3.1. Let x > 0 and a ≥ 15/7. Then, the best possible constants such that

(

a

a+ x2

)α

<
tanh x

x
<

(

a

a+ x2

)β

(3.1)

are α = a/3 and β = 1/2.

Proof. Since the function fa(x) defined in Lemma 3.3 is strictly decreasing on (0,∞)

for a ≥ 15/7, we have

fa(0+) > fa(x) > fa(∞), x > 0.

The limits fa(0+) = a/3 and fa(∞) = 1/2 give the required inequalities in (3.1). �

By putting a = 3 in (3.1), we get the following inequalities:

3

3 + x2
<

tanhx

x
<

(

3

3 + x2

)1/2

, x > 0.(3.2)
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The left inequality of (3.2) already appeared in [2]. Similarly, by putting a = 15/7,

we obtain
(

15

15 + 7x2

)5/7

<
tanh x

x
<

(

15

15 + 7x2

)1/2

, x > 0.(3.3)

The inequalities in (3.3) are the tightest inequalities of kind (3.1). A graphical com-

parison says that the lower bound in (3.3) is finer than the corresponding lower bound

in (1.4) for x ∈ (0, ς), where ς ≈ 2.4126. The upper bound in (3.3) is not tight enough,

so we obtain better algebraic bounds for tanh x in the next lemma.

Lemma 3.4. The best possible constants α and β such that

1√
1 + αx2

<
tanh x

x
<

1
√

1 + βx2
, x > 0(3.4)

are 1 and 2/3, respectively.

Proof. Let

f(x) =
x2 − tanh2 x

x2 tanh2 x
,

which can be written as

f(x) =
x2 cosh2 x− sinh2 x

x2 sinh2 x
=

x2(1 + cosh(2x))− (cosh(2x)− 1)

x2(cosh(2x)− 1)

=
(x2 + 1) + (x2 − 1) cosh(2x)

x2(cosh(2x)− 1)
.

Using a known series expansion of cosh x, we get

f(x) =
(x2 + 1) + (x2 − 1) +

∑∞
k=1

22k

(2k)!
(x2 − 1)x2k

∑∞
k=1

22k

(2k)!
x2k+2

=
2x2 +

∑∞
k=1

22k

(2k)!
x2k+2 −

∑∞
k=1

22k

(2k)!
x2k

∑∞
k=1

22k

(2k)!
x2k+2

=

∑∞
k=1

22k

(2k)!
x2k+2 −

∑∞
k=1

22k+2

(2k+2)!
x2k+2

∑∞
k=1

22k

(2k)!
x2k+2

=

∑∞
k=1

22k

(2k)!

[

1− 2
(k+1)(2k+1)

]

x2k+2

∑∞
k=1

22k

(2k)!
x2k+2

=

∑∞
k=1

22k

(2k)!

[

2k2+3k−1
2k2+3k+1

]

x2k+2

∑∞
k=1

22k

(2k)!
x2k+2

:=

∑∞
k=1 akx

2k+2

∑∞
k=1 bkx

2k+2
.
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Here, we have ak = (22k/(2k)!) [(2k2 + 3k − 1)/(2k2 + 3k + 1)] and bk = 22k/(2k)!.

Now

ak
bk

=
2k2 + 3k − 1

2k2 + 3k + 1
:= tk.

Suppose that tk < tk+1, i.e.,

2k2 + 3k − 1

2k2 + 3k + 1
<

2k2 + 7k + 4

2k2 + 7k + 6
.

Equivalently,

(2k2 + 3k − 1)(2k2 + 7k + 6) < (2k2 + 3k + 1)(2k2 + 7k + 4)

or after simplifying 11k − 6 < 19k + 4, i.e., 8k + 10 > 0, which is obviously true for

k ≥ 1. Thus a sequence {ak/bk} is strictly increasing for k ≥ 1 and by Lemma 3.2,

we conclude that the function f(x) is also strictly increasing for x > 0. Hence

f(0+) < f(x) < f(∞).

Lastly, the limits f(0+) = 2/3 and f(∞) = 1 prove the lemma. �

It should be noted that the upper bound in (3.4) is finer than the corresponding

upper bound in (1.4) for x ∈ (0, ǫ), where ǫ ≈ 1.2952.

The main proofs of the article are presented in the section below.

4. Proofs of main results

This section is devoted to the technical proofs of our main results.

4.1. Proof of theorem 2.1. The inequalities in (3.3) can be written as

t

(

15

7t2 + 15

)5/7

< tanh t < t

(

15

7t2 + 15

)1/2

, t > 0.

Let t ∈ (0, x) with x > 0. Then, an integration gives

∫ x

0

t

(

15

7t2 + 15

)5/7

dt <

∫ x

0

tanh tdt <

∫ x

0

t

(

15

7t2 + 15

)1/2

dt,

i.e.,

(15)5/7

14

∫ x

0

(7t2 + 15)−5/7 · 14tdt < log(cosh x) <

√
15

14

∫ x

0

1√
7t2 + 15

· 14tdt
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or

(15)5/7

4

[

(7x2 + 15)2/7 − (15)2/7
]

< log(cosh x) <

√
15

7

(√
7x2 + 15−

√
15
)

,

i.e.,

exp

{

(15)5/7

4

[

(7x2 + 15)2/7 − (15)2/7
]

}

< cosh x

< exp

{√
15

7

(√
7x2 + 15−

√
15
)

}

.

By first squaring and then taking reciprocals, we have

exp

{

(15)5/7

2

[

(7x2 + 15)2/7 − (15)2/7
]

}

> sech2 x

> exp

{

2
√
15

7

(√
7x2 + 15−

√
15
)

}

.

Owing to the relation sech2 x = 1− tanh2 x, we get

1− exp

{

(15)5/7

2

[

(15)2/7 − (7x2 + 15)2/7
]

}

< tanh2 x

< 1− exp

{

2
√
15

7

(√
15−

√
7x2 + 15

)

}

.

This gives the inequalities in (2.1). �

4.2. Proof of Theorem 2.2. We write the inequalities in (3.4) as

t√
1 + t2

< tanh t <
t

√

1 + 2
3
t2
, t > 0.

Let t ∈ (0, x) with x > 0. Then, through an integration, it comes

∫ x

0

1

2
√
1 + t2

2tdt <

∫ x

0

tanh tdt <
3

4

∫ x

0

4
3
t

√

1 + 2
3
t2
dt,

i.e.,

√
1 + x2 − 1 < log(cosh x) <

3

2

(

√

1 +
2

3
x2 − 1

)

or

exp
(√

1 + x2 − 1
)

< cosh x < exp

[

3

2

(

√

1 +
2

3
x2 − 1

)]

.
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By squaring and then taking reciprocals as in the proof of Theorem 2.1, we get the

desired inequalities . �

If r > 0 then, for x ∈ (0, r), the inequalities

exp(λx2) < cosh x < exp

(

x2

2

)

,(4.1)

where λ = log(cosh r)/r2 and

(

1 +
x2

3

)3/2

< cosh x <

(

1 +
x2

3

)δ

,(4.2)

where δ = log(cosh r)/log(1 + r2/3) are proved in [3] and [7], respectively.

While giving proofs of Theorems 2.1 and 2.2, we in fact refined the inequalities in

(4.1) and (4.2) and obtained better exponential bounds for hyperbolic cosine. For

x ∈ (0, r), with r → ∞, the refined inequalities for cosh x are given as

exp

{

(15)5/7

4

[

(7x2 + 15)2/7 − (15)2/7
]

}

< cosh x

< exp

{√
15

7

(√
7x2 + 15− 15

)

}

(4.3)

and

exp
(√

1 + x2 − 1
)

< cosh x < exp

[

3

2

(

√

1 +
2

3
x2 − 1

)]

.(4.4)

5. On the inequality (1.3)

We now complete the previous study by discussing the tightness of the inequality

in (1.3) near the point zero. First of all, observe that the inequality in (1.3) can be

written as

e2x − 1

e2x + 1
≤ 2x√

4x2 + 9− 1
, x > 0,

i.e., as

ex − 1

ex + 1
≤ x√

x2 + 9− 1
, x > 0.(5.1)

Putting t = ex > 1, and observing that the mapping t 7→ (t − 1)/(t + 1), t > 1 is

strictly increasing, it can be simply shown that the inequality in (5.1) is equivalent
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on the interval (0, 4) with

ex ≤
1 + x√

x2+9−1

1− x√
x2+9−1

=
g(x) + x

g(x)− x
, x ∈ [0, 4),(5.2)

where g(x) :=
√
x2 + 9 − 1, x ∈ [0, 4), Our idea is to find a differentiable function

f : [0, 4) → (0,∞) such that f(0) = 2, f(x) ≥ g(x) for all x ∈ [0, 4) and

ex ≤ f(x) + x

f(x)− x
, x ∈ [0, 4).

Since

f(x) + x

f(x)− x
≤ g(x) + x

g(x)− x
, x ∈ [0, 4),

we immediately get the following extension of (5.2):

ex ≤ f(x) + x

f(x)− x
≤ g(x) + x

g(x)− x
, x ∈ [0, 4).(5.3)

The first inequality in (5.3), which will be considered in what follows, is equivalent

with

x ≤ ln

(

f(x) + x

f(x)− x

)

, x ∈ [0, 4).

Now let us set

F (x) := x− ln

(

f(x) + x

f(x)− x

)

, x ∈ [0, 4).

Since f(0) = 2, we have F (0) = 0. Moreover

F ′(x) =
f 2(x) + 2xf ′(x)− x2 − 2f(x)

(f(x) + x)(f(x)− x)
, x ∈ [0, 4),

so that F ′(x) ≤ 0, x ∈ [0, 4) if f 2(x)+2xf ′(x)−x2−2f(x) ≤ 0, x ∈ [0, 4). A detailed

analysis of the class F consisting of differentiable functions f : [0, 4) → (0,∞) such

that f(0) = 2, f(x) ≥ g(x) for all x ∈ [0, 4), and

f 2(x) + 2xf ′(x)− x2 − 2f(x) ≤ 0, x ∈ [0, 4)(5.4)

is far from being trivial and falls out from the scope of this paper. We only note that

the solution y = f(x) = 2/(1− Cx) of the associated Bernoulli differential equation

y′ − y

x
= − y2

2x
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presents a good candidate for an element of the class F . In the particular case C =

1/4, the function y = 2/(1− (x/4)) belongs to F since

2

1− (x/4)
≥

√
x2 + 9− 1, x ∈ [0, 4);

see https://www.desmos.com/calculator/2g7wpl8fri. Unfortunately, if we disregard

the term x2 in (5.4), then the solution of the associated Ricatti differential equation

y′ − y

x
+

y2

2x
= 0,

given by y = 6Cx/(Cx3 − 1) does not belong to the class F because y(0) = 0 (the

complete Ricatti differential equation associated to (5.4) is not solvable in quadra-

tures). We finally note that all the established results are checked and compared at

https://www.desmos.com/calculator.

6. Conclusion

We have established new bounds for the hyperbolic tangent function, which have

the merit of being simple and tight. In particular, it extends the bounds of recent

literature. To achieve this aim, we have proved several intermediary results that can

be of independent interest, including new bounds for the hyperbolic cosine function.

We have performed a graphical and numerical analysis to illustrate the tightness

of the bounds. Possible applications of our findings are numerous, including the

precise evaluation of special integral involving the hyperbolic tangent function, and

the construction of new activation functions that have ordering properties with the

hyperbolic tangent function, which is intensively used in this regard.

Declaration of interests. The authors declare that they have no known competing

financial interests or personal relationships that could have appeared to influence the

work reported in this paper.

Acknowledgement

We would like to thank the editor and the two referees for their constructive com-

ments that helped to improve the manuscript.



820 Y. J. BAGUL, R. M. DHAIGUDE, C. CHESNEAU AND M. KOSTIĆ
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