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GENERALIZATIONS OF THE ALEXANDER INTEGRAL
OPERATOR FOR ANALYTIC MULTIVALENT FUNCTIONS

H. OZLEM GUNEY(®) AND SHIGEYOSHI OWA(®)

ABSTRACT. Let T}, ,, be a subclass of analytic multivalent functions of the form
f(2) = 27 4 apyn2? + a;D-kn-HZernJrl +...

for every z in the open unit disc U. Applying the fractional calculus (fractional
integral and fractional derivative), A7 f(z) and A) |, f(z) which are generalizations
of the Alexander integral operator are introduced. The object of present paper is
to discuss some interesting properties of A, A f(z) and Ag"n f(2). Also, some simple
examples of results for A; 2 f(z) and A}, f(z) are shown. To give some simple

examples is very important for the research of mathematics.

1. INTRODUCTION

Let T}, be the class of functions f(z) of the form

(1.1) z) =27 + Z a?® , neN=1{1,23, .1}

_p—|-n
which are analytic multivalent in the open unit disc U = {z € C : |z| < 1}. For

f € Ti,, Alexander [1] defined the following integral operator

(1.2) A1 f(z /f dt = +Z

that is called as the Alexander integral operator. Applying the above the Alexander

integral operator for f(z) € T}, ,, we consider the generalization of Al_} f(2) as follows:

1 _p+1 % f( p p‘l‘l k
(13)  Anfe) =5 | s + Z e
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Further, we define new operator A}, f(z) for T}, using the derivative of f(z) € T},
as follows:

(1.4) Al f(z) = 2 z%i (f(zl)) 2P 4 i 2k~ p+1a 2~

p
z P—_ p+1

With the above operators A f(z) and A, f(z), we see that

(1.5) Apn (Apnf (2)) = Ay (A0 f(2) = f(2),

that is, that A7 f(z) and A}, f(z) are inverse operators each other. From the among
various definitions of f(z) € T, for fractional calculus (that is, fractional derivatives
and fractional integrals) given in the literature, we would like to recall here the
following definitions for fractional calculus which were used by S.Owa [8] and S.Owa

and H.M.Srivastava [9].

Definition 1.1. The fractional integral of order A for f(z) € T,,, is defined by

17 t
D;*f(z)zr()\)/o (Zi(t))l_kdt, (A>0)

where f(z) is an analytic function in a simply-connected region of the z-plane con-

taining the origin, and the multiplicity of (z —#)*~! is removed by requiring log(z —t)

to be real when z —¢ > 0 and I'" is the Gamma function.

With the above definition, we have that

_ F(p+ I'k+1)
D)\ p+)\ k+X
@) = T(p+1+2N) +Z k+1+)\ K

for A > 0 and f(2) € T, .

Definition 1.2. The fractional derivative of order A for f(z) € T}, is defined by

d

D) = - (DX6) = e || gt - (0<A<)

where the multiplicity of (z —¢)™ is removed as in Definition 1.1.

Definition 1.3. Under the hypotheses of Definition 1.2, the fractional derivative of
order j + A for f(z) € T, is defined by

d]

DIR(z) = o

(D2f(2)) » (0<A<1])

where j =0,1,2,...,p — 1.
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In view of the definitions for fractional derivatives of f(z) € 1},,, we know that

and

T(p+1) (k+1) B
D2f(z) = r(p(fl— puz /~f+1—)“’leM

Dof(e) = 0D e g TRED e

Fp+1—45—-X) F'k+1—7-X)

k=p+n

for f(2) € T,, with0 <A <land j=0,1,2,...,p— 1.
Using the fractional calculus D;* f(z) and D2 f(z), we introduce

(1.6)

A ) = D) s <f(Z) )

DN I (p+2—)\) z Z%

i p+>\)F (p+2+/\) i
= 2P + 2_/\ agz
k=p+n k +1- )F (p+g )
for A > 0,
p+2—-A
A _ ( 2 ) ey [ f(2)
A1) = a2 (163
(1.7) . B
0 T(k+1— 220 (222
=2+ Z : ;n—|2—>\) (p+§+>\ akzk
k:p+n1“(k+1 ) (2
for0 <A<,
1—‘ (p+2—j_)\) A . f(Z
A A
10 = a0 ()
(1.8) ;

ST (b+1— BT (2252)
it k+1 P+]2+)\)1" (;n+242-1+>\)

for0<A<landj=0,1,2,....,p— 1. If we take A =1 in (1.6), then

+ ]. p 1 z
Atf(y =Pt [0,
2 0o t 2

which is the same as (1.3). Letting A — 0 in (1.6), we see

Apnf(2) = f(2).

Further, if A =0 in (1.7), we have

Apnf(2) = f(2),
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and if A — 1in (1.7), then we know that

2 pad (f(2)
Al — 2 —
p,n (Z) p—l— 12 dZ (szl) )

which is the same as (1.4). In view of the definition for A7TAf(z) in (1.8), we say
that
r p+2—A ,
(1.9) A f(2) = MZTAD? (ﬂ—i)
== z

p7n

for A > 0. Thus by (1.6) and (1.9), we have that
A (A50f (2)) = A0 (45,1 () = [(2),

for A > 0. This means that A} f(z) and A 7 f(z) are inverse operators each other.

2. DOMINANTS FOR THE OPERATORS A}, AND A7 A

Let a function g(z) € T, be given by

o

(2.1) g(2) =2+ Y b2,

k=p+n
with by >0 (k=p+n,p+n+1,..). Functions f(z) € T,, and g(z) given by (2.1)
satisfy

|ak|§bk> (k:p+nap+n+1a)>

then f(z) is said to be dominanted by g(z) ( or g(z) dominants f(z)), and we write

f(z) < g(2)
forall z€e U={z € C: |z| <1}. In view of (1.3) and (1.4), we have

Apnf(2) < f(2) < A, f(2), (2 €T)

p7n

for f(z) € T,, with a; > 0. Furthermore, by the continuty of the gamma functions

for A, we say that

Ao () < f(2) < A3, f(2), (2 €T0)

p7n

for0 < A< p.

Now we derive the following theorem.
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Theorem 2.1. If f(z) € T, satisfies

D(k+1— 220 (P52) [T26 ' (20 — 20— j)
I(k+1— 20 (2222) (k — p)! ’

(2.2) lag| <

fork=p+1,p+2, .., then

Zp

(2.3) Al () < G

p,1

(z€l)

where 0 < a < p.
If f(z) € Ty satisfies

D(k 41— 0T (2222) [T (2 — 20— )

M+ 1- BT (B (h—p)

(2.4) |ak| S

fork=p+1,p+2, ..., then

A 2P
(25) Ap71f(2) < m, (Z S U)
where 0 < a < p.
Proof. Let us consider a function
k —p—1
2 200 —
P p—— —Zuz 1L “’ Do 0<a<p

2 Tk+1- m)r (EE2E2)

Ap? (2) = 2"+ k;—l T(k+1— )F (p+§—>\) agz”,
if f(z) satisfies (2.2), then
A 2P
ATf(z) < AESSEC=R (z € U).
Further, since f(z) € T, satisfies
[k 41— 22T (222
AA = 2P + kzp;rl T(h+1— %;F Ep+§+)\; apz®,

if f(z) satisfies (2.4), we say that

A
Asif(2) < (SR
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Remark 1. We consider the function

Zp

g(z):m, (0 <a<p).

This function g(z) satisfies

29'(z) z
Re o) = Re (p+2(p—a)1_z

Therefore, we say that the function g(z) is p-valently starlike of order o in U, and
write that g(z) € S*(a).

)>a, (z € U).

Taking o = 0 in Theorem 2.1, we have the following corollary.

Corollary 2.1. If f(z) € T, satisfies

C(k+1 =240 (P52 T2 (20 — )

|ax| < ,
['(k+1— B2 (B2 (k — p)!

fork=p+1,p+2, ..., then

A f(z) <

If f(z) € T, satisfies

(k+1— ZE4 (Z222) [T 01 (2p — j)

[(k+1— 2D (B2 (k—p)!

lag| <

fork=p+1,p+2,.., then

Zp

(2.6) Apafz) < -z

(z € U).
Taking A = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.2. If f(z) € T, satisfies

(2k+1-p) [1;257'(2p — 20— j)

ol = ()l + 1) |
fork=p+1,p+2, .., then
1 2P
A f2) < (= 2 (z € U)

where 0 < a < p.
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If f(2) € T, satisfies

(p+ DI (2p — 20 — j)

<
R g T Sy g

fork=p+1,p+2, .., then

Zp

1
A fr) < (ESEETE

(z € D)

where 0 < a < p.
Next, we derive the following theorem.

Theorem 2.2. If f(z) € T, satisfies

[(k+1— 220 (2222)
b

-
2
T(k+1— 24D (2222

(2.7) |lax| <

fork=p+1,p+2, ..., then

(2.8) A f(2) <

If f(2) € T, satisfies

(2.9) lag| <

(2.10) A1 f(2) < - ~, (z€).
Proof. Note that
2P = &
g(z) = 1_Z—zp—|— Z z
k=p+1

By means of the expansion for A 1f(2) in (1.6), we know the dominant (2.8). Also,
using (1.7), we have the dominant (2.10). O

Remark 2. Let us consider the function

2P = &
(2.11) g(z)zl_z:zp—l—z,z.
k=p+1
This function g(z) satisfies
/
(2.12) W) E
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and

(2.13) 1+ =p+ —

It follows from (2.12) that

29 1
(2.14) Re o) >p—=, (2€0)
and from (2.13)
29"(2)
(2.15) Re (1 + e ) >0, (zel).

The inequality (2.14) means that g(z) is p-valently starlike of order p — %, and the
inequality (2.15) shows that g(z) is p-valently convex in U.

Making A = 1 in Theorem 2.2, we see the following corollary.

Corollary 2.3. If f(z) € T),1 satisfies

then

p+1
k= 1 2
then
1 2P
Ap,lf(z> < ) (Z EU)

Further we have the following theorem.

Theorem 2.3. Let a function f(z) € T,, be given by

(2.16) f(z) =2 + Z arz®,  (n=2p, 4p,6p,...).
k

:p+n

If f(2) satisfies

_p=A pt2-A
(2.17) o < PLEFL =5 N G )

S RD(k+ 1 — BN (225
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for k = 3p,5p, Tp, ..., then

_ 1 14 2P
(2.18) A1 f(z) < §log (1 — zp) , (z€0).

If f(2) satisfies
pf(k +1— M)F (p+2+)\)

2 2

KD(k 41— BT (2222)

(2.19) ail <

for k = 3p,5p, Tp, ..., then

1 14 2P
(2.20) Ag,lf(z) < §l09 (1 — zi”) , (€.
Proof. We note that
1 1+Zp 1 1 b D
2.21 — —SP 3P L P P Lok
( ) 2l09<1_zp> z +32 +5z + z +k§nkz

879

Considering (1.6) and (1.7), we know that if |ay| satisfies (2.17) and (2.19), then we

have (2.18) and (2.20).

Remark 3. We write that

Then g(z) satisfies
" 2
Re<1+Zg (Z)):Re< L —p)>0, (z € ).

g'(2) 1— 22

Therefore, the function g(z) is p-valently conver in U. Also, g(z) satisfies —

Img(z) < %, (z €U).
Taking A = 1 in Theorem 2.3, we know the following corollary.

Corollary 2.4. Let a function f(z) be given by (2.16). If f(z) satisfies

p(2k + 1 —p)

<PEVT DB (k= 3p,5p, Tp, ),

lag| < K £ 1) ( p,5p, Tp, ...)
then
1 14 2P
-1
A f(2) < ilog (1 — zp) , (2 €l).
If f(2) satisfies
p(p+1)
< — =

U

T <
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for k = 3p,5p, Tp, ..., then

14 2P
1— 2P

AL fz) < %log < ) ., (z€N).

3. INCLUSION PROPERTIES FOR THE OPERATORS A, AND A A

We would like to consider some interesting properties for operators A A f(2) and

A
Aot (2).

For m different boundary points z; (s = 1,2,3,...,m) with |z;] = 1, we define

1 o~ Apnf(z)
3.1 dy = — Y 2nl
(3.1) m2
where d,,, € €A 2 f(U),dy, # 1 and =5 < 3 < Z. For such d,, if f(2) € T}, satisfies
ezﬁ Ap ?LZ(Z) dm

(3.2) ei;—d —1ll<p, 2z€U

for some real p > 0, then we say that f(z) belongs to B;f;(dm, B,p) C Tpn. We note

that our condition (3.2) is equivalent to

Apnf &)
P

(3.3) <ple’ —dn|, z€U.

Also, we define e,, for A f(z) changing A by —X in d,,. If f(2) € T},,, satisfies

iBApnf(z)
ef—rni —e,

-1

(3.4) <p, 2€0U

e — e,

for some real p > 0, then we say that f(z) belongs to By, (ém, 3, p) C Tpn. The above
inequality (3.4) is equivalent to

W—l <p}ei5—em , 2¢eU.
Let us define f(z2) € T,,,, by
f(2) = 22 4 apyn2®™.
Then, if
LT T

2
[ (B2 T (252
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then f € B, (dm, 5, p), and if

[ (B2 T (252

T (B2222) T (25

|apin| < p ‘eiﬁ —€em

)

then f € BI’,\,n(em, B, p). Discussing our problems for Bp_jl(dm7 B, p) and B;‘m(em, B, p),
we need the following lemma due to Miller and Mocanu [3, 4](also, by Jack [2]).

Lemma 3.1. Let the function w(z) given by
w(z) = a,z" + an+1z"+1 + an+gz"+2 +... , neN

be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle
|z| =7 at a point 2, (0 < |20| < 1) then there exists a real number k > n such that

2ow'(20)

w(z) "

and

Applying the above lemma, we derive the following theorem.

Theorem 3.1. If f(z) € T,, satisfies

ARG € = du]
) _— = . U
(39) G| STy

for some d,, defined by (3.1) with d,, # 1 such that zs € OU (s = 1,2,3,...,m), and

for some real p > 1, then

At ()

n
et
2P

(3.6) <p ‘ew —dp

, z€lU

that is, f € B, (dm, 3, p).

Proof. We define the function w(z) by

A=A
( ) 626 AP,ZZ{(Z) o dm .
wlz) = - —
e —d,,

iB _ - 22X
e —d,, in D(k+1-22) (=)
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Then, we know that w(z) is analytic in U with w(0) = 0 and

A2 f(2) ,
p,n — _ _ZB
— = 14+ (1 — e ¥dp)w(z).
This gives us that
(AN f(2)) (1 — e #d,,) 2w’ (2)

Az P T IR (A= e Pdu(z)

that is, that

A=A ' 1 _ =B / 6 _
2( o (2)) gl = ' (1—e ilzg)zw (2) _ e - dm|p L eU
Anf(2) 1+ (1—ePdy,)w(z) 1+ e —dpnlp

with (3.5). Assume that there exists a point zg € U such that
max{|w(z)]; [z] < [z[} = [w(z)| = p > 1.

Then, using Lemma 3.1, we say that w(zy) = pe®, (0 < 6 < 27) and zw'(z) =
kw(zo), (k > n). For such z, € U, we have

(37) ZO(A;ﬁf(ZO)), o (1 — e Pdp,) 20w’ (20)
' A2 f(20) 1+ (1 — e #d,,)w(z)
_ (1- e_wdm)p
|14 (1 — e~d,,) pet®
1 — e Pdulp
T 141 —e"Bd,|p
- |€iﬁ - d7n|p
14 |ef —dpp

This contradicts our condition (3.5). Thus we say that there exists no zg, (0 < |2o| <

1) such that |w(zo)| = p > 1. This gives that |w(z)| < p for all z € U, and that

eiﬁ (A;,?Lf(z) _ 1)

z

lw(z)| = T d <p, ze€l.

This is equivalent to (3.6)and to f € B, (dm, 3, p). O
Example 3.1. We consider the function f(z) € T,, given by

f(z) =27+ apinz”™.
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Then, f(z) satisfies

A@Quw_‘_
e T

nV(p,n, \)apin2" nV (p, n, \)|apsnl

, el
T+ V(o Nagraz® |~ 1=V m Nlapenl

where
D (P22 T (252
D (H222) T (M)

V(p,n,\) =

and
1

(n+1)V(p,n,\)

0 < |ap+n| <

Now we consider five boundary points

_;r9(epin)
Z1 =€ n s

‘rr Ga'rg(ap+n)
2o = e’ 6n s

.m—darg(ap4n)
zZ3 = e’ an s

.m—3arg(ayin)
Z4 = 6 3n

and

.m—2arg(ap4n)
25 = e 2n

For such points zs (s =1,2,3,4,5), we have

AN (2
p,nzp( 1) = 1+ V(p,n, Naynl,
1

AT () fﬂ
— 5 = 14+ V(p,n, N|apin|—5—

A2 f(zs) ﬁ(l + 1)
2 2

pmip =1+ V(p7 n, )‘>|ap+n|
A_i\z (24) 1 + \/gl
S L V. Ve
and \
Apnf(z5) .
ILT =1+ V(pa n, )‘)|ap+n|z'
Thus, we obtain that

d5:%27”"7p—1+ (B+V2+V3) (A +9)V(p,n, \)|ayrnl.

It follows from the above that

\/_

‘1 _Zﬁdf)‘ - (3+\/_+\/_) (p7n7)‘>|ap+n|7
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for B =0. For such ds and 8 = 0, we consider p > 1 such that

nV(p,n, )\)|ap+n| _ |€w —d5|p
I_V(pana )‘)|ap+n| 1—|—|ei5_d5|p

Then p satisfies

10v2n N 10v2n -
B+V2+V3) (1= (n+ DV (p,n,N)|apen]) ~ 3+V2+V3

For such ds and p > 1, we see that

1.

p:

At (2)

,n
et

P < V(p> n, )‘)|a’p+n| < P|6iﬁ - d5| ALS U.

Letting A = 1 in Theorem 3.1, we have the following corollary.

Corollary 3.1. Let f(z) € T,, satisfies

2(AAF(2)) B _d,
(f,)\n()) _pl < }6 - ‘p : LU
Ap,n (Z) 1+ |6 _dm|p
for some d,,, given by
1 A4 (2s)
d, =— _pnJ A2 d,, 1
m ; ng ) #

where dy, € eP A0 f(U) and z, € dU(s = 1,2,3,...,m). Then, for some real p > 1
and —5 < <3
Apnf =)

. , 2€U
z

<p‘eiﬁ—dm

that is, f € Bpf}l(dm,ﬁ,p).
Finally, we derive the following theorem.

Theorem 3.2. Let f(z) € T,,,, and

where e, € eP A f(U) and =% < § < T where z, € 0U(s = 1,2,3,...,m). If f

satisfies

zelU

A FEY | e —euls
14 e —en|p’
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for some real p > 1, then

A3t (2)

, —p <p‘ei5—em, 2elU
z

that is, f € B;‘m(dm,ﬁ, p).
The proof of the Theorem 3.2 is same as the proof of Theorem 3.1.

Example 3.2. We define the function f(z) € T,,, given by
f(2) = 22 4 apyn2®™.
Then, f(z) satisfies

Z(Ali\,nf(z))/ _pi - nW(pv n, >\)CLp+nZn nW(p’ n, )\)|ap+n‘

zelU

Ak (2) L+ W(p,n, Naypen2”| 1= W(p,n,\)|apenl’
where
(p+2n+2+>\) T (p+2—)\)
_ 2 2
T e ()
and
1
0< |ap+n| <

(n+ W (p,n, A)’
Considering five boundary points zs(s = 1,2,3,4,5) same as the Example 3.1, we

have
. 2
[1—ees| = %(3 + V24 VBW (p,n, )|y,

for B =0. Taking p > 1 such that

nW(p,n, )‘>|ap+n| _ ‘6w —65|p
1_W(pana)\)|ap+n| 1+|€iﬁ—65|p’
we have
10v/2n 10v2n
p= > 1.

B+vV2+ V31— (n+1DW(p,n,Nlapsn]) ~ 3+vV2+V3 g

For such es and p > 1, f satisfies

A3t (2)

P

-1 < W(p7n7 )‘>|ap+n‘ < p|€lﬁ - 65‘ , 2 € U.

Making A = 1 in Theorem 3.2, we see the following corollary.
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Corollary 3.2. Let f(z) € T,, satisfies

2(Apaf(2)
Ayt (2)

% — eulp

. , elU
14 e —en|p :

pl <

for some e, given by

mAl s
€m:lZM, dp # 1

m 25
s=1

where e, € ePAl f(U) and z, € dU(s = 1,2,3,...,m). Then, for some real p > 1

and —5 < B < 3

-1

p” <p‘ei6—em}, z2elU

‘Azly,nf (2)
that is, f € By ,,(em, B, p).

4. SUBORDINATION PROPERTIES

Let the functions F'(z) and G(z) be analytic in U. Then F(z) is said to be sub-
ordinate to G(z) if there exists a Schwarz function w(z) which is analytic in U with

w(0) =0 and |w(z)| < 1(z € U) such that

(4.1) F(z) =G(w(z)), zel.
We denote this subordination by

(4.2) F(z) <G(z), zel.

Further, if G(z) is univalent in U, then the subordination (4.2) is equivalent to F'(0) =
G(0) and F(U) c G(U).
For f(z) € T,,, we consider the following subordination

Aal(2) ol =2)

zP a—z

(4.3) , 2€U

for some real @ > 1. Many interesting properties for subordinations were considered

by Miller and Mocanu [5, 6]. If we write that

1—
G(z) = u, zeU
a—z
for a > 1, then
ala+1r?—r(a+ 1)cosh)
a? 4+ r? — 2arcost

Re(G(2)) =
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for z = re®(0 <r < 1,0 < 6 < 2m). This shows that

a(l —r) a(l+r) 20
4.4 — > < Re(G < .
(44) a—r e(Glz) = a+r a+1
Therefore, f(z) defined by (4.3) satisfies
A2 f(z 2
(4.5) 0 < Re (L()> < 2 e
zP a+1
Now, we derive the following theorem.
Theorem 4.1. If f(z) € T,, satisfies
>, T(k+1— 22 (2222 ~1
(4.6) 3 F(k 1 pEA)r (p+§_k) a < T
k=p+n ( +1- T) ( 2 ) a

for a > 1, then f(z) satisfies (4.5). The equality is attained for

(4 7)
T(k+1—5M0 (222) (a - 1)

_Zp—|—
Z I(k+1—2N0 (222) (a+1)(k—p—n+1)(k—p— n+2)

k=p+n

where |e| = 1.

Proof. We consider a function f(z) € T),,, which satisfies

AN (2 ASAf(2
(4.8) |(a® —6a+1) +4(a+ 1)%() < |(@®+10a+1) — 4(a + 1)%()
z 2
for a > 1. From the inequality (4.8), we know that
A TAIFEN | 4
B2 (Z)‘l-( — (Z))< L
2P 2P a+1
It follows from the above that
A 2
0<R6<L(Z)>< a, zeU.
2P a+1
If f(2) € T, satisfies (4.8), then we know taht
2 D(k+1- m)r (e£22)
(0 —2a+5) +4(a+1) Z+ T BT () »
20 T(k+ 1 — 22 (2212
< |[(@®+6a—3) —4(a+1) Z 2_LapztT
k=p+n (k + 1 - T)F (1”+2 )

P

Y

887

k

Y
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where |e| = 1. Therefore, to satisfy (4.8), f(z) has to satisfy

L T(k+1— 20 (2222

@D 2 R B (E

k=p+n 2

lag] < o — 1.

Thus, if f(z) € T,, satisfies (4.6), then f(z) satisfies (4.5). Further, we consider a
function f(z) given by (4.7). Then, we have

i F(k+1—7%A)F(7’+§“)| |
— — ag
STk +1 =220 (H52)

k=p+

RS (@ —1le|
B Z (a+1)(k—p—n+1)(k—p—n+2)

k=p+n
(a— 1) i < 1 1 )
<a+1 e k—p—n+1 k—p—n+2
a—1
S a+ 1
Therefore, a function f(z) given by (4.7) satisfies the equality in (4.6). O

Letting A = 1 in Theorem 4.1, we have the following corollary.

Corollary 4.1. If f(z) € T, satisfies

o

p+1 a—1
_ < U
2 hri—p ™= arr 7€

k=p+n

for a > 1, then

AL f(2 2
0<R6<L()) < 2 Leu
2P a+1

The equality holds true for

= (2k+1—-p)(a—1) i
z) =22+ zZ"°,
1) k:zp;rn(p+1)(a+1)(k—p—n+1)(k—p—n+2)
where |e| = 1.
Next, we consider
A 2
(4.9) 0 < Re Ao (2) < 2 e
2P a+1

for a > 1. Then we derive the following theorem.
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Theorem 4.2. If f(z) € T,, satisfies

i T(k+1— 520 (2222 a—1
[(k+1— B (22270~ a4+ 17

k=p+n
for a > 1, then f(z) satisfies (4.9). The equality is attained for

x [(k+1— BT (B2 (o — 1)e

FO=% 2 v =B (B - 57 2)

2

2~

where |e| = 1.

The proof of the theorem is the same as Theorem 4.1. Thus, we omited the proof
of the theorem.

Taking A = 1 in Theorem 4.2, we have the following corollary.

Corollary 4.2. If f(z) € T,, satisfies

for a> 1, then
Al 2
0<Re<%(z))< 2 el
The equality holds true for

2 (p+1)(a—1)le] K
flz) =2 —l—k;n@k_i_l_p)(a+1)(k_p_n+1)(k—p—n+2)z’

where |e| = 1.
Next, we consider the following theorem.

Theorem 4.3. If f(z) € T,, satisfies

2 (A2 f(2) a—
(4.10) Re <%)<]3+2<T+11), zeU

for some real o« > 1, then

AAIE) ali-2

zP oa— 2z

(4.11) , zel.
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Proof. Consider an analytic function w(z) in U given by

Apal(2) a1l —w(2))

2P a—w(z)
with w(0) = 0. It follows that

2 (Anf () _ +zw'<z>< wiz) - w(z) )

AXTE P u) -

a—w(z) 1—w(z)
and

-
o (Ap,ng(z) _ 1)

z

w(z) = =bp2" + ...

A f(2)

zP

Suppose that there exists a point z5(0 < |zp| < 1) such that
Max|.|<|.||w(2)] = |w(zo)| = 1.
Then, using Lemma 3.1, we say that
2ow'(20) = kw(z), (k > n).

Letting w(z) = €?(0 < 6 < 27), we have that

20 (f‘g,ﬁf(zo)) otk < et __ et 0)
A2 f(20) a—e? 1—¢

ok acosd — 1 —I—l
=P a2 +1—2acos = 2

a—1
20a+1)

>p+

This contradicts our condition (4.10). Thus, we say that there is no zg, (0 < |zo| < 1)

such that |w(zp)| = 1. This means that |w(z)| < 1 for all z € U, that is that

Apnf(z)  o(1-2)

zP oa—z

(4.12) , zel.

Taking A = 1 in Theorem 4.3, we have the following corollary.

Corollary 4.3. If f(z) € T, satisfies

AL F(2)) -
Re<w)<p+a71 2eU

AL f(2) 2(a+1)’
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for some real o > 1, then

1 = f(t 1-—
Pl [0y, 070y
2 o tz o —Z

Using the same method of Theorem 4.3, we derive the following theorem.

Theorem 4.4. If f(z) € T,, satisfies
2 (A f(z))’) a—1
Re| — 2~ 2 | <p+—", 2z€U
< 2, f(2) 2o+ 1)
for some real o > 1, then

Af(2) _ all-2)

zP oa—z

, z¢e€l.
Taking A = 1 in Theorem 4.4, we have the following corollary.

Corollary 4.4. If f(z) € T,, satisfies
2 (AL f(z))’) a—1
Re| -2~ | <p+-——, 2€U
< AL f() Na+1)

for some real o« > 1, then

(v +21)zp (zﬁ(z) B p%lf(z)) ) QS—_;)’ 2el

Finally, we prove the following theorem.

Theorem 4.5. Let a function f(z) € T, satisfies
1-— ! 1-—
B1-2)  f(2) all—2)

4.1 U
(4.13) B —z paP~1 a—z z €
for 1 < B < a. Then f(z) satisfies
(4.14)

891

B—1 z g a—1
é<z+log(g) ><i f(_t)dt<g<z+log(a_z) ), z e U.
z I5; pz Jo tr7t z Q@

To prove the above theorem, we have to use the following lemma by Miller and

Mocanu [7].

Lemma 4.1. Let hy(z) and hao(z) be convex in U and let f(z) be univalent in U with

hy(0) = h2(0) = £(0). Let v # 0 with Rey > 0. If

(4.15) hi(z) < f(z) < ha(2), z€U
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then

o[ v-1 o[ v-1 o[ y-1
(4.16) zwéfmﬁt ﬁszA'ﬂot ﬁ<sz:m@ﬁ dt, z€U

when the middle integral is univalent.

Proof of the Theorem 4.5: We write that

1
pJy !

F(z) dt, zeU.

Then, we know that

pzp=t
Since
ﬁ;l_—zz) F(2) < oz((ll_—zz)’ CeU
with (4.13), we say that
2a

0 < Re(F'(2)) <

, z2el,
a+1

that is, that F'(z) is close-to-convex (univalent) in U. Defining G(z) by (4), we obtain

that

2G"(z) 2z
1 =1 .
+G’(z) +a—z’ 2eU

Letting z = €¥(0 < 0 < 27), we have

2G"(z) ¢t
1 = 1 .
Re( + G’(z)) Re( +a—e“’
2(acosh — 1) S a- 1
a?+1—2acosd = a+1

This means that G(z) is convex in U with 1 < 8 < . Therefore, 24=2) apnq 20=2)

B—z a—z

— 14+

are convex in U with 1 < 8 < a. Therefore, applying Lemma 4.1 for v = 1, we have

that

1 [7B(1—1t) 1 [* 1 [Fa(l—1t)
(4.17) ;/0 51 dt<;/0 F(t)dt<;/0 p— dt.

It is easy to see that the subordination (4.17) is same as the subordination (4.15).

Letting p = 1 in Theorem 4.5, we have the following corollary.
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Corollary 4.5. If f(z) € Ty, satisfies
a(l —2)

A2 <re <=, sev

for1 < B < a, then

8—1 a—1
g z+log<g) <M<g Z+109<a_z) , z€U.

15} z z
5. CONCLUSIONS

Applying the fractional calculus (fractional integral and fractional derivative), two
generalizations of the Alexander integral operator are introduced. Some interesting
properties of these operators are discussed. Also, some simple examples of results for

these operators are shown.
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