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HYERS-ULAM-RASSIAS INSTABILITY FOR BERNOULLI’S AND

NONLINEAR DIFFERENTIAL EQUATIONS

KHALED M. HYASAT (1) AND M. QARAWANI (2)

Abstract. In this paper we have obtained integral sufficient conditions under

which the zero solution of nonlinear differential equations of first order with zero

initial condition is unstable in Hyers-Ulam-Rassias sense. We also have proved the

Hyers-Ulam-Rassias instability of Bernoulli’s differential equation with zero initial

condition. To illustrate the results we have given three examples.

1. Introduction

In 1940, Ulam [33] posed an important problem before the Mathematics Club of

the University of Wisconsin concerning the stability of group homomorphisms. A

significant breakthrough came in 1941, when Hyers [7] gave an answer to Ulam’s

problem. During the last two decades very important contributions to the stabil-

ity problems of functional equations were given by many mathematicians [e.g. 3,

5,7-9,17,21-24,30-31]. More than twenty five years ago, a generalization of Ulam’s

problem was proposed by replacing functional equations with differential equations:

The differential equation F (t, y(t), y′(t), ..., y(n)(t) = 0 has the Hyers-Ulam stability

if for given ε > 0 and a function y such that

∣∣F (t, y(t), y′(t), ..., y(n)(t))
∣∣ ≤ ε

there exists a solution y0 of the differential equation such that

|y(t)− y0(t)| ≤ K(ε)
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and lim
ε→0

K(ε) = 0.

The first step in the direction of investigating the Hyers-Ulam stability of differ-

ential equations was taken by Obloza [19,20]. Thereafter, Alsina and Ger [1] have

studied the Hyers-Ulam stability of the linear differential equation y′(t) = y(t). The

Hyers-Ulam stability problems of linear differential equation of first order with con-

stant coefficients were studied by some authors [11,34] by using the method of integral

factors. The results given in [11,16,31] have been generalized by Popa and Rus [25-26]

for the linear differential equations of nth order with constant coefficients.

In addition to above-mentioned studies, several authors have studied the Hyers-

Ulam stability for differential equations of first and second order [e.g 4,14,15,27,28].

Many mathematicians had considered the wide scope of this same problem for frac-

tional equations of different types. Such problem may be found in [6,12–13] and

other papers. Mathematical models of dynamical systems are sometimes prone to

instability.

Instability is a serious issue in applied mathematics in that it poses problems

for dynamical system models to predict the future behaviour of systems . In [2]

Brillouët-Belluot indicated that there are only few outcomes of which we could say

that they concern nonstability of functional equations. However in [ 29] Qarawani

investigate the Hyers-Ulam instability of linear and nonlinear differential equations of

second order. Thus our study is a continuation of preceding contributions to Hyers-

Ulam stability theory of differential equations. Motivation for this study comes from

the work of Qarawani [28], where Hyers-Ulam stability was obtained for Bernoulli’s

differential equations. Much less work has been devoted to the study of Hyers-Ulam

instability for differential equations.

This paper investigates the Hyers-Ulam-Rassias instability of the following nonlin-

ear differential equation of order one:

(1.1) y′ + P (t)y =
n∑

k=1

pk(t)y
k(t),

and the initial condition

(1.2) y(t0) = 0

where y ∈ C1(I) , I = [t0, t], 0 ≤ t0 < t ≤ ∞.
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We also consider a nonlinear differential equation of order one

(1.3) y′ + p(t)y = G(t, y)

with initial condition

(1.4) y(t0) = 0,

where G(t, y) is continuous function that satisfies the condition

(1.5) |G(t, y)| ∼ γ(t) |y(t)|β ,

and G(t, 0) = 0, β ∈ [0,∞), γ(t) : I → [0,∞) is a positive bounded function.

Moreover we establish the Hyers-Ulam-Rassias stability for Bernoulli’s equation

(1.6) y′ + p(t)y = q(t)yα, α 6= 1

with initial condition

(1.7) y(t0) = 0.

2. Preliminaries

Definition 2.1. We say that the equation (1.1) has the Hyers –Ulam-Rassias (HUR)

stability with respect to ϕ : I → [0,∞) if there exists a positive constant K > 0 with

the following property: For each y ∈ C1(I), if

(2.1) |y′ + P (t)y −
n∑

k=1

pk(t)y
k(t)| ≤ ϕ(t)

and y(0) = 0, then there exists z0 ≡ 0 satisfying the equation (1.1) such that

|y(t)− z0(t)| ≤ Kϕ.

Definition 2.2. We say that equation (1.3) with initial condition (1.4) has the Hyers-

Ulam-Rassias (HUR) stability with respect to ϕ : I → [0,∞) if there exists a positive

constant K > 0 with the following property: For each y ∈ C1(I), if
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(2.2) |y′ + p(t)y −G(t, y)| ≤ ϕ(t)

then there exists z0 ≡ 0 satisfying the equation (1.1) with (1.2), such that |y(t) −

z0(t)| ≤ Kϕ.

Definition 2.3. We say that equation (1.6) with initial condition (1.7) has the Hyers-

Ulam-Rassias(HUR) stability with respect to ϕ : I → [0,∞) if there exists a positive

constant K > 0 with the following property: For each y ∈ C1(I), if

(2.3) |y′ + p(t)y − q(t)yα| ≤ ϕ(t)

then there exists z0 ≡ 0 satisfying the equation (1.1) with (1.2), such that |y(t) −

z0(t)| ≤ Kϕ.

3. On Hyers-Ulam-Rassias stability of solutions

Theorem 3.1. Suppose that y ∈ C1(I), P (t) and pk(t) ≥ 0, 1 ≤ k ≤ n are continuous

functions on I. If the following conditions are satisfied

a) sup
0≤t ≤∞

t∫
t0

ϕ(s) exp

(
−

t∫
s

P (r)dr

)
ds < ∞;

b) sup
0≤t ≤∞

t∫
t0

e
−

t∫

s

P (r)dr n∑
k=1

pk(s)y
k(s)ds = ∞.

Then the initial value problem (1.1), (1.2) is unstable in the sense of HUR.

Proof. Suppose that y ∈ C1(I) satisfies the inequality (2.1) and the initial condition

y(0) = 0.We will show that zero solution z0(y) ≡ 0 of the equation (1.1) will satisfy

the inequality |y(y)− z0(y)| > kϕ . On the contrary, let us assume that there exists

ϕ > 0 such that sup
x≥x0

|y(t)− z0(t)| ≤ kϕ. Then we can find a constant M > 0 such

that M = sup
t ≥t0

|y(t)| .

Multiply (2.1) by integrating factor exp

(
t∫

t0

P (s)ds

)
and then integrate it to get

−

t∫

t0

ϕ(s)e

s∫

t0

P (r)dr

ds ≤

t∫

t0


e

s∫

t0

P (r)dr

y




′

ds−

t∫

t0

e

s∫

t0

P (r)dr n∑

k=1

pk(s)y
k(s)ds ≤

t∫

t0

ϕ(s)e

s∫

t0

P (r)dr

ds
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from which it implies that

(3.1)

−

t∫

t0

ϕ(s)e

s∫

t0

P (r)dr

ds ≤ e

t∫

t0

P (r)dr

y(t)−

t∫

t0

e

s∫

t0

P (r)dr n∑

k=1

pk(s)y
k(s)ds ≤

t∫

t0

ϕ(s)e

s∫

t0

P (r)dr

ds.

Multiplying (3.1) by e
−

t∫

t0

P (r)dr

, we obtain

(3.2)

−

t∫

t0

ϕ(s)e
−

t∫

s

P (r)dr
ds ≤ y(t)−

t∫

t0

e
−

t∫

s

P (r)dr
n∑

k=1

pk(s)y
k(s)ds ≤

t∫

t0

ϕ(s)e
−

t∫

s

P (r)dr
ds.

By virtue of (3.2) and by applying the mean value theorem for second integral, we

have

y(t) ≥

∣∣∣∣∣∣

t∫

t0

e
−

t∫

s

P (r)dr
n∑

k=1

pk(s)y
k(s)ds

∣∣∣∣∣∣
−

∣∣∣∣∣∣

t∫

t0

ϕ(s)e
−

t∫

s

P (r)dr
ds

∣∣∣∣∣∣

≥ |ŷ(s∗)|

t∫

t0

e
−

t∫

s

P (r)dr
n∑

k=1

pk(s)ds−

t∫

t0

ϕ(s)e
−

t∫

s

P (r)dr
ds,

where |ŷ(s∗)| = inf{|y(s∗)| , ...,
∣∣yk(s∗)

∣∣}, for s∗ ∈ [t0, t].

Therefore, in view of (a) and (b), we find that sup
t ≥t0

|y(t)| becomes infinite as t → ∞

. The contradiction completes the proof of Theorem 3.1. �

Now we give an example illustrating the Theorem 3.1.

Example 3.2. Consider the equation

(3.3) y′ + P (t) y = p1(t)y
3 + p2(t)y

5, y(0) = 0, t ≥ 0

with P (t) = 2t, p1(t) = t, p2(t) = t3 and ϕ(t) = t.

Suppose that y(t) is a solution of the inequality

(3.4)
∣∣y′ + 2t y − ty3 − t3y5

∣∣ ≤ t

Using the same argument used above, we obtain



862 K. HYASAT AND M. QARAWANI

(3.5)

∣∣∣∣∣∣
y − e−t2

t∫

0

(
sy3 + s3y5

)
es

2

ds

∣∣∣∣∣∣
≤

1

2

(
1− e−t2

)
.

Using the triangle inequality and applying the mean value theorem to the integral in

the following inequality, we obtain

|y(t)| ≥

∣∣∣∣∣∣
e−t2

t∫

0

(
sy3 + s3y5

)
es

2

ds

∣∣∣∣∣∣
−

∣∣∣∣
1

2

(
1− e−t2

)∣∣∣∣

≥ e−t2 |ŷ(s∗)|




t∫

0

(
s+ s3

)
es

2

ds


−

1

2

(
1− e−t2

)

= |ŷ(s∗)| e−t2(
1

2
t2et

2

)−
1

2

(
1− e−t2

)
,(3.6)

where |ŷ(s∗)| = inf{|y3(s∗)| , |y5(s∗)|}, for s∗ ∈ [t0, t].

Since lim
t→∞

[
1
2

(
1− e−t2

)]
= 1

2
and lim

t→∞

1
2
t2 = ∞ then from (3.6) we get

y(t) → ∞, as t → ∞. The contradiction proves the instability of equation (3.3).

Now we will investigate the HUR instability for Bernoulli’s differential equation.

First we establish HUR instability of differential equation (1.3).

Theorem 3.3. Let y ∈ C1(I) and p(t) be continuous functions on I. Assume that

a) sup
0≤t ≤∞

t∫
t0

ϕ(s) exp

(
−

t∫
s

p(r)dr

)
ds < ∞;

b) sup
0≤t ≤∞

t∫
t0

exp

(
−

t∫
s

p(r)dr

)
ds = ∞.

Then the initial value problem (1.3), (1.4) is unstable in the sense of HUR.

Proof. Suppose that y ∈ C1(I) satisfies the inequality (2.2) and the initial condition

y(0) = 0.We will show that zero solution z0(t) ≡ 0 of the equation (1.3) will satisfy

the inequality |y(t)− z0(t)| > kϕ. On the contrary, let us assume that there exists

ϕ > 0 such that sup
t≥t0

|y(t)− z0(t)| ≤ kϕ.Then we can find a constant M > 0 such

that M = sup
t ≥t0

|y(t)| .

Consider the inequality

(3.7) −ϕ(t) ≤ y
′

+ p(t)y −G(t, y(t) ≤ ϕ(t).
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Multiply (3.7) by integrating factor exp

(
t∫

t0

p(s)ds

)
and then integrate with respect

to t, to get

−

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds ≤

t∫

t0


e

s∫

t0

p(r)dr

y




′

ds−

t∫

t0

e

s∫

t0

p(r)dr

G(s, y(s))ds ≤

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds

from which it implies that

(3.8)

−

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds ≤ e

t∫

t0

p(r)dr

y(t)−

t∫

t0

e

s∫

t0

p(r)dr

G(s, y(s))ds ≤

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds.

Multiplying (3.8) by e
−

t∫

t0

p(r)dr

, we obtain

(3.9) −

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds ≤ y(t)−

t∫

t0

e
−

t∫

s

p(r)dr
G(s, y(s))ds ≤

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds.

By virtue of (1.5) and by applying the mean value theorem to second integral in

(3.9), we get

|y(t)| ≥

∣∣∣∣∣∣

t∫

t0

e
−

t∫

s

p(r)dr
G(s, y(s))ds

∣∣∣∣∣∣
−

∣∣∣∣∣∣

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds

∣∣∣∣∣∣

= γ(s∗) |ŷ(s∗)|β
t∫

t0

e
−

t∫

s

p(r)dr
ds−

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds,

where s∗ ∈ [t0, t].

By boundedness assumption on the solution y(t),|ŷ(s∗)|β , β > 0 will be a constant.

Therefore, in view of (a) and (b), we find that sup
t ≥t0

|y(t)| becomes infinite as t → ∞,

which gives a contradiction to boundedness. Therefore the proof of instability is

complete. �

Theorem 3.4. Let y ∈ C1(I), p(t), q(t) be continuous functions on I and α be a

positive real number not equal to even-degree root. If the following conditions are all

satisfied:
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a) sup
0≤t ≤∞

t∫
t0

ϕ(s) exp

(
−

t∫
s

p(r)dr

)
ds < ∞;

b) sup
0≤t ≤∞

t∫
t0

q(s) exp

(
−

t∫
s

p(r)dr

)
ds = ∞.

Then the initial value problem (1.6), (1.7) is unstable in the sense of HUR.

Proof. By setting in Theorem 3.1 G(t, y) = q(t)yα(t),where α a positive real number

not equal to even-degree root, then the proof can be carried out in the way similar

to proof of Theorem 3.1 and will therefore be omitted. �

Example 3.5. Consider the equation

(3.10) y′ + p(t) y = p1(t)y
2, y(0) = 0, t ≥ 0,

with p(t) = 4t, q(t) = 5tet
2

, and ϕ(t) = te−t2

(3.11)
∣∣∣y′ + 4ty − 5tet

2

y2
∣∣∣ ≤ te−t2 .

Using the same argument used above, we obtain

(3.12)

∣∣∣∣∣∣
y − e−2t2


5

t∫

0

sy2e3s
2

ds



∣∣∣∣∣∣
≤

1

2

(
et

2

− 1
)
e−2t2 .

Applying the mean value theorem for integral in (3.12), we obtain the estimate

|y(t)| ≥

∣∣∣∣∣∣
e−2t2


5

t∫

0

sy2e3s
2

ds



∣∣∣∣∣∣
−

∣∣∣∣
1

2

(
et

2

− 1
)
e−2t2

∣∣∣∣

≥ e−2t2 |ŷ(s∗)|2


5

t∫

0

se3s
2

ds


−

1

2
(e−t2 − e−2t2)

=
5

6
|ŷ(s∗)|2 (et

2

− e−2t2)−
1

2

(
1− e−t2

)
(3.13)

Now, since lim
t→∞

[
1
2

(
1− e−t2

)]
= 1

2
and lim

t→∞
et

2

(1− e−3t2) = ∞ then from (3.13) we

get y(t) → ∞, as t → ∞. The contradiction proves the instability of equation (3.10).
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Theorem 3.6. Let y ∈ C1(I), p(t), q(t) be continuous functions on I and let α be a

negative real number not equal to even-degree root. If the following conditions are all

satisfied:

a) sup
0≤t ≤∞

t∫
t0

ϕ(s) exp

(
−

t∫
s

p(r)dr

)
ds < ∞;

b) sup
0≤t ≤∞

t∫
t0

exp

(
−

t∫
s

p(r)dr

)
ds = ∞;

c) inf{|y(t)| : t ≥ t0} ≥ m > 0.

Then the initial value problem (1.6), (1.7) is unstable in the sense of HUR.

Proof. Suppose that y ∈ C1(I) satisfies the inequality (2.3) and the initial condition

y(0) = 0.We will show that zero solution z0(t) ≡ 0 of the equation (1.6) will satisfy

the inequality |y(t)− z0(t)| > kϕ. On the contrary, let us assume that there exists

ϕ > 0 such that sup
t≥t0

|y(t)− z0(t)| ≤ kϕ.Then we can find a constant M > 0 such

that M = sup
t ≥t0

|y(t)| .

Consider the inequality

(3.14) −ϕ(t) ≤ y
′

+ p(t)y − q(t)yα(t) ≤ ϕ(t).

Multiply (3.14) by integrating factor exp

(
t∫

t0

p(s)ds

)
and then integrate with re-

spect to t, to get

−

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds ≤

t∫

t0


e

s∫

t0

p(r)dr

y




′

ds−

t∫

t0

e

s∫

t0

p(r)dr

q(t)yα(t)ds ≤

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds

from which it implies that

(3.15)

−

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds ≤ e

t∫

t0

p(r)dr

y(t)−

t∫

t0

e

s∫

t0

p(r)dr

q(t)yα(t)ds ≤

t∫

t0

ϕ(s)e

s∫

t0

p(r)dr

ds.

Multiplying (3.15) by e
−

t∫

t0

p(r)dr

, we obtain

(3.16) −

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds ≤ y(t)−

t∫

t0

e
−

t∫

s

p(r)dr
q(t)yα(t)ds ≤

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds.
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By boundedness assumption on the solution y(t) and by applying the mean value

theorem to the second integral in (3.16), we get an estimate

|y(t)| ≥

∣∣∣∣∣∣

t∫

t0

e
−

t∫

s

p(r)dr
q(t)yα(t)ds

∣∣∣∣∣∣
−

∣∣∣∣∣∣

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds

∣∣∣∣∣∣

= q(s∗) |y(s∗)|α
t∫

t0

e
−

t∫

s

p(r)dr
ds−

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds

≥ mαq(s∗)

t∫

t0

e
−

t∫

s

p(r)dr
ds−

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds,

where 0 < m ≤ inf{|y(t)| : t ≥ t0}, s∗ ∈ [t0, t], and α is a negative real number not

equal to even-degree root.

From condition (c) it follows that inf{|y(t)| : t ≥ t0} keeps away from zero and

so we can write

(3.17) m−α |y(t)| ≥ q(s∗)

t∫

t0

e
−

t∫

s

p(r)dr
ds−m−α

t∫

t0

ϕ(s)e
−

t∫

s

p(r)dr
ds, −α > 0.

Then from (3.17) and by (a) and (b) we find that sup
t ≥t0

|y(t)| becomes infinite as

t → ∞. We get a contradiction and instability is proved.

Now, we will consider a first order nonlinear differential equation of the form

(3.18) (p(t)y)′ = G(t, y)

with initial condition

(3.19) y(t0) = y0

where p(t) is a positive continuous and lim
t→∞

p(t) 6= 0. �

Theorem 3.7. Let y ∈ C1(I) and p(t) be a positive continuous functions on I.

Assume that

a) lim
t→∞

1
p(t)

t∫
t0

ϕ(s)ds < ∞;

b) lim
t→∞

1
p(t)

t∫
t0

γ(s)ds = ∞;

c) lim
t→∞

p(t) 6= 0.
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Then the initial value problem (3.18), (3.19) is unstable in the sense of HUR.

Proof. Suppose that y ∈ C1(I) satisfies the following inequality (3.20) and the initial

condition y(0) = 0.We will show that zero solution z0(t) ≡ 0 of the equation (3.18)

will satisfy the inequality |y(t)− z0(t)| > kϕ . On the contrary, let us assume that

there exists ϕ > 0 such that sup
t≥t0

|y(t)− z0(t)| ≤ kϕ. Then we can find a constant

M > 0 such that M = sup
t ≥t0

|y(t)| .

Integrating the inequality with respect to t

(3.20) −ϕ(t) ≤ (p(t)y)
′

−G(t, y(t) ≤ ϕ(t)

we get

(3.21) −

t∫

t0

ϕ(s)ds ≤ p(t)y(t)− p(t0)y(t0)−

t∫

t0

G(s, y(s))ds ≤

t∫

t0

ϕ(s)ds.

Dividing the inequality by p(t) > 0 and by applying the mean value theorem to

the integral in (3.21 ), we get

|y(t)| ≥

∣∣∣∣∣∣
1

p(t)

t∫

t0

G(s, y(s))ds

∣∣∣∣∣∣
−

∣∣∣∣
p(t0)y(t0)

p(t)

∣∣∣∣−
1

p(t)

∣∣∣∣∣∣

t∫

t0

ϕ(s)ds

∣∣∣∣∣∣

≥
1

p(t)
|y(s∗)|β

t∫

t0

γ(s)ds−
1

p(t)

t∫

t0

ϕ(s)ds−

∣∣∣∣
p(t0)y(t0)

p(t)

∣∣∣∣ ,

where s∗ ∈ [t0, t].

By boundedness assumption on the solution y(t) ,|ŷ(s∗)|β , β > 0 will be a constant.

Therefore, in view of (a), (b) and (c), we find that sup
t ≥t0

|y(t)| becomes infinite as

t → ∞, a contradiction and instability is established. �

Example 3.8. Consider the equation

(3.22) (p(t)y)′ = t3y2, y(0) = y0, t ≥ 0

with p(t) = t2 + 1 and ϕ(t) = e−t
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(3.23)
∣∣∣
((
t2 + 1

)
y
)′
− t3y2

∣∣∣ ≤ e−t.

Using the same argument used above, we obtain

(3.24)

∣∣∣∣∣∣
y −

y0

t2 + 1
−

1

t2 + 1




t∫

0

s3y2ds


 ds

∣∣∣∣∣∣
≤

e−t − 1

t2 + 1

Applying the mean value theorem for integral in (3.14), we obtain the estimate

|y(t)| ≥

∣∣∣∣∣∣
1

t2 + 1




t∫

0

s3y2ds



∣∣∣∣∣∣
−

∣∣∣∣
y0

t2 + 1

∣∣∣∣−
e−t − 1

t2 + 1

≥ |y(s∗)|2


 1

t2 + 1

t∫

0

s3ds


−

∣∣∣∣
y0

t2 + 1

∣∣∣∣−
e−t − 1

t2 + 1

=
1

4
|y(s∗)|2

(
t4

t2 + 1

)
−

∣∣∣∣
y0

t2 + 1

∣∣∣∣−
e−t − 1

t2 + 1
.(3.25)

Now, since lim
t→∞

(
e−t−1
t2 +1

)
= 0 and lim

t→∞

(
t4

t2 +1

)
= ∞ then from (3.25) we get y(t) →

∞, as t → ∞. The contradiction proves the instability of equation (3.22).
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