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VAGUE MODULES ON THE BASE OF ([0, 1],≤,∧)

SEVDA SEZER(1) AND MURAT YÜKSEL(2)

Abstract. In this paper, the concepts of vague module, vague submodule, vague

module homomorphism and vague module isomorphism based on the Demirci’s

vague groups are defined. Then various elementary properties of these concepts are

obtained, and the validity of some relevant classical results in these settings are

investigated.

1. Introduction

The concept of fuzzy set was defined in [12] by Zadeh after reconsideration of the

concept of classical mathematics began. Thereafter, the concept of fuzzy subgroup

was introduced in [9] by Rosenfeld as a natural generalization of the concept of

subgroup and have been widely studied.

Following this, a new object related to groups called vague groups was introduced

and studied by Demirci in [2] by forcing the operations of the group to be compat-

ible with a given fuzzy equality. After, the theory of some vague algebraic notions

was established in [3–8, 10, 11]. This work introduces some elementary properties of

vague module, vague submodule, vague module homomorphism and vague module

isomorphism and establishes some new results.

After this introductory Section, Section 2 is devoted to some definitions and prop-

erties related to vague groups, generalized vague subgroups, vague rings, vague sub-

rings, vague ideals and vague homomorphisms that will be needed later. In Section

3, the definitions of vague module, vague submodule, vague module homomorphism
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and vague module isomorphism are given on the basis of ([0, 1],≤,∧) and some basic

properties of these concepts are investigated.

2. Preliminaries

The notions of fuzzy equality, strong fuzzy function, vague group, generalized vague

subgroup, vague rings, vague subrings, vague ideals, vague homomorphisms, vague

isomorphisms and their fundamental properties are introduced in [1–3, 10, 11]. Our

aim in this section is to recall these notions and some of their elementary properties,

which will be needed in this paper.

The symbols “∧” and “∨” will always stand for the minimum and maximum op-

erations between finitely many real numbers, respectively; and X, Y,G will always

stand for crisp and nonempty sets in this paper.

Definition 2.1. [1] A mapping EX : X ×X → [0, 1] is called a fuzzy equality on X

if the following conditions are satisfied:

(E.1) EX(x, y) = 1 ⇐⇒ x = y , ∀x, y ∈ X ,

(E.2) EX(x, y) = EX(y, x) , ∀x, y ∈ X ,

(E.3) EX(x, y) ∧ EX(y, z) ≤ EX(x, z) , ∀x, y, z ∈ X.

For x, y ∈ X , the real number EX(x, y) shows the degree of the equality of x and y.

One can always define a fuzzy equality on X with respect to (abbreviated to “w.r.t.”)

the classical equality of the elements of X . Indeed, the mapping Ec
X : X×X → [0, 1],

defined by

Ec
X(x, y) =







1 , if x = y

0 , otherwise

is obviously a fuzzy equality on X .

Furthermore, for k ∈ (0, 1] the mapping EX : X ×X → [0, 1], defined by

EX(x, y) =







1 , if x = y

k , otherwise

is a fuzzy equality on X .

Definition 2.2. [3] Let EX and EY be two fuzzy equalities on X and Y , respectively.

Then a fuzzy relation ◦̃ from X to Y (i.e., a fuzzy subset ◦̃ of X × Y ) is called a
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strong fuzzy function from X to Y w.r.t. the fuzzy equalities EX and EY , denoted

by ◦̃ : X  Y , if the characteristic function µ◦̃ : X × Y → [0, 1] of ◦̃ satisfies the

following two conditions:

(F.1) For each x ∈ X , there exists y ∈ Y such that µ◦̃(x, y) = 1,

(F.2) For each x1, x2 ∈ X , y1, y2 ∈ Y ,

µ◦̃(x1, y1) ∧ µ◦̃(x2, y2) ∧ EX(x1, x2) ≤ EY (y1, y2).

The concepts of vague binary operation on X and transitivity of a vague binary

operation are defined by Demirci as follows.

Definition 2.3. [2, 3]

(i) A strong fuzzy function ◦̃ : X × X  X w.r.t. a fuzzy equality EX×X on

X ×X and a fuzzy equality EX on X is called a vague binary operation on

X w.r.t. EX×X and EX . (For all (x1, x2) ∈ X × X , x3 ∈ X , µ◦̃((x1, x2), x3)

will be denoted by µ◦̃(x1, x2, x3) for the sake of simplicity.)

(ii) A vague binary operation ◦̃ on X w.r.t. EX×X and EX is said to be transitive

of the first order if µ◦̃(a, b, c) ∧ EX(c, d) ≤ µ◦̃(a, b, d) for all a, b, c, d ∈ X .

(iii) A vague binary operation ◦̃ on X w.r.t. EX×X and EX is said to be transitive

of the second order if µ◦̃(a, b, c) ∧ EX(b, d) ≤ µ◦̃(a, d, c) for all a, b, c, d ∈ X .

(iv) A vague binary operation ◦̃ on X w.r.t. EX×X and EX is said to be transitive

of the third order if µ◦̃(a, b, c) ∧ EX(a, d) ≤ µ◦̃(d, b, c) for all a, b, c, d ∈ X .

Definition 2.4. [2] Let ◦̃ be a vague binary operation on G w.r.t. a fuzzy equality

EG×G on G×G and a fuzzy equality EG on G. Then

(i) G together with ◦̃, denoted by < G, ◦̃, EG×G, EG > or simply < G, ◦̃ >, is

called a vague semigroup if the characteristic function µ◦̃ : G×G×G → [0, 1]

of ◦̃ fulfills the condition: For all a, b, c, d,m, q, w ∈ G,

µ◦̃(b, c, d) ∧ µ◦̃(a, d,m) ∧ µ◦̃(a, b, q) ∧ µ◦̃(q, c, w) ≤ EG(m,w).

(ii) A vague semigroup < G, ◦̃ > is called a vague monoid if there exists a two-

sided identity element e◦̃ ∈ G, that is an element e◦̃ satisfying µ◦̃(e◦̃, a, a) ∧

µ◦̃(a, e◦̃, a) = 1 for each a ∈ G.
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(iii) A vague monoid < G, ◦̃ > is called a vague group if for each a ∈ G, there

exists a two-sided inverse element a−1 ∈ G, that is an element a−1 satisfying

µ◦̃(a
−1, a, e◦̃) ∧ µ◦̃(a, a

−1, e◦̃) = 1.

(iv) A vague semigroup < G, ◦̃ > is said to be commutative (Abelian) if µ◦̃(a, b,m)∧

µ◦̃(b, a, w) ≤ EG(m,w) for each a, b,m, w ∈ G.

In the rest of this paper, the notation < G, ◦̃ > always stands for the vague group

< G, ◦̃ > w.r.t. a fuzzy equality EG×G on G×G and a fuzzy equality EG on G.

Proposition 2.1. [2] For a given vague group < G, ◦̃ >, there exists a unique binary

operation in the classical sense, denoted by ◦, on G such that < G, ◦ > is a group in

the classical sense.

The binary operation “◦” in Proposition 2.1 is explicitly given by the equivalence

(2.1) a ◦ b = c ⇐⇒ µ◦̃(a, b, c) = 1, ∀a, b, c ∈ G.

The binary operation “◦”, defined by the equivalence (2.1), is called the ordinary

description of ◦̃, and is denoted by ◦ = ord(◦̃) in [3, 5].

If ◦̃ is a vague binary operation on G w.r.t. a fuzzy equality EG×G on G×G and

a fuzzy equality EG on G, in the rest of this paper the ordinary description of ◦̃ will

be denoted by ◦. In this case, from [3, 5] we have the following property

(2.2) µ◦̃(a, b, a ◦ b) = 1 and µ◦̃(a, b, c) ≤ EG(a ◦ b, c) , ∀a, b, c ∈ G.

For a given fuzzy equality EG on G and for a crisp subset A of G, the restriction

of the mapping EG to A×A, denoted by EA, is obviously a fuzzy equality on A.

Definition 2.5. [10] Let < G, ◦̃ > be a vague group and A be a nonempty, crisp

subset of G. Let ⊙̃ be a vague binary operation on A such that

µ⊙̃(a, b, c) ≤ µ◦̃(a, b, c), ∀a, b, c ∈ A.

If < A, ⊙̃ > is itself a vague group w.r.t. the fuzzy equalities EA×A on A× A and EA

on A, then < A, ⊙̃ > is said to be a generalized vague subgroup of < G, ◦̃ >, denoted

by < A, ⊙̃ >
v.s
≤ < G, ◦̃ >.
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For a given vague group < G, ◦̃ >, because of the uniqueness of the identity and the

inverse of an element of < G, ◦̃ >, it can be easily seen that if < A, ⊙̃ >
v.s
≤ < G, ◦̃ >,

then the identity of < A, ⊙̃ > and the inverse of x ∈ A w.r.t. < A, ⊙̃ > are the

identity of < G, ◦̃ > and the inverse of x ∈ A w.r.t. < G, ◦̃ >, i.e., eA = eG and

x−1
A = x−1

G , respectively.

Definition 2.6. [2] Let < G, ◦̃ > and < H, ⋆̃ > be two vague semigroups. A function

(in the classical sense) f : G → H is called a vague homomorphism if µ◦̃(a, b, c) ≤

µ⋆̃(f(a), f(b), f(c)) , ∀a, b, c ∈ G. In this case, the crisp set {g ∈ G : f(g) = eH} is

called the vague kernel of f , and is denoted by V Kerf .

In a similar fashion to classical algebra, the concepts of vague ring, vague subring

and vague ideal are defined in [11] as follows:

Definition 2.7. [11] Let ER×R and ER be fuzzy equalities on R × R and R,

respectively. Let ⊕̃, ⊙̃ be two vague binary operations on R. Then, the 3-tuple

< R, ⊕̃, ⊙̃ > is called a vague ring w.r.t. ER×R and ER if the following three

conditions are satisfied:

(VR.1) < R, ⊕̃ > is a commutative vague group,

(VR.2) < R, ⊙̃ > is a vague semigroup,

(VR.3) < R, ⊕̃, ⊙̃ > satisfies distributive laws, i.e., ∀a, b, c, d, t, x, y, z ∈ R,

µ⊙̃(x, y, a) ∧ µ⊙̃(x, z, b) ∧ µ⊕̃(a, b, c) ∧ µ⊕̃(y, z, d) ∧ µ⊙̃(x, d, t) ≤ ER(t, c),

µ⊙̃(x, z, a) ∧ µ⊙̃(y, z, b) ∧ µ⊕̃(a, b, c) ∧ µ⊕̃(x, y, d) ∧ µ⊙̃(d, z, t) ≤ ER(t, c).

(VR.4) A vague ring < R, ⊕̃, ⊙̃ > is said to be a vague ring with identity if there

exists e⊙̃ ∈ R such that µ⊙̃(x, e⊙̃, x) ∧ µ⊙̃(e⊙̃, x, x) = 1 for each x ∈ R.

(VR.5) A vague ring < R, ⊕̃, ⊙̃ > is said to be a commutative (Abelian) if

µ⊙̃(x, y, s) ∧ µ⊙̃(y, x, t) ≤ ER(s, t) , ∀x, y, s, t ∈ R.

In the rest of this paper, the notation < R, ⊕̃, ⊙̃ > always stands for the vague ring

< R, ⊕̃, ⊙̃ > w.r.t. ER×R and ER. If < R, ⊕̃, ⊙̃ > is a vague ring, then we denote

the inverse of a by −a w.r.t. the vague group < R, ⊕̃ >; additionally if < R, ⊙̃ > is a

vague group, then we denote the inverse of a by a−1 w.r.t. the vague group < R, ⊙̃ >.
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Definition 2.8. [11] Let < R, ⊕̃, ⊙̃ > be a vague ring and A be a nonempty, crisp

subset of R. Let +̃ and ·̃ be two vague binary operations on A such that

µ+̃(a, b, c) ≤ µ⊕̃(a, b, c) , µ·̃(a, b, c) ≤ µ⊙̃(a, b, c), ∀a, b, c ∈ A.

If < A, +̃, ·̃ > is itself a vague ring w.r.t. EA×A and EA, then < A, +̃, ·̃ > is said to

be a vague subring of < R, ⊕̃, ⊙̃ >, denoted by < A, +̃, ·̃ >
v.r

≤ < R, ⊕̃, ⊙̃ >.

Definition 2.9. [11] Let < R, ⊕̃, ⊙̃ > be a vague ring and < A, +̃, ·̃ >
v.r

≤ <

R, ⊕̃, ⊙̃ >. If for all a ∈ A and for all h, t, s ∈ R

µ⊙̃(a, h, t) = 1 =⇒ t ∈ A and µ⊙̃(h, a, s) = 1 =⇒ s ∈ A,

then < A, +̃, ·̃ > is said to be a vague ideal of < R, ⊕̃, ⊙̃ >, it is denoted by <

A, +̃, ·̃ >
v.i

≤ < R, ⊕̃, ⊙̃ >.

It is clear from Definition 2.9 that if ER = Ec
R, ER×R = Ec

R×R, µ⊕̃(R×R×R) ∈

{0, 1} and < A, +̃, ·̃ >
v.i

≤< R, ⊕̃, ⊙̃ >, then < A,+, . > is an ideal of < R,⊕,⊙ >.

Therefore, in this case, a vague ideal < A, +̃, ·̃ > of < R, ⊕̃, ⊙̃ > is nothing but an

ideal of the classical ring < R,⊕,⊙ > in the classical sense.

3. Vague Module

In this section, we will define the concepts of vague module, vague submodule,

vague homomorphism, vague isomorphism, which are some of the basic concepts of

this work, and we will obtain some fundamental properties of these concepts.

Definition 3.1. Let < R, ⊕̃, ⊙̃, ER×R, ER > be a vague ring and < A, +̃ > be an

Abelian vague group. For each a, a1, a2, a
′
1, a

′
2, u, v, w ∈ A and r, r′, r1, r2 ∈ R,

(1) If f : R× A A is a fuzzy function such that

(VM 1) µ+̃(a1, a2, u) ∧ µf(r, u, v) ∧ µf(r, a1, a
′
1) ∧ µf(r, a2, a

′
2) ∧ µ+̃(a

′
1, a

′
2, w) ≤

EA(v, w),

(VM 2) µ⊕̃(r1, r2, r) ∧ µf(r, a, v) ∧ µf(r1, a, a1) ∧ µf(r2, a, a2) ∧ µ+̃(a1, a2, w) ≤

EA(v, w),

(VM 3) µ⊙̃(r1, r2, r
′) ∧ µf(r

′, a, v) ∧ µf(r2, a, u) ∧ µf(r1, u, w) ≤ EA(v, w)

then < A, +̃ > is said to be a vague left R-module.

(2) If g : A×R A is a fuzzy function such that
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(VM 1 ′) µ+̃(a1, a2, u) ∧ µg(u, r, v) ∧ µg(a1, r, a
′
1) ∧ µg(a2, r, a

′
2) ∧ µ⊕̃(a

′
1, a

′
2, w) ≤

EA(v, w),

(VM 2 ′) µ⊕̃(r1, r2, r) ∧ µg(a, r, v) ∧ µg(a, r1, a1) ∧ µg(a, r2, a2) ∧ µ+̃(a1, a2, w) ≤

EA(v, w),

(VM 3 ′) µ⊙̃(r1, r2, r
′) ∧ µg(a, r

′, v) ∧ µg(a, r1, u) ∧ µg(u, r2, w) ≤ EA(v, w)

then < A, +̃ > is said to be a vague right R-module.

(3) If < A, +̃ > is both a vague left R-module and a vague right R-module then

< A, +̃ > (in shortly, A) is said to be a vague R-module.

(4) Let R be a vague ring with identity.

a) If < A, +̃ > is a vague left R-module and

µf(1R, a, s) ≤ EA(s, a), ∀a, s ∈ A

then < A, +̃ > is said to be a unitary vague left R-module.

b) If < A, +̃ > is a vague right R-module and

µg(a, 1R, t) ≤ EA(a, t), ∀a, t ∈ A

then < A, +̃ > is said to be a unitary vague right R-module.

c) If < A, +̃ > is both a unitary vague left R-module and a unitary vague

right R-module then < A, +̃ > is said to be a unitary vague R-module.

It is clear from Definition 3.1 that, if < A, +̃, EA×A, EA > is a vague R-module

such that ER×R = Ec
R×R, ER = Ec

R and fuzzy functions µ⊕̃, µf are classical functions

then a vague R-module < A, +̃ > is a classical R-module. Therefore, in this case, a

vague R-module is nothing but a module in the classical case.

Notation . If the binary operation +̃ on A, fuzzy equalities EA×A and EA are known,

then the sentence “A is a vague left (right) R-module” will be written instead of

“< A, +̃ > is a vague left (right) R-module”.
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Example 3.1. Let < R, ⊕̃, ⊙̃ > be a vague ring, < A, +̃ > be an Abelian vague

group and f : R× A A be a fuzzy function such that

µf(r, a, a
′) =







1 , a′ = eA

0 , a′ 6= eA

then we can obtain A is a vague R-module. Indeed, µf is a (strong) fuzzy function

because for a′ 6= eA or a′′ 6= eA

(3.1) µf(r, a, a
′) ∧ µf(r, a, a

′′) ∧ ER×A((r, a), (r1, a1)) ≤ EA(a
′, a′′)

i.e. the condition (F.2) is satisfied. On the other hand, if a′ = a′′ = eA, then

inequality (3.1) is satisfied from EA(a
′, a′′) = 1 . Also, for all (r, a) ∈ R × A,

µf(r, a, eA) = 1, then the condition (F.3) is obtained, i.e., f : R×A A is a strong

vague function. Now, let us show that A is a vague R-module:

For v = a′1 = a′2 = eA at the condition (VM 1), we obtain

µ+̃(a1, a2, u) ∧ µf(r, u, v) ∧ µf(r, a1, a
′
1) ∧ µf(r, a2, a

′
2) ∧ µ+̃(a

′
1, a

′
2, w)

= µ+̃(a1, a2, u) ∧ µf(r, u, eA) ∧ µf(r, a1, eA) ∧ µf(r, a2, eA) ∧ µ+̃(eA, eA, w)

= µ+̃(a1, a2, u) ∧ µ+̃(eA, eA, w).

From µ+̃(eA, eA, w) ≤ EA(eA, w) we can write that

µ+̃(a1, a2, u) ∧ EA(eA, w) ≤ EA(eA, w).

For v = a1 = a2 = eA at the condition (VM 2), we have

µ⊕̃(r1, r2, r) ∧ µf(r, a, v) ∧ µf(r1, a, a1) ∧ µf(r2, a, a2) ∧ µ+̃(a1, a2, w)

= µ⊕̃(r1, r2, r) ∧ µf(r, a, eA) ∧ µf(r1, a, eA) ∧ µf(r2, a, eA) ∧ µ+̃(eA, eA, w)

= µ⊕̃(r1, r2, r) ∧ µ+̃(eA, eA, w)

≤ EA(eA, w).

Also, for v = u = w = eA at the condition (VM 3) we can obtain that

µ⊙̃(r1, r2, r
′) ∧ µf(r

′, a, v) ∧ µf(r2, a, u) ∧ µf(r1, u, w)

= µ⊙̃(r1, r2, r
′) ∧ µf(r

′, a, eA) ∧ µf(r2, a, eA) ∧ µf(r1, u, eA)

≤ EA(eA, eA) = 1,
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i.e., A is a vague R-module.

In here, A is not a unitary vague R-module, because the inequality µf(1R, a, s) ≤

EA(a, s) is not satisfied for s = eA 6= a.

Proposition 3.1. Let < S, +̃, ·̃ >
υ.r.

≤< R, ⊕̃, ⊙̃ > and f : S × R  R be a fuzzy

function such that

(3.2) µf(s, r, r
′) = µ⊙̃(s, r, r

′), ∀s ∈ S, ∀r, r′ ∈ R.

Then, R is a vague S-module.

Proof. Since < R, ⊕̃, ⊙̃ > is a vague ring then we have that < R, ⊕̃ > is an Abelian

vague group and ∀r1, r2, r, r
′
0, r

′
1, r

′
2, r

′ ∈ R ; ∀s ∈ S

µ⊕̃(r1, r2, r) ∧ µf(s, r, r
′) ∧ µf(s, r1, r

′

1) ∧ µf(s, r2, r
′

2) ∧ µ⊕̃(r
′

1, r
′

2, r
′

0)

= µ⊕̃(r1, r2, r) ∧ µ⊙̃(s, r, r
′) ∧ µ⊙̃(s, r1, r

′

1) ∧ µ⊙̃(s, r2, r
′

2) ∧ µ⊕̃(r
′

1, r
′

2, r
′

0)

≤ ER(r
′, r′0).

So, the condition (VM 1) of Definition 3.1 is satisfied. From Definition 2.7, we have

µ+̃(s1, s2, s) ≤ µ⊕̃(s1, s2, s) and

µ+̃(s1, s2, s) ∧ µf(s, r, r
′) ∧ µf(s1, r, r1) ∧ µf(s2, r, r2) ∧ µ⊕̃(r1, r2, r0)

= µ+̃(s1, s2, s) ∧ µ⊙̃(s, r, r
′) ∧ µ⊙̃(s1, r, r1) ∧ µ⊙̃(s2, r, r2) ∧ µ⊕̃(r1, r2, r0)

≤ µ⊕̃(s1, s2, s) ∧ µ⊙̃(s, r, r
′) ∧ µ⊙̃(s1, r, r1) ∧ µ⊙̃(s2, r, r2) ∧ µ⊕̃(r1, r2, r0)

≤ ER(r
′, r0).

So, the condition (VM 2) is satisfied. Using Definition 2.8, we have µ·̃(s1, s2, s
′)

≤ µ⊙̃(s1, s2, s
′) and from < R, ⊙̃ > is a vague semigroup;

µ·̃(s1, s2, s
′) ∧ µf(s

′, r, r′) ∧ µf(s1, r, r0) ∧ µf(r0, s2, r
′

0)

= µ·̃(s1, s2, s
′) ∧ µ⊙̃(s

′, r, r′) ∧ µ⊙̃(s1, r, r0) ∧ µ⊙̃(r0, s2, r
′

0)

≤ µ⊙̃(s1, s2, s
′) ∧ µ⊙̃(s

′, r, r′) ∧ µ⊙̃(s1, r, r0) ∧ µ⊙̃(r0, s2, r
′

0)

≤ ES(r
′, r′0)
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i.e., the condition (VM 3) is satisfied. Hence, we have R is a vague left S-module.

In a similar way, we can obtain that R is a vague right S-module. Therefore, R is a

vague S-module. �

Corollary 3.1. If < I, +̃, ·̃ >
v.i.

≤< R, ⊕̃, ⊙̃ >, then R is a vague I-module.

Proof. If we define f : I × R  R such that µf(a, r, r
′) = µ⊙̃(a, r, r

′), then we

obtained R is a vague I-module from Proposition 3.1. �

In the rest of this paper, the sentence “A is a vague R-module” will be understood

that “A is a vague left R-module”.

Proposition 3.2. Let < I, +̃, ·̃ >
v.i.

≤< R, ⊕̃, ⊙̃ >. Let f : R × I  I such that

µf(r, a, a
′) ≤ µ⊙̃(r, a, a

′), then I is a vague R-module.

Proof. Since < I, +̃, ·̃ > is a vague ideal, < I, +̃ > is an Abelian vague group. From

the distributive laws of Definition 2.7, the conditions (VM 1) and (VM 2) are satisfied.

Finally, we have that

µ⊙̃(r1, r2, r
′) ∧ µf(r

′, a, v) ∧ µf(r2, a, u) ∧ µf(r, u, w)

= µ⊙̃(r1, r2, r
′) ∧ µ⊙̃(r

′, a, v) ∧ µ⊙̃(r2, a, u) ∧ µ⊙̃(r, u, w)

≤ ER(v, w)

from < R, ⊙̃ > is a vague semigroup, Hence, the condition (VM 3) is satisfied. �

Definition 3.2. Let < R, ⊕̃, ⊙̃, ER×R, ER > be a vague ring, < A, +̃ > be a vague

R-module, < B, +̃
′
>

v.g.

≤< A, +̃ > and f : R × A  A be a fuzzy function. If

∀r ∈ R, ∀b ∈ B, µf(r, b, b
′) = 1 implies b′ ∈ B, then < B, +̃

′
> is said to be a vague

R-submodule of < A, +̃ > and it is denoted by B
v.m.

≤
R

A.

Example 3.2. Let A = Z, B = 2Z, α, β, γ ∈ R such that 0 ≤ γ ≤ β ≤ α < 1. We

define

EZ : Z× Z → [0, 1], EZ(u, v) =







1 , u = v

α , otherwise
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EZ×Z = Ec
Z×Z

, E2Z : 2Z × 2Z → [0, 1], E2Z(u, v) = EZ(u, v), E2Z×2Z = Ec
2Z×2Z,

+̃ : Z× Z Z,

µ+̃(x, y, z) =







1 , x+ y = z

β , otherwise

and +̃
′
: 2Z× 2Z 2Z,

µ+̃
′(a, b, c) =







1 , a+ b = c

γ , otherwise.

From Example 22 in [10], < A, +̃ > is an Abelian vague group and < B, +̃
′
>

v.g.

≤ <

A, +̃ >. Let < R, ⊕̃, ⊙̃ > be a vague ring and f : R × A  A be a fuzzy function

such that

µf(r, a, a
′) =







1 , a′ = eA

0 , otherwise.

From Example 3.1, A is a vague R-module and for each r ∈ R, b ∈ B, µf(r, b, b
′) = 1

implies b′ = eA ∈ B. Thus, < B, +̃
′
> is a vague R-submodule of < A, +̃ >, i.e.,

2Z
v.m.

≤
R

Z.

Proposition 3.3. Let < R, ⊕̃, ⊙̃, ER×R, ER > be a vague ring, < A, +̃ > be a vague

R-module, f : R × A  A be a vague function, B ⊆ A and +̃
′
be a fuzzy binary

operation on B. In this case, the following two statements are equivalent:

(i) < B, +̃
′
>

v.m.

≤
R

< A, +̃ >

(ii) (a) eA ∈ B,

(b) ∀b1, b2 ∈ B ∃b′ ∈ B such that µ+̃
′(b1, b

−1
2 , b′) ≤ EB(b1 +

′ b−1
2 , b′),

(c) ∀r ∈ R, ∀b ∈ B and µf(r, b, b
′) = 1 ⇒ b′ ∈ B.

Proof. ((i) ⇒ (ii)): It is obvious from Definition 3.2.

((ii) ⇒ (i)) By making use of (a) and (b), we can write < B, +̃
′
>

v.g.

≤< A, +̃ >. And

we have < B, +̃
′
>

v.m.

≤
R

< A, +̃ > from Definition 3.2 under the assumption (c). �

Definition 3.3. Let < A, +̃ > and < B, +̃
′
> be two vague R-modules and h : A →

B be a function. If fA : R×A A , fB : R×B  B are fuzzy functions such that

∀r ∈ R and ∀a, a′, b, c ∈ A

(i) µ+̃(a, b, c) ≤ µ+̃
′(h(a), h(b), h(c)),
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(ii) µfA(r, a, a
′) ≤ µfB(r, h(a), h(a

′))

then the function h is said to be a vague R-module homomorphism from A to B.

(iii) If h : A → B is a vague R-module homomorphism and EB(h(a), h(b)) ≤

EA(a, b) for all a, b ∈ A then h is said to be a vagueR-module monomorphism.

(iv) If h : A → B is a onto vague R-module monomorphism and h−1 : B → A is

a vague homomorphism then h is said to be a vague R-module isomorphism.

Proposition 3.4. Let < A, +̃ > and < B, +̃
′
> be two vague R-modules, the vague

binary operation +̃
′
be a transitive of the first order, fB : R × B  B be a fuzzy

function and h : A → B be a vague R-module homomorphism. Then, vague subgroup

< VKerh, ⋆̃ > of < A, +̃ > is a vague R-submodule of < A, +̃ >.

Proof. Indeed < VKerh, ⋆̃ >
v.g.

≤< A, +̃ > from Proposition 34 in [10]. So, it is

sufficient to show that ∀r ∈ R, ∀a ∈ V Kerh, µfA(r, a, a
′) = 1 implies a′ ∈ V Kerh

from Proposition 3.3.(ii).(c). Since h is a vague R-module homomorphism ∀r ∈

R, ∀a ∈ V Kerh

1 = µfA(r, a, a
′) ≤ µfB(r, h(a), h(a

′)) = µfB(r, eB, h(a
′))

i.e.,

(3.3) µfB(r, eB, h(a
′)) = 1.

Furthermore; ∃s ∈ B such that µ+̃(h(a
′), h(a′), s) = 1, so

1 = µ+̃
′(eB, eB, eB) ∧ µfB(r, eB, h(a

′)) ∧ µfB(r, eB, h(a
′))

∧ µfB(r, eB, h(a
′)) ∧ µ+̃

′(h(a′), h(a′), s) ≤ EB(h(a
′), s)

i.e.,

(3.4) EB(h(a
′), s) = 1.

Since +̃
′
is transitive of the first order, by making use of (3.3) and (3.4), we can write

1 = µ+̃
′(h(a′), h(a′), s) ∧ EB(h(a

′), s) ≤ µ+̃
′(h(a′), h(a′), h(a′))
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i.e., µ+̃
′(h(a′), h(a′), h(a′)) = 1. On the other hand, from

1 = µ+̃
′(h(a′), h(a′), h(a′)) ∧ µ+̃

′(h(a′)−1, h(a′), eB)∧

µ+̃
′(h(a′)−1, h(a′), eB) ∧ µ+̃

′(eB, h(a
′), h(a′)) ≤ EB(eB, h(a

′))

we can write

(3.5) EB(eB, h(a
′)) = 1

So, h(a′) = eB, i.e., a
′ ∈ Ker(h). �

If µfB is transitive of the first order in Proposition 3.4, then by making use of (3.3)

and (3.5), we obtain

1 = µfB(r, eB, h(a
′)) ∧ EB(eB, h(a

′)) ≤ µfB(r, eB, eB)

i.e., µfB(r, eB, eB) = 1.

Proposition 3.5. Let < A, +̃ > and < B, +̃
′
> be two vague R-modules. Let

fA : R× A  A and fB : R × B  B be two fuzzy functions. Let h : A → B be a

function such that h(a) = eB. Then, h is a vague R-module homomorphism from A

to B.

Proof. It is clear that,

µ+̃(a, b, c) ≤ µ+̃
′(h(a), h(b), h(c)) = µ+̃

′(eB, eB, eB) = 1, ∀a, b, c ∈ A.

And, ∀r ∈ R, ∃kr ∈ B such that µfB(r, eB, kr) = 1. Since B is a vague R-module,

we can write

1 = µfB(r, eB, k) ∧ µfB(r, eB, k) ∧ µfB(r, eB, k) ∧ µ+̃
′(k, k, k +′ k)

≤ EB(k, k +′ k).

Thus, k = k +′ k, i.e., k = eB. So, µfB(r, eB, eB) = 1. In this case, we obtain

µfA(r, a, b) ≤ µfB(r, h(a), h(b)) = µfB(r, eB, eB) = 1.

This completes the proof. �
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Example 3.3. Let R, A, B, α, β, γ, EZ, EZ×Z, E2Z, E2Z×2Z, +̃ and +̃
′
be as in Example

3.2. Let fA = f as in Example 3.2. We define fB : R× B  B be a fuzzy function

such that

µfB(r, b, b
′) =







1 , b′ = eB

0 , otherwise.

and h : A → B be a function such that h(a) = eB. Then, h is a vague R-module

homomorphism from A to B from Proposition 3.5.

4. Conclusion

In this paper, the concepts of vague module, vague submodule, vague module

homomorphism and vague module isomorphism are introduced, and then various

elementary properties of these concepts are investigated.

Although the results in this paper are formulated on ([0, 1],≤,∧), it seems that

most of them can be restated for any t-norm instead of the minimum t-norm. This

topic is left to the readers for future investigations.
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