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CHARACTERIZATION OF RANK OF A MATRIX OVER THE

SYMMETRIZED MAX-PLUS ALGEBRA

SUROTO(1), DIAH JUNIA EKSI PALUPI(2) AND ARI SUPARWANTO(3)

Abstract. In this paper, we characterize the rank of a matrix over the sym-

metrized max-plus algebra. This characterization is based on linearly independence

of columns or rows of the matrix in balance sense. We show that the rank of such

a matrix can be determined using maximum number of rows or columns which are

linearly independent in balance sense. This completes the discussion in [1] which

only uses minors to determine rank of matrix.

1. Introduction

Let R be the set of all real numbers. Max-plus algebra is the set of Rmax =

R∪ {−∞} which is equipped by operations maximum (denoted by max) as addition

and usual addition (denoted by +) as multiplication. There is no additive inverse for

any element in Rmax, except for the zero element. The symmetrization process can

be carried out at Rmax to obtain a minus and balanced form of any element in Rmax,

which is done using the balance relation ∇. The result of symmetrization in Rmax is

called the symmetrized max-plus algebra and denoted by S.

The linearly independence of vectors over S has been discussed in [1][4]. When

determining the solution of the linearly independence coefficient, the discussion in

[1] is limited to signed solutions only, meanwhile in [4] it is not carried out. In this

paper, we use definition of linearly independence as in [1]. In ordinary linear algebra,

linear independence can be used to define rank of matrix. Rank of A is the number

of linearly independent rows or columns [5].
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Let A be a matrix over S. The rank of A is defined using minors of A and called

max-algebraic minor rank of A [1]. The term max-algebraic minor rank will be simply

refereed as minor rank. In this paper, we characterize rank of matrix over S using

linearly independence approach as in the ordinary linear algebra. We find that the

rank of a matrix over S can be determined by calculating the maximum number of

rows or columns which are linearly independent in balance sense.

The results in this paper can be used to complete the discussion in [1] which only

uses minors to determine rank of matrix over S. This is an alternative method to

determine rank other than using minors, so that we can determine rank of matrix

over S as in the ordinary linear algebra. In the ordinary linear systems, rank of

a matrix can be used to determine the criteria of reachability and observability of

a linear system. If the rank of the reachability and observability matrices are full-

rank, then the linear system is reachable and observable, respectively. Therefore, the

rank of a matrix over S has the potentials to be applied in determining the criteria

of reachability and observability of linear systems over S, as in the ordinary linear

system.

Section 1 gives an introduction as preliminaries of this paper. The symmetrized

max-plus algebra and matrix over the symmetrized max-plus algebra discussed in

Section 2 and 3, respectively. The main result is given in Section 4 which is a

characterization of the rank of a matrix over S using linearly dependence of rows or

columns.

2. The Symmetrized Max-Plus Algebra

Let R be the set of all real numbers and Rmax = R ∪ {−∞}. The addition and

multiplication in Rmax is defined as a ⊕ b = max(a, b) and a ⊗ b = a + b, where

max(a,−∞) = a and a + (−∞) = −∞, for all a, b ∈ Rmax.

Definition 2.1. [6] A semi-ring (R,+, ·) is a nonempty set R on which we have

defined operations of addition and multiplication satisfying the following axioms:

(1) (R,+) is a commutative monoid with the zero element 0,

(2) (R, ·) is a monoid with identity element 1 6= 0,

(3) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b ∈ R,
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(4) 0 · a = 0 = a · 0 for all a ∈ R.

If for any a ∈ R, a + a = a then R is called an idempotent semi-ring. A semi-ring

R is called commutative semi-ring if for any a, b ∈ R, a · b = b · a. The mathematical

system of Rmax is an idempotent commutative semi-ring where the zero element is

ε = −∞ and identity element is e = 0. There is no additive inverse for any x ∈ Rmax,

except for the zero element. Detailed discussion of max-plus algebra can be found in

[7]. The symmetrization process can be carried out at Rmax to solve additive inverse

problem. This process is similarly in expanding natural numbers into integers. The

symmetrization of Rmax is carried out in order to obtain minus and balance element

of Rmax.

Let P = Rmax × Rmax. It is defined addition and multiplication in P as follows:

(a, b)⊕ (c, d) = (a⊕ c, b⊕ d)

(a, b)⊗ (c, d) = (a⊗ c⊕ b⊗ d, a⊗ d⊕ b⊗ c)

for all (a, b), (c, d) ∈ P . The mathematical system of P is an idempotent commutative

semi-ring with the zero element is (ε, ε) and identity element is (0, ε). This semi-ring,

P is called the algebra of pairs.

Definition 2.2. [3] Let x = (a, b) ∈ P . The absolute value of x is |x|⊕ = a⊕ b, the

minus of x is ⊖x = (b, a) and the balance of x is x• = x⊕ (⊖x) = (|x|⊕, |x|⊕).

Theorem 2.1. [3] For any x, y ∈ P we have x• = (⊖x•) = (x•)•, x⊗ y• = (x⊗ y)•,

⊖(⊖x) = x, ⊖(x⊕ y) = (⊖x)⊕ (⊖y) and ⊖(x⊗ y) = ⊖x⊗ y.

Definition 2.3. [3] Let x = (a, b), y = (c, d) ∈ P . The balance relation ∇ in P is

defined by x∇y if and only if a⊕ d = b⊕ c.

Since balance relation is only reflexive and symmetric, but it is not transitive, then

it is not an equivalence relation. So we can not define the quotient set of P by ∇.

Definition 2.4. [3] Let x = (a, b), y = (c, d) ∈ P . The relation B in P is defined by

xBy =











x∇y ; a 6= b and c 6= d

x = y ; a = b or c = d.
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The relation B is an equivalence relation, so it is possible to define the quotient set

of P by B. There are three kinds of equivalence classes generated by B:

(1) (a,−∞) = {(a, x)|x < a} is called a max-positive class,

(2) (−∞, a) = {(x, a)|x < a} is called a max-negative class,

(3) (a, a) = {(a, a) ∈ P} is called a balanced class.

The quotient set of P by B denoted by P/B and it is called the symmetrized max-

plus algebra. Furthermore, the symmetrized max-plus algebra denoted by S. It is

defined addition and multiplication in S as follows:

(a, b)⊕ (c, d) = (a⊕ c, b⊕ d)

(a, b)⊗ (c, d) = (a⊗ c⊕ b⊗ d, a⊗ d⊕ b⊗ c).

Since addition and multiplication in S addopt addition and multiplication in P , it

is guaranteed that the operations are well-defined. The mathematical system of S is

an idempotent commutative semi-ring where the zero element is ε = (ε, ε) and the

identity element is e = (0, ε).

Since the max-plus algebraic symmetrization has a purpose to determine the minus

and balanced forms of any element of Rmax, a notation is needed for this purpose.

Thus, we denote the plus, minus and balanced forms in S, which is analogous to the

positive, negative and zero forms in ordinary linear algebra. In what follows, the

class (a,−∞) will be denoted as a, (−∞, a) will be denoted as ⊖a and (a, a) will

be denoted as a•. Furthermore, the zero element in S will be denoted by ε and the

identity element in S will be denoted by e.

The set of all max-positive or zero classes is denoted by S
⊕, the set of all max-

negative or zero classes is denoted by S
⊖ and the set of all balanced classes is denoted

by S
•. A balanced class is a class that is formed from the equivalence with the zero

element (ε, ε). The element of S• is called a balanced element, i.e an element in the

form a•. The union of S⊕ and S
⊖ is called the set of all signed classes, it is denoted by

S
∨. Furthermore, the elements of S∨ are called the signed elements, i.e all of elements

in the form a and ⊖a. We have S ∪ S
⊖ ∪ S

• = S and S
⊕ ∩ S

⊖ ∩ S
• = {(ε, ε)}. Next,

(S∨)∗ = S
∨ − S

• is the set of all elements that have multiplicative inverse and Rmax

can be viewed as S⊕ in the symmetrized max-plus algebraic sense.
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Theorem 2.2. [3] For all a, b, c ∈ S, a ⊖ c∇b if and only if a∇b⊕ c. Furthermore,

for all a, b ∈ S
∨, if a∇b then a = b.

Theorem 2.3. [3] (Weak Substitution) For all a, b, c ∈ S and x ∈ S
∨, if x∇a and

c⊗ x∇b then c⊗ a∇b.

3. Matrix over The Symmetrized Max-Plus Algebra

Matrices over the symmetrized max-plus algebra have importance as in the ordi-

nary linear algebra. The basic algebraic matrix operations over S, such as addition,

multiplication and scalar multiplication are similar as in the ordinary matrix. The

balance of two matrices is given in the following definition.

Definition 3.1. [1] For all A,B ∈ S
m×n, A∇B if aij∇bij for i = 1, 2, . . . , m and

j = 1, 2, . . . , n.

The discussion of determinant in matrix over S is also similar as in the case of

ordinary matrices. The signature of permutation σ is

sign(σ) =











e ; σ is even permutation

⊖e ; σ is odd permutation.

Definition 3.2. [3] Let A = [aij ] ∈ S
n×n. Then determinant of A is

det(A) = ⊕σ(sign(σ)⊗
n
i=1aiσ(i)).

The cofactor and transpose of A are also similar as in the ordinary algebra and

denoted by cof(A) and AT , respectively. Some of properties in determinant of matrix

over S are shown in the following theorem.

Theorem 3.1. [3] Let A = [aij ] ∈ S
n×n. Then det(A) = ⊕n

k=1(aik ⊗ cofik(A)) and

det(A)T = det(A).

Theorem 3.2. [3] Let A = [aij ] ∈ S
n×n. Then A⊗ cof(A)T∇det(A)⊗ In. Further-

more, if det(A) is a signed element then the diagonal of A⊗ cof(A)T is also a signed

element.
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4. Characterization of Rank of Matrix over The Symmetrized

Max-Plus Algebra Using Linearly Independence

This section discusses the main result of this paper. It contains the characterization

of rank based on linearly independence of rows or columns of matrix. The definition

of minor rank is given in the following theorem.

Definition 4.1. [1] Let A = [aij ] ∈ S
m×n. The max-algebraic minor rank of A is the

dimension of the largest square submatrix of A which the max-algebraic determinant

is not balanced.

Consider m vectors a1, a2, . . . , am ∈ (Rmax)
n andm numbers α1, α2, . . . , αm ∈ Rmax.

Combination of the form⊕m
i=1(αi⊗ai) is called a max-linear combination of the vectors

a1, a2, . . . , am.

Definition 4.2. [1] We say that a set of vectors {ai ∈ S
n|i = 1, 2, . . . , m} is max-

linearly independent if the only signed solution of scalar αi in ⊕
m
i=1(αi ⊗ ai)∇εn×1

is α1 = α2 = . . . = αm = ε. Otherwise, we say that the vectors a1, a2, . . . , am are

max-linearly dependent.

The vector εn×1 is a vector in S
n whose each entries are ε i.e the zero element

of S. Note that the signed solution of scalar αi has meaning that all of scalar αi

in the balance ⊕m
i=1(αi ⊗ ai)∇εn×1 are signed elements in S

∨. So, a set of vectors

{ai ∈ S
n|i = 1, 2, . . . , m} is max-linearly independent if all of scalar αi which satisfy

⊕m
i=1(αi ⊗ ai)∇εn×1 is only αi = ε, i = 1, 2, . . . , m. In other words, the only signed

solution of scalar αi in ⊕
m
i=1(αi⊗ ai)∇εn×1 is α1 = α2 = . . . = αm = ε. The following

is an example to explain Definition 4.2.

Example 4.1. Let a set of vectors {v1, v2} where v1 =





ε

0



 and v2 =





0

ε



. The

signed solution of the balance α1 ⊗ v1 ⊕ α2 ⊗ v2∇ε2×1 is only α1 = ε and α2 = ε. No

other the signed solution other than α1 = ε and α2 = ε which satisfy the balance

α1 ⊗ v1 ⊕ α2 ⊗ v2∇ε2×1. So, a set of vectors {v1, v2} is max-linearly independent.⋄

In the next session, max-algebraic minor rank of A and max-linearly independent

are simply written as minor rank of A and linearly independent, respectively.



CHARACTERIZATION OF RANK OF A MATRIX... 849

Theorem 4.1. [3] Let A ∈ S
n×n with det(A) ∈ (S∨)∗ and cof(A)T ⊗b ∈ (S∨)n. Then

there exists a unique solution of A⊗x∇b and it satisfies x∇(cof(A)T ⊗ b)⊗det(A)−1.

We use Definitions 4.1 and 4.2 to characterize the rank of matrix over S. The

following theorem explains the linear independence of column in matrix over S.

Theorem 4.2. Let A ∈ S
n×n. The columns of A are linearly independent if and only

if det(A) ∈ (S∨)∗.

Proof. (←) If det(A) ∈ (S∨)∗ then there is det(A)−1 such that det(A)−1⊗det(A) = e.

Let

A =

















a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

















and c1, c2, . . . , cn be columns of A. Let k1, k2, . . . , kn be scalars in S
n such that

k1 ⊗ c1 ⊕ k2 ⊗ c2 ⊕ . . .⊕ kn ⊗ cn∇ε. Then we have

k1 ⊗

















a11

a21
...

an1

















⊕ k2 ⊗

















a12

a22
...

an2

















⊕ . . .⊕ kn ⊗

















a1n

a2n
...

ann

















∇

















ε

ε
...

ε

















and so

(4.1)

















a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

















⊗

















k1

k2
...

kn

















∇

















ε

ε
...

ε

















.

The balance in (4.1) is homogeneous linear balanced systems. Since det(A) ∈ (S∨)∗

so det(A) is not balance with ε. According to Theorem 4.1, it implies that
















k1

k2
...

kn

















∇det(A)−1 ⊗ cof(A)T ⊗

















ε

ε
...

ε

















=

















ε

ε
...

ε
















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and consequently
















k1

k2
...

kn

















=

















ε

ε
...

ε

















is a unique signed solution of the homogeneus linear balance system (4.1). So, we

have k1 = k2 = . . . = kn = ε and columns of A are linearly independent.

(→) We show that if det(A) /∈ (S∨)∗ then columns of A are linearly dependent.

Let c1, c2, . . . , cn be columns of A. According to the balance

k1 ⊗ c1 ⊕ k2 ⊗ c2 ⊕ . . .⊕ kn ⊗ cn∇ε

we have

(4.2) A⊗K∇ε

where A =

















a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

















and K =

















k1

k2
...

kn

















. If both of the balance sides in (4.2)

are multiplied by cof(A)T , then (cof(A)T ⊗A)⊗K∇cof(A)T ⊗ ε = ε. Since

cof(A)T ⊗ A =

















cof11(A) cof21(A) . . . cofn1(A)

cof12(A) cof22(A) . . . cofn2(A)
...

...
. . .

...

cof1n(A) cof2n(A) . . . cofnn(A)

















⊗

















a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

















so

(cof(A)T ⊗A)11 = cof(A)11 ⊗ a11 ⊕ cof(A)21 ⊗ a21 ⊕ . . .⊕ cof(A)n1 ⊗ an1,

(cof(A)T ⊗A)12 = cof(A)12 ⊗ a12 ⊕ cof(A)22 ⊗ a22 ⊕ . . .⊕ cof(A)n2 ⊗ an2,
...

(cof(A)T ⊗ A)1n = cof(A)1n ⊗ a1n ⊕ cof(A)2n ⊗ a2n ⊕ . . .⊕ cof(A)nn ⊗ ann.

According to Theorem 3.2, we have
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cof(A)T ⊗A∇det(A)⊗ In =

















det(A) ε . . . ε

ε det(A) . . . ε
...

...
. . .

...

ε ε . . . det(A)

















and consequently

(4.3) cof(A)T ⊗ A =

















det(A) (. . .)• . . . (. . .)•

(. . .)• det(A) . . . (. . .)•

...
...

. . .
...

(. . .)• (. . .)• . . . det(A)

















.

If (4.3) is weakly substituted to (4.2) then
















det(A) (. . .)• . . . (. . .)•

(. . .)• det(A) . . . (. . .)•

...
...

. . .
...

(. . .)• (. . .)• . . . det(A)

















⊗

















k1

k2
...

kn

















∇

















ε

ε
...

ε

















and it is obtained

det(A)⊗ k1 ⊕ (. . .)• ⊗ k2 ⊕ . . .⊕ (. . .)• ⊗ kn∇ε,

(. . .)• ⊗ k1 ⊕ det(A)⊗ k2 ⊕ . . .⊕ (. . .)• ⊗ kn∇ε,
...

(. . .)• ⊗ k1 ⊕ (. . .)• ⊗ k2 ⊕ . . .⊕ det(A)⊗ kn∇ε.

Since det(A) /∈ (S∨)∗ so det(A) is not balance with ε. Consequently there is a non-

trivial signed solution for k1, k2, . . . , kn. Therefore, columns of A are linearly depen-

dent. �

As a result, we can characterize the linear dependently of the columns of matrix,

as in this following corollaries.

Corollary 4.1. Let A ∈ S
n×n. Then the columns of A are linearly dependent if only

if det(A)∇ε.

Corollary 4.2. Let A ∈ S
n×n. The rows of A are linearly independent if only if

det(A) ∈ (S∨)∗.
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According to Corollary 4.1 and Corollary 4.2, the rows of A are linearly dependent

if only if det(A)∇ε. The following theorem shows the sufficient condition of columns

of A corresponding to minor rank are linearly independent.

Theorem 4.3. If minor rank of A ∈ S
m×n is r, then there are r columns of A which

are linearly independent.

Proof. Since the minor rank of A is r, so r is the dimension of the largest square

submatrix of A which non-balanced max-algebraic determinant. Let S be the set

of all submatrices of A of size r × r with non-balanced determinant. For every

M ∈ S, we show that columns of A corresponding to M are linearly independent.

Without loss of generality, let submatrix of A that contains columns corresponding

to M =

















a11 a12 . . . a1r

a21 a22 . . . a2r
...

...
. . .

...

ar1 ar2 . . . arr

















r×r

is







































a11 a12 . . . a1r

a21 a22 . . . a2r
...

...
. . .

...

a(r−1)1 a(r−1)2 . . . a(r−1)r

ar1 ar2 . . . arr

a(r+1)1 a(r+1)2 . . . a(r+1)r

...
...

. . .
...

am1 am2 . . . amr







































m×r

with

c1 =







































a11

a21
...

a(r−1)1

ar1

a(r+1)1

...

am1







































, c2 =







































a12

a22
...

a(r−1)2

ar2

a(r+1)2

...

am2







































, . . . , cr =







































a1r

a2r
...

a(r−1)r

arr

a(r+1)r

...

amr







































.

Consider a balance k1 ⊗ c1 ⊕ k2 ⊗ c2 ⊕ . . .⊕ kr ⊗ cr∇εm×1. Then we have

(4.4)





Mr×r

N(m−r)×r



⊗Kr×1∇





εr×1

ε(m−r)×1




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where K =

















k1

k2
...

kr

















. Take note the sub-linear balance Mr×r ⊗ Kr×1∇εr×1 in (4.4).

Since det(M) is not balanced element then det(M) is not balance with ε. According

to Theorem 4.2, the columns ofM are linearly independent. Consequently, the signed

solution forK is unique i.e k1 = k2 = . . . = kr = ε. Therefore, columns of





Mr×r

N(m−r)×r





are linearly independent and columns of A that correspond to minor rank are linearly

independent. �

The following theorem shows the sufficient condition for minor rank of matrices in

the symmetrized max-plus algebra.

Theorem 4.4. If the maximum number of linearly independent columns of A ∈ S
m×n

is r, then the minor rank of A is r.

Proof. Let c1, c2, . . . , cr be the linearly independent columns of A. Then a balance

k1 ⊗ c1 ⊕ k2 ⊗ c2 ⊕ . . .⊕ kr ⊗ cr∇εm×1

is only satisfied by a unique signed solution k1 = k2 = . . . = kr = ε. Let M be the

matrix which columns are c1, c2, . . . , cr. For the special case m = r, we have size of

M is r × r. According to Theorem 4.2, it is obtained det(M) is not balance with ε

and consequently, r is the maximum size of the submatrix of A which determinant is

not balanced element. So, the minor rank of A is r.

Let m > r. According to the balance k1 ⊗ c1 ⊕ k2 ⊗ c2 ⊕ . . . ⊕ kr ⊗ cr∇εm×1, we

have the linear balance system

M ⊗K∇ε

or, in other words

(4.5)





Sr×r

N(m−r)×r



⊗Kr×1∇





εr×1

ε(m−r)×1



 .

This is equivalent to the following two balance relations
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Sr×r ⊗Kr×1∇εr×1

N(m−r)×r ⊗Kr×1∇ε(m−r)×1.

Since the unique signed solution for K in (4.5) is only k1 = k2 = . . . = kr = ε so

the columns of Sr×r are linearly independent. According to Theorem 4.2, we have

det(Sr×r) is not balance with ε. Therefore, r is size of square submatrices of A which

determinant is not balanced element.

Suppose r′ > r is the size of the square submatrix S ′ which determinant is not

balanced element. According to Theorem 4.3, columns of A which correspond to

S ′ are linearly independent. Therefore, the number of columns of A that linearly

independent is r′ > r. This contradicts the assumption and hence r must be the

largest size of the square submatrix of A which determinant is not balanced element.

Therefore, the minor rank of A is r. �

According to Theorem 4.3 and Theorem 4.4, we can characterize rank of A using

the linearly independence of columns or rows of A as in the following corollary.

Corollary 4.3. Let A ∈ S
m×n. The minor rank of A is r if and only if the maximum

number of linearly independent columns in A ∈ S
m×n is r.

Proof. In this proof, it remains only to show that if the minor rank of A is r then the

maximum number of linearly independent columns of A is r. Since the minor rank of

A is r, according to Theorem 4.4, we get r number columns of A that correspond to

minor rank are linearly independent. Suppose that the maximum number of linearly

independent columns of A is r′ > r. According to Theorem 4.4, the minor rank of A

is r′. This contradicts the minor rank of A is r. �

The following example shows characterization of rank of matrix over the sym-

metrized max-plus algebra using the linearly independence of columns or rows.

Example 4.2. Let A =





1 2• ⊖1•

⊖2 0 1



 and columns of A are c1 =





1

⊖2



, c2 =





2•

0





and c3 =





⊖1•

1



. Since 0⊗ c1⊕2⊗ c2 =





4•

2•



∇





ε

ε



, 0⊗ c1⊕1⊗ c3 =





⊖2•

2•



∇





ε

ε




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and ⊖1⊗ c2⊕0⊗ c3 =





⊖3•

⊖1•



∇





ε

ε



, so each of {c1, c2}, {c1, c3} and {c2, c3} are not

linearly independent, respectively. Each of the balance α1 ⊗ c1∇





ε

ε



, α2 ⊗ c2∇





ε

ε





and α3 ⊗ c3∇





ε

ε



 are only satisfied by the signed solution α1 = ε, α2 = ε and α3 = ε,

respectively. Therefore, {c1}, {c2} and {c3} are linearly independent, respectively.

So, the maximum number of linearly independent columns of A is 1, and consequently

minor rank of A is 1.

We have AT =











1 ⊖2

2• 0

⊖1• 1











and columns of AT are k1 =











1

2•

⊖1•











and k2 =











⊖2

0

1











.

Since 3⊗ k1⊕2⊗ k2 =











4•

5•

⊖4•











∇











ε

ε

ε











then {k1, k2} is not linearly independent. Every

of b1 ⊗ k1∇











ε

ε

ε











and b2 ⊗ k2∇











ε

ε

ε











are only satistified by signed solution b1 = ε and

b2 = ε, respectively. Therefore, {k1} and {k2} are linearly independent, respectively.

The maximum number of linearly independent columns of AT is 1, and consequently

minor rank of AT is 1. ⋄

5. Conclusion

The minor rank of matrix over the symmetrized max-plus algebra is defined as

dimension of the largest square submatrix which the determinant is not balanced

element. This can be characterized using the linearly independence of the columns

or rows of matrix, and then simply called rank. If A is matrix over the symmetrized

max-plus algebra then rank of A is the maximum number of linearly independent

columns or rows of A, as in the ordinary algebra. The potentials future research

can be done in application of rank to linear systems over the symmetrized max-plus

algebra.
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