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K-PRODUCT CORDIAL LABELING OF POWERS OF PATHS

K. JEYA DAISY(1), R. SANTRIN SABIBHA(2), P. JEYANTHI(3) AND MAGED Z. YOUSSEF(4)

Abstract. Let f be a map from V (G) to {0, 1, ..., k − 1}, where k is an integer

and 1 ≤ k ≤ |V (G)|. For each edge uv assign the label f(u)f(v)(mod k). f is

called a k-product cordial labeling if |vf (i)− vf (j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1,

i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef(x) denote the number of vertices and

edges, respectively labeled with x (x = 0, 1, ..., k − 1). In this paper, we add some

new results on k-product cordial labeling and prove that the graph P 2
n is 4-product

cordial. Further, we study the k-product cordial behaviour of powers of paths

P 3
n , P 4

n and P 5
n for k = 3 and 4.

1. Introduction and Terminology

All graphs considered here are simple, finite, connected and undirected. We follow

the basic notations and terminology of graph theory as in [4]. The concepts of labeling

of graph has gained a lot of popularity in the field of graph theory during the last

60 years due to its wide range of applications. Labeling is a function that allocates

the elements of a graph to real numbers, usually positive integers. In 1967, Rosa

[16] published a pioneering paper on graph labeling problems. Thereafter, many

types of graph labeling techniques have been studied by several authors. All these

labelings are beautifully classified by Gallian [3] in his survey. Cordial labeling is a

weaker version of graceful and harmonious labeling was defined by Cahit [1]: Let f

be a function from the vertices of G to {0, 1} and for each edge xy assign the label

|f(x)− f(y)|. f is called a cordial labeling of G if the number of vertices labeled 0

and the number of vertices labeled 1 differ by at most 1, and the number of edges
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labeled 0 and the number of edges labeled 1 differ at most by 1. Motivated by the

concept of cordial labeling, Sundaram et al. [17] introduced the concept of product

cordial labeling: Let f be a function from V (G) to {0, 1}. For each edge uv, assign

the label f(u)f(v). Then f is called product cordial labeling if |vf (0)− vf (1)| ≤ 1

and |ef(0)− ef(1)| ≤ 1, where vf(i) and ef(i) denotes the number of vertices and

edges, respectively labeled with i(i = 0, 1). Several results have been published on

this topic (see [3]).

In 2012, Ponraj et al. [15] extended the concept of product cordial labeling and

introduced k-product cordial labeling: Let f be a map from V (G) to {0, 1, ..., k − 1},

where k is an integer and 1 ≤ k ≤ |V (G)|. For each edge uv assign the label

f(u)f(v)(mod k). f is called a k-product cordial labeling if |vf(i)− vf (j)| ≤ 1, and

|ef(i)− ef (j)| ≤ 1, i, j ∈ {0, 1, ..., k − 1}, where vf (x) and ef(x) denote the number

of vertices and edges, respectively labeled with x (x = 0, 1, ..., k − 1). They proved

that k-product cordial labeling of stars, bistars and also 4-product cordial labeling

behavior of paths, complete graphs and combs. Jeyanthi and Maheswari [13] gave

the maximum number of edges in a 3-product cordial graph of order p is p2−3p+6
3

if p ≡ 0(mod 3), p2−2p+7
3

if p ≡ 1(mod 3) and p2−p+4
3

if p ≡ 2(mod 3). The same

authors [14] proved that the graph P 2
n is 3-product cordial. Inspired by the concept of

k-product cordial labeling and also the results in [13, 14, 15], we made an attempt to

study further on k-product cordial labeling. We have established that the following

graphs admit k-product cordial labeling: union of graphs [5]; Napier bridge graphs

[7]; fan and double fan graphs [11]; cone and double cone graphs [6]; the maximum

number of edges in a 4-product cordial graph of order p is 4⌈p−1
4
⌉⌊p−1

4
⌋+3 [10]; path

graphs [12] and product of graphs [8].

In this paper, we study the k-product cordial labeling of powers of paths. We

use the following definition in the present study. Given a graph G = (V,E) and a

positive integer d, the dth power of G is the graph Gd = (V,E
′

) in which two vertices

are adjacent when they have distance at most d in G [2]. The path of order n is

denoted Pn. The dth power of a path is denoted P d
n .
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2. 3-product cordial labeling of powers of paths

In this section, we establish the 3-product cordial labeling of powers of paths P 3
n , P

4
n

and P 5
n .

Theorem 2.1. For n ≥ 3, the graph P 3
n is 3-product cordial if and only if n ≡

2 (mod 3) and n 6= 5.

Proof. Let the vertex set and the edge set of P 3
n be V (P 3

n) = {vi ; 1 ≤ i ≤ n} and

E(P 3
n) = {(vi, vi+1) ; 1 ≤ i ≤ n−1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n−2}∪ {(vi, vi+3) ; 1 ≤

i ≤ n− 3}, respectively. We have the following four cases.

Define f : V (P 3
n) → {0, 1, 2} as follows:

Case (i): If n ≡ 2(mod 3) for n ≥ 8, then

f(vi) =



















0 if 1 ≤ i ≤ ⌊n
3
⌋

1 if ⌊n
3
⌋+ 1 ≤ i ≤ ⌊n

3
⌋+ 3

2 if ⌊n
3
⌋+ 4 ≤ i ≤ ⌊n

3
⌋+ 6.

For i = ⌊n
3
⌋ + 6 + j ; 1 ≤ j ≤ 2

(

⌊n
3
⌋ − 2

)

and n > 8,

f(vi) =







1 if j ≡ 2, 4, 5, 7(mod 8)

2 if j ≡ 1, 3, 6, 0(mod 8).

Thus we get,

vf (0) + 1 = vf(1) = vf(2) = ⌊n
3
⌋ + 1,

ef (0) = ef(1) = ef (2) = 3⌊n
3
⌋.

Hence, P 3
n is a 3-product cordial graph if n ≡ 2(mod 3) for n > 5.

Case (ii): If n ≡ 0(mod 3) for n ≥ 3, then |V (P 3
n)| = 3t and |E(P 3

n)| = 9t−6. Thus,

vf (i) = t (i = 0, 1, 2) and ef(i) = 3t− 2 (i = 0, 1, 2). If vf (0) = t, then ef(0) > 3t− 2

for t ≥ 1. Therefore, |ef (0)− ef (j)| > 1 for j=1,2. Hence, P 3
n is not a 3-product

cordial graph if n ≡ 0(mod 3) for n ≥ 3.

Case (iii): If n ≡ 1(mod 3) for n ≥ 4, then |V (P 3
n)| = 3t+ 1 and |E(P 3

n)| = 9t− 3.

Thus, vf(i) = t or t+1 (i = 0, 1, 2) and ef (i) = 3t− 1 (i = 0, 1, 2). If vf(0) = t, then

ef (0) > 3t− 1 for t ≥ 1. Therefore, |ef (0)− ef (j)| > 1 for j=1,2. Hence, P 3
n is not a
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3-product cordial graph if n ≡ 1(mod 3) for n ≥ 4.

Case (iv): If n = 5, then |V (P 3
5 )| = 5 and |E(P 3

5 )| = 9. But the maximum number

of edges in a 3-product cordial graph of order 5 is 8. Hence, P 3
n is not a 3-product

cordial graph if n = 5. �

Example 2.1. An example of 3-product cordial labeling of P 3
8 is shown in Figure 1.

Figure 1
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Theorem 2.2. For n ≥ 3, the graph P 4
n is 3-product cordial if and only if n ≡

2 (mod 3) and n 6= 5, 8.

Proof. Let the vertex set and the edge set of P 4
n be V (P 4

n) = {vi ; 1 ≤ i ≤ n} and

E(P 4
n) = {(vi, vi+1) ; 1 ≤ i ≤ n−1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n−2} ∪ {(vi, vi+3) ; 1 ≤

i ≤ n − 3} ∪ {(vi, vi+4) ; 1 ≤ i ≤ n − 4}, respectively. We have the following five

cases.

Define f : V (P 4
n) → {0, 1, 2} as follows:

Case (i): If n ≡ 2(mod 3) for n ≥ 11, then

f(vi) =



















0 if 1 ≤ i ≤ ⌊n
3
⌋

1 if ⌊n
3
⌋ + 1 ≤ i ≤ ⌊n

3
⌋ + 2, ⌊n

3
⌋+ 4 ≤ i ≤ ⌊n

3
⌋ + 5

2 if i = ⌊n
3
⌋+ 3, ⌊n

3
⌋ + 6 ≤ i ≤ ⌊n

3
⌋ + 8.

For i = ⌊n
3
⌋ + 8 + j ; 1 ≤ j ≤ 2

(

⌊n
3
⌋ − 3

)

and n > 11,

f(vi) =







1 if j ≡ 1, 0(mod 4)

2 if j ≡ 2, 3(mod 4).

From the above labeling we get,

vf (0) + 1 = vf(1) = vf(2) = ⌊n
3
⌋ + 1,

ef (0) = ef(1) + 1 = ef (2) + 1 = 4⌊n
3
⌋.

Hence, P 4
n is a 3-product cordial graph if n ≡ 2(mod 3) for n ≥ 11.
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Case (ii): If n ≡ 0(mod 3) for n ≥ 6, then |V (P 4
n)| = 3t and |E(P 4

n)| = 12t − 10.

Thus, vf(i) = t (i = 0, 1, 2) and ef(i) = 4t − 3 or 4t − 4 (i = 0, 1, 2). If vf (0) = t,

then ef(0) > 4t − 3 for t > 1. Therefore, |ef(0)− ef(j)| > 1 for j=1,2. Hence, P 4
n is

not a 3-product cordial graph if n ≡ 0(mod 3) for n ≥ 6.

Case (iii): If n ≡ 1(mod 3) for n ≥ 4, then |V (P 4
n)| = 3t+1 and |E(P 4

n)| = 12t− 6.

Thus, vf(i) = t or t+1 (i = 0, 1, 2) and ef (i) = 4t− 2 (i = 0, 1, 2). If vf(0) = t, then

ef (0) > 4t− 2 for t ≥ 1. Therefore, |ef (0)− ef (j)| > 1 for j=1,2. Hence, P 4
n is not a

3-product cordial graph if n ≡ 1(mod 3) for n ≥ 4.

Case (iv): If n = 3, then |V (P 4
3 )| = 3 and |E(P 4

3 )| = 3. Thus, vf (i) = 1 (i = 0, 1, 2)

and ef(i) = 1 (i = 0, 1, 2). If vf(0) = 1, then ef(0) > 1. Therefore, |ef(0)− ef(j)| > 1

for j=1,2. Hence, P 4
n is not a 3-product cordial graph if n = 3.

Case (v): If n = 5 or 8, then |V (P 4
5 )| = 5, |E(P 4

5 )| = 10, |V (P 4
8 )| = 8 and

|E(P 4
8 )| = 22. But the maximum number of edges in a 3-product cordial graph of

order 5 and 8 are 8 and 20, respectively. Hence, P 4
n is not a 3-product cordial graph

if n = 5 or 8. �

Example 2.2. An example of 3-product cordial labeling of P 4
11 is shown in Figure 2.

Figure 2
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Theorem 2.3. The graph P 5
n is not 3-product cordial for all n ≥ 3.

Proof. Let the vertex set and the edge set of P 5
n be V (P 5

n) = {vi ; 1 ≤ i ≤ n} and

E(P 5
n) = {(vi, vi+1) ; 1 ≤ i ≤ n−1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n−2} ∪ {(vi, vi+3) ; 1 ≤

i ≤ n− 3} ∪ {(vi, vi+4) ; 1 ≤ i ≤ n− 4} ∪ {(vi, vi+5) ; 1 ≤ i ≤ n− 5}, respectively.

We have the following five cases.
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Define f : V (P 5
n) → {0, 1, 2} as follows:

Case (i): If n ≡ 0(mod 3) for n ≥ 6, then |V (P 5
n)| = 3t and |E(P 5

n)| = 15t − 15.

Thus, vf(i) = t (i = 0, 1, 2) and ef (i) = 5t − 5 (i = 0, 1, 2). If vf (0) = t, then

ef (0) > 5t− 5 for t > 1. Therefore, |ef (0)− ef (j)| > 1 for j=1,2. Hence, P 5
n is not a

3-product cordial graph if n ≡ 0(mod 3) for n ≥ 6.

Case (ii): If n ≡ 1(mod 3) for n ≥ 7, then |V (P 5
n)| = 3t+1 and |E(P 5

n)| = 15t− 10.

Thus, vf (i) = t or t + 1 (i = 0, 1, 2) and ef (i) = 5t − 3 or 5t − 4 (i = 0, 1, 2). If

vf (0) = t or t + 1, then ef (0) > 5t − 3 for t > 1. Therefore, |ef (0)− ef (j)| > 1 for

j=1,2. Hence, P 5
n is not a 3-product cordial graph if n ≡ 1(mod 3) for n ≥ 7.

Case (iii): If n ≡ 2(mod 3) for n ≥ 8, then |V (P 5
n)| = 3t+2 and |E(P 5

n)| = 15t− 5.

Thus, vf(i) = t or t + 1 (i = 0, 1, 2) and ef(i) = 5t − 2 oe 5t − 1 (i = 0, 1, 2). If

vf (0) = t or t + 1, then ef (0) > 5t − 1 for t > 1. Therefore, |ef (0)− ef (j)| > 1 for

j=1,2. Hence, P 5
n is not a 3-product cordial graph if n ≡ 2(mod 3) for n ≥ 8.

Case (iv): If n = 3 or 4. For n = 3, |V (P 5
3 )| = 3 and |E(P 5

3 )| = 3. Thus, vf(i) = 1

(i = 0, 1, 2) and ef (i) = 1 (i = 0, 1, 2). If vf (0) = 1, then ef (0) > 1. Therefore,

|ef(0)− ef(j)| > 1 for j=1,2. For n = 4, |V (P 5
4 )| = 4 and |E(P 5

4 )| = 6. Thus,

vf (i) = 1 or 2 (i = 0, 1, 2) and ef (i) = 2 (i = 0, 1, 2). If vf(0) = 1 or 2, then

ef (0) > 2. Therefore, |ef (0)− ef (j)| > 1 for j=1,2. Hence, P 5
n is not a 3-product

cordial graph if n = 3 or 4.

Case (v): If n = 5, then |V (P 5
5 )| = 5 and |E(P 5

5 )| = 10. But the maximum number

of edges in a 3-product cordial graph of order 5 is 8. Hence, P 5
n is not a 3-product

cordial graph if n = 5. �

3. 4-product cordial labeling of powers of paths

In this section, we find the 4-product cordial labeling of powers of paths P 2
n , P

3
n , P

4
n

and P 5
n .

Theorem 3.1. For n ≥ 3, the graph P 2
n is 4-product cordial if and only if n = 14 or

5 ≤ n ≤ 11 except 8.
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Proof. Let the vertex set and the edge set of P 2
n be V (P 2

n) = {vi ; 1 ≤ i ≤ n} and

E(P 2
n) = {(vi, vi+1) ; 1 ≤ i ≤ n− 1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n− 2}, respectively. We

have the following five cases.

Define f : V (P 2
n) → {0, 1, 2, 3} as follows:

Case (i): If n = 14 or 5 ≤ n ≤ 11 except 8, then the 4-product cordial labelings of

P 2
n are shown in Table 1.

Table 1.

n v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

5 0 2 1 3 1

6 0 2 1 1 3 3

7 0 2 2 1 1 3 3

9 0 0 2 1 1 1 3 3 2

10 0 0 2 1 1 3 3 3 1 2

11 0 0 2 2 1 1 3 1 3 3 2

14 0 0 0 2 2 1 1 1 3 3 3 1 2 3

From the above labeling pattern we have, |vf(i)− vf (j)| ≤ 1 and |ef(i)− ef (j)| ≤ 1

for all i, j = 0, 1, 2, 3.

Hence, P 2
n is a 4-product cordial graph if n = 14 or 5 ≤ n ≤ 11 except 8.

Case (ii): If n ≡ 0(mod 4) for n ≥ 4, then |V (P 2
n)| = 4t and |E(P 2

n)| = 8t − 3.

Thus, vf(i) = t (i = 0, 1, 2, 3) and ef (i) = 2t or 2t − 1 (i = 0, 1, 2, 3). Clearly,

vf (0) = t and 0 must be assigned consecutively at the beginning or at the end of

P 2
n . Otherwise ef (0) > 2t. Thus, ef(0) = 2t. Now vf(2) = t and 2 must be assigned

nonconsecutively. Otherwise ef (0) > 2t. Then, ef (2) ≥ 2t for t ≥ 1. Therefore

|ef(i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. Hence, P 2
n is not a 4-product cordial graph

if n ≡ 0(mod 4) for n ≥ 4.

Case (iii): If n ≡ 1(mod 4) for n ≥ 13, then |V (P 2
n)| = 4t+1 and |E(P 2

n)| = 8t− 1.

Thus, vf(i) = t or t+1 (i = 0, 1, 2, 3) and ef (i) = 2t or 2t−1 (i = 0, 1, 2, 3). Clearly,

vf (0) = t and 0 must be assigned consecutively at the beginning or at the end of

P 2
n . Otherwise ef (0) > 2t. Thus, ef(0) = 2t. Now vf(2) = t and 2 must be assigned
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nonconsecutively. Otherwise ef (0) > 2t. Then, ef (2) ≥ 2t for t ≥ 3. Therefore

|ef(i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. Hence, P 2
n is not a 4-product cordial graph

if n ≡ 1(mod 4) for n ≥ 13.

Case (iv): If n ≡ 2(mod 4) for n ≥ 18, then |V (P 2
n)| = 4t+ 2 and |E(P 2

n)| = 8t+ 1.

Thus, vf(i) = t or t + 1 (i = 0, 1, 2, 3) and ef (i) = 2t or 2t + 1 (i = 0, 1, 2, 3).

Clearly, vf (0) = t and we assign 0 to the vertices of the P 2
n in such a way that

ef (0) = 2t or 2t+1. If ef(0) = 2t. Now vf (2) = t or t+1. Let vf(2) = t and at most

2 consecutive vertices labeled with 2. Otherwise ef (0) > 2t+1. Then, ef (2) ≥ 2t+1

for t ≥ 4. Therefore |ef (i)− ef(j)| > 1 for all i, j = 0, 1, 2, 3. The similar argument

shows that vf(2) can not be t+ 1. Also, ef (0) = 2t+ 1 can be dealt with the similar

way. Hence, P 2
n is not a 4-product cordial graph if n ≡ 2(mod 4) for n ≥ 18.

Case (v): If n ≡ 3(mod 4) for n ≥ 15 and n = 3, then |V (P 2
n)| = 4t + 3 and

|E(P 2
n)| = 8t + 3. Thus, vf (i) = t or t + 1 (i = 0, 1, 2, 3) and ef (i) = 2t or 2t + 1

(i = 0, 1, 2, 3). For n = 3, vf (0) = 0. Otherwise ef(0) > 1. Now vf (2) = 1.

Then we have ef(2) > 1. Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. For

n ≥ 15, vf(0) = t and we assign 0 to the vertices of the P 2
n in such a way that

ef (0) = 2t or 2t + 1. Otherwise ef(0) > 2t + 1. If ef(0) = 2t. Clearly, vf (2) = t + 1

and at most 2 consecutive vertices labeled with 2. Otherwise ef(0) > 2t + 1. Then,

ef (2) ≥ 2t + 1 for t ≥ 3. Therefore |ef(i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. Hence,

P 2
n is not a 4-product cordial graph if n ≡ 3(mod 4) for n ≥ 15 and n = 3. �

Example 3.1. An example of 4-product cordial labeling of P 2
6 is shown in Figure 3.

Figure 3
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Theorem 3.2. For n ≥ 3, the graph P 3
n is 4-product cordial if and only if n = 10.

Proof. Let the vertex set and the edge set of P 3
n be V (P 3

n) = {vi ; 1 ≤ i ≤ n} and

E(P 3
n) = {(vi, vi+1) ; 1 ≤ i ≤ n−1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n−2}∪ {(vi, vi+3) ; 1 ≤

i ≤ n− 3}, respectively. We have the following five cases.
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Define f : V (P 3
n) → {0, 1, 2, 3} as follows:

Case (i): If n = 10, then the 4-product cordial labeling of P 3
n is shown in Table 2.

Table 2.

n v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

10 0 0 2 1 1 3 1 3 3 2

From the above labeling pattern we have, |vf(i)− vf (j)| ≤ 1 and |ef(i)− ef (j)| ≤ 1

for all i, j = 0, 1, 2, 3.

Hence, P 3
n is a 4-product cordial graph if n = 10.

Case (ii): If n ≡ 0(mod 4) for n ≥ 4, then |V (P 3
n)| = 4t and |E(P 3

n)| = 12t − 6.

Thus, vf (i) = t (i = 0, 1, 2, 3) and ef (i) = 3t− 1 or 3t− 2 (i = 0, 1, 2, 3). If vf (0) = t,

then ef (0) > 3t− 1. Therefore |ef (i)− ef(j)| > 1 for all i, j = 0, 1, 2, 3. Hence, P 3
n is

not a 4-product cordial graph if n ≡ 0(mod 4) for n ≥ 4.

Case (iii): If n ≡ 1(mod 4) for n ≥ 5, then |V (P 3
n)| = 4t+1 and |E(P 3

n)| = 12t− 3.

Thus, vf(i) = t or t+1 (i = 0, 1, 2, 3) and ef (i) = 3t or 3t−1 (i = 0, 1, 2, 3). Clearly,

vf (0) = t and 0 must be assigned consecutively at the beginning or at the end of P 3
n .

Otherwise ef (0) > 3t. Thus, ef(0) = 3t. Now vf (2) = t or t + 1. If vf (2) = t, then

2 must be assigned nonconsecutively. Otherwise ef (0) > 3t. Then, ef (2) > 3t − 1

for t ≥ 1. Therefore |ef (i)− ef(j)| > 1 for all i, j = 0, 1, 2, 3. The similar argument

shows that vf (2) can not be t + 1. Hence, P 3
n is not a 4-product cordial graph if

n ≡ 1(mod 4) for n ≥ 5.

Case (iv): If n ≡ 2(mod 4) for n ≥ 14 or n = 6, then |V (P 3
n)| = 4t + 2 and

|E(P 3
n)| = 12t. Thus, vf (i) = t or t + 1 (i = 0, 1, 2, 3) and ef (i) = 3t (i = 0, 1, 2, 3).

Clearly, vf (0) = t and 0 must be assigned consecutively at the beginning or at the

end of P 3
n . Otherwise ef (0) > 3t. Thus, ef(0) = 3t. Now vf (2) = t or t + 1. If

vf (2) = t, then 2 must be assigned nonconsecutively. Otherwise ef(0) > 3t. Thus,

ef (2) > 3t for t ≥ 3. Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. The similar

argument shows that vf(2) can not be t + 1. For n = 6, |E(P 3
6 )| = 12. But the

maximum number of edges in a 4-product cordial graph of order 6 is 11. Hence, P 3
n

is not a 4-product cordial graph if n ≡ 2(mod 4) for n ≥ 14 or n = 6.
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Case (v): If n ≡ 3(mod 4) for n ≥ 3, then |V (P 3
n)| = 4t + 3 and |E(P 3

n)| = 12t+ 3.

Thus, vf(i) = t or t + 1 (i = 0, 1, 2, 3) and ef (i) = 3t or 3t + 1 (i = 0, 1, 2, 3).

Obviously, vf (0) = t and we assign 0 to the vertices of the P 3
n in such a way that

ef (0) = 3t or 3t + 1. If ef (0) = 3t. Now vf(2) = t + 1 and at most 2 consecutive

vertices labeled with 2. Otherwise ef(0) > 3t + 1. Then, ef(2) > 3t + 1 for t ≥ 0

Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. Hence, P 3
n is not a 4-product

cordial graph if n ≡ 3(mod 4) for n ≥ 3. �

Example 3.2. An example of 4-product cordial labeling of P 3
10 is shown in Figure 4.

Figure 4

1

1
2

1

23

0
0

0
30

2

1
1 2

0

3

3
0

0

0

1

2 1 11

2
2

2

3 33

3

3

Theorem 3.3. The graph P 4
n is not 4-product cordial for all n ≥ 3.

Proof. Let the vertex set and the edge set of P 4
n be V (P 4

n) = {vi ; 1 ≤ i ≤ n} and

E(P 4
n) = {(vi, vi+1) ; 1 ≤ i ≤ n−1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n−2} ∪ {(vi, vi+3) ; 1 ≤

i ≤ n − 3} ∪ {(vi, vi+4) ; 1 ≤ i ≤ n − 4}, respectively. We have the following four

cases.

Define f : V (P 4
n) → {0, 1, 2, 3} as follows:

Case (i): If n ≡ 0(mod 4) for n ≥ 4, then |V (P 4
n)| = 4t and |E(P 4

n)| = 16t − 10.

Thus, vf (i) = t (i = 0, 1, 2, 3) and ef (i) = 4t− 2 or 4t− 3 (i = 0, 1, 2, 3). If vf (0) = t,

then ef (0) > 4t − 2 for t ≥ 1. Therefore |ef(i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3.

Hence, P 4
n is not a 4-product cordial graph if n ≡ 0(mod 4) for n ≥ 4.

Case (ii): If n ≡ 1(mod 4) for n ≥ 5, then |V (P 4
n)| = 4t+ 1 and |E(P 4

n)| = 16t− 6.

Thus, vf(i) = t or t + 1 (i = 0, 1, 2, 3) and ef(i) = 4t− 1 or 4t− 2 (i = 0, 1, 2, 3). If

vf (0) = t or t+ 1, then ef (0) > 4t− 1 for t ≥ 1. Therefore |ef (i)− ef(j)| > 1 for all

i, j = 0, 1, 2, 3. Hence, P 4
n is not a 4-product cordial graph if n ≡ 1(mod 4) for n ≥ 5.

Case (iii): If n ≡ 2(mod 4) for n ≥ 6. For n ≥ 14, |V (P 4
n)| = 4t+ 2 and |E(P 4

n)| =

16t− 2. Thus, vf(i) = t or t+1 (i = 0, 1, 2, 3) and ef(i) = 4t or 4t− 1 (i = 0, 1, 2, 3).
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Clearly, vf (0) = t and 0 must be assigned consecutively at the beginning or at the

end of P 4
n . Otherwise ef (0) > 4t. Thus, ef(0) = 4t. Now vf (2) = t or t + 1. If

vf (2) = t, then 2 must be assigned nonconsecutively. Otherwise ef (0) > 4t. Then,

ef (2) > 4t for t ≥ 3. Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. The similar

argument shows that vf(2) can not be t + 1. For n = 6, |E(P 4
6 )| = 14. But the

maximum number of edges in a 4-product cordial graph of order 6 is 11. For n = 10,

|E(P 4
10)| = 30. But the maximum number of edges in a 4-product cordial graph of

order 10 is 27. Hence, P 4
n is not a 4-product cordial graph if n ≡ 2(mod 4) for n ≥ 6.

Case (iv): If n ≡ 3(mod 4) for n ≥ 3. For n ≥ 7, |V (P 4
n)| = 4t + 3 and |E(P 4

n)| =

16t+2. Thus, vf(i) = t or t+1 (i = 0, 1, 2, 3) and ef (i) = 4t or 4t+1 (i = 0, 1, 2, 3).

Clearly, vf (0) = t and 0 must be assigned consecutively at the beginning or at the

end of P 4
n . Otherwise ef (0) > 4t. Thus, ef(0) = 4t. Clearly, vf(2) = t+1 and at most

2 consecutive vertices labeled with 2. Otherwise ef (0) > 4t+1. Then, ef (2) > 4t+1

for t ≥ 1. Therefore |ef (i)− ef(j)| > 1 for all i, j = 0, 1, 2, 3. For n = 3, |V (P 4
3 )| = 3

and |E(P 4
3 )| = 3. Thus, vf (i) = 0 or 1 (i = 0, 1, 2, 3) and ef (i) = 0 or 1 (i = 0, 1, 2, 3).

If vf (0) = 0, then ef (0) = 0. Otherwise ef (0) > 1. If vf (2) = 1, then ef(2) > 1.

Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. Hence, P 4
n is not a 4-product

cordial graph if n ≡ 3(mod 4) for n ≥ 3. �

Theorem 3.4. The graph P 5
n is not 4-product cordial for all n ≥ 3.

Proof. Let the vertex set and the edge set of P 5
n be V (P 5

n) = {vi ; 1 ≤ i ≤ n} and

E(P 5
n) = {(vi, vi+1) ; 1 ≤ i ≤ n−1} ∪ {(vi, vi+2) ; 1 ≤ i ≤ n−2} ∪ {(vi, vi+3) ; 1 ≤

i ≤ n− 3} ∪ {(vi, vi+4) ; 1 ≤ i ≤ n− 4} ∪ {(vi, vi+5) ; 1 ≤ i ≤ n− 5}, respectively.

We have the following four cases.

Define f : V (P 5
n) → {0, 1, 2, 3} as follows:

Case (i): If n ≡ 0(mod 4) for n ≥ 4. For n ≥ 8, |V (P 5
n)| = 4t and |E(P 5

n)| = 20t−15.

Thus, vf (i) = t (i = 0, 1, 2, 3) and ef (i) = 5t− 3 or 5t− 4 (i = 0, 1, 2, 3). If vf (0) = t,

then ef(0) > 5t− 3 for t ≥ 2. Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. For

n = 4, |V (P 5
4 )| = 4 and |E(P 5

4 )| = 6. Thus, vf(i) = 1 (i = 0, 1, 2, 3) and ef (i) = 1 or 2

(i = 0, 1, 2, 3). If vf(0) = 1, then ef(0) > 2. Therefore |ef(i)− ef (j)| > 1 for all

j = 0, 1, 2, 3. Hence, P 5
n is not a 4-product cordial graph if n ≡ 0(mod 4) for n ≥ 4.
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Case (ii): If n ≡ 1(mod 4) for n ≥ 5, then |V (P 5
n)| = 4t+1 and |E(P 5

n)| = 20t− 10.

Thus, vf(i) = t or t + 1 (i = 0, 1, 2, 3) and ef(i) = 5t− 2 or 5t− 3 (i = 0, 1, 2, 3). If

vf (0) = t or t + 1, then ef (0) > 5t− 2 for t ≥ 1 Therefore |ef(i)− ef (j)| > 1 for all

i, j = 0, 1, 2, 3. Hence, P 5
n is not a 4-product cordial graph if n ≡ 1(mod 4) for n ≥ 5.

Case (iii): If n ≡ 2(mod 4) for n ≥ 6, then |V (P 5
n)| = 4t+2 and |E(P 5

n)| = 20t− 5.

Thus, vf(i) = t or t + 1 (i = 0, 1, 2, 3) and ef(i) = 5t− 1 or 5t− 2 (i = 0, 1, 2, 3). If

vf (0) = t or t + 1, then ef (0) > 5t− 1 for t ≥ 1 Therefore |ef(i)− ef (j)| > 1 for all

i, j = 0, 1, 2, 3. Hence, P 5
n is not a 4-product cordial graph if n ≡ 2(mod 4) for n ≥ 6.

Case (iv): If n ≡ 3(mod 4) for n ≥ 3. For n ≥ 7 then |V (P 5
n)| = 4t + 3 and

|E(P 5
n)| = 20t. Thus, vf (i) = t or t + 1 (i = 0, 1, 2, 3) and ef (i) = 5t (i = 0, 1, 2, 3).

Clearly, vf (0) = t and 0 must be assigned consecutively at the beginning or at the

end of P 5
n . Otherwise ef(0) > 5t. Thus, ef (0) = 5t. Clearly, vf (2) = t+1 and 2 must

be assigned nonconsecutively. Otherwise ef (0) > 5t. Then, ef(2) > 5t for t ≥ 1.

Therefore |ef(i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. For n = 3, |V (P 5
3 )| = 3 and

|E(P 5
3 )| = 3. Thus, vf(i) = 0 or 1 (i = 0, 1, 2, 3) and ef (i) = 0 or 1 (i = 0, 1, 2, 3).

If vf (0) = 0, then ef (0) = 0. Otherwise ef (0) > 1. If vf (2) = 1, then ef(2) > 1.

Therefore |ef (i)− ef (j)| > 1 for all i, j = 0, 1, 2, 3. Hence, P 5
n is not a 4-product

cordial graph if n ≡ 3(mod 4) for n ≥ 3. �

4. Conclusion

In this paper, we find some new results on k-product cordial labeling and establish

the 3-product cordial behaviour of the powers of paths P 3
n , P 4

n and P 5
n . Also, we

study the 4-product cordial behaviour of powers of paths P 2
n , P

3
n , P 4

n and P 5
n . We

conclude this paper with the following open problem.

Open problem:

Find k-product cordial labeling of P d
n for k ≥ 5.
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