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PERIODIC OSCILLATION OF THE SOLUTIONS FOR A MODEL

OF FOUR-DISK DYNAMO SYSTEM WITH DELAYS

CHUNHUA FENG

Abstract. In this paper, the periodic oscillatory behavior of the solutions for a

model of four-disk dynamo system with delays is investigated. By means of the

mathematical analysis method, some sufficient conditions to guarantee the periodic

oscillation of the solutions are obtained. Computer simulations are provided to

demonstrate our results.

1. Introduction

It is well known that the disk dynamo plays an important role in studying the ge-

ographical phenomenon of the irregular reversal of the earth’s magnetic pole. Many

researchers have devoted to the understanding of dynamo dynamics [1-15]. For ex-

ample, in 1958, Rikitake firstly proposed a two coupled disk dynamo system, and the

coupling between electro-magnetism, motion and heat were discussed [1]. Then Cook

and Roberts [2] promulgated that the Rikitake’s model may have a periodic orbit. In

1972, Cook [3] modified the Rikitake’s model by considering the viscous friction and

time delay as the following system:


























x′

1(t) = −kx1 + x2(t− τ)x3,

x′

2(t) = −kx2 + x1(t− τ)x4,

x′

3(t) = 1− x1x2(t− τ),

x′

4(t) = 1− x1(t− τ)x2.

(1.1)

The chaotic dynamics of the Rikitake two-disk dynamo system was studied for a wide

range of parameters and results were compared with the sequence of geomagnetic
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polarity reversals. The chaos of the Rikitake system belongs to the Lorenz type,

which was characterized by irregular traveling of an orbit between two unstable fixed

points. Since then, extensive research works on modeling, dynamics analysis, and

circuit experiment were conducted for a further understanding of such systems. For

instance, Feng et al. considered the following system [4]:



























x′

1(t) = −µ1x1 + x2x3,

x′

2(t) = −µ2x2 + x1x4,

x′

3(t) = q1 − ε1x3 − x1x2,

x′

4(t) = q2 − ε2x4 − x1x2.

(1.2)

where q1 and q2 are the torques applied to the rotors, µ1, µ2, ε1, and ε2 are the positive

constants representing the power consumption and mechanical damping dissipation of

disk dynamo, respectively. The globally attractive and positive invariant set including

ultimate boundary of model (1.2) were provided. A set of sufficient conditions was

derived for all solutions of the stochastic disk dynamo system being global convergent

to the equilibrium point. It is known that time delays are often very small in practical

situations, they cannot be ignored and can cause a series of complex phenomena.

Therefore, Wei et al. considered the case that three communication delays due to

diffusion may be incorporated into the Rikitake model [5]:



























x′

1(t) = −kx1 + x2(t− τ2)x3,

x′

2(t) = −kx2 + x1(t− τ1)x4,

x′

3(t) = 1− x1x2(t− τ3)− ν1x3,

x′

4(t) = 1− x1(t− τ1)x2 − ν2x4.

(1.3)

The authors considered the stability of equilibrium states for different delay values,

and determined the location of relevant Hopf bifurcations by means of the normal

form method and the center manifold theory. A classical period-doubling route to-

wards deterministic chaos in system (1.3) has been revealed. Recently, Deng et al.
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investigated a three-disk dynamo system as follows [6]:



















































x′

1(t) = −kx1 + y1x3(t− τ),

x′

2(t) = −kx2 + y2x1(t− τ),

x′

3(t) = −kx3 + y3x2(t− τ),

y′1(t) = 1− x1x3(t− τ)− cy1,

y′2(t) = 1− x2x1(t− τ)− cy2.

y′3(t) = 1− x3x2(t− τ)− cy3.

(1.4)

where terms −cyi(i = 1, 2, 3) represent the viscous frictions in the disks and c denotes

the coefficient of friction. τ designates the interaction delay caused by the electro-

magnetic diffusion. By carrying out a comparative analysis, the dynamic behaviors

of the coupled dynamo system (1.4) were studied. Novel and complex nonlinear dy-

namic phenomena in the coupled delayed dynamo system have been explored. The

authors found that the double Hopf bifurcations can be induced in the delayed dy-

namo system. Three different topological structures of the unfolding were obtained

under different time delays. For a system of four disk dynamos with eight degrees

of freedom, the chaos behavior was confirmed by Lyapunov exponents method, the

stability at zero equilibrium point of four disk dynamos was proved [7]. However, the

system of four disk dynamos in [7] did not incorporate time delays. It is known that

time delay may induce the instability of the system. The time delay system is highly

important, not only to model various physical phenomena, but also to affect the sta-

bility of the physical systems. Therefore, in this paper, we consider the following

four-disk dynamo system with four delays:











































































x′

1(t) = −k1x1 + y1x4(t− τ4),

x′

2(t) = −k2x2 + y2x1(t− τ1),

x′

3(t) = −k3x3 + y3x2(t− τ2),

x′

4(t) = −k4x4 + y4x3(t− τ3),

y′1(t) = µ1 − x1x4(t− τ4)− c1y1,

y′2(t) = µ2 − x2x1(t− τ1)− c2y2,

y′3(t) = µ3 − x3x2(t− τ2)− c3y3,

y′4(t) = µ4 − x4x3(t− τ3)− c4y4.

(1.5)
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where ki, µi, and ci(i = 1, · · · , 4) are positive numbers. Our goal is to investigate the

instability of the equilibrium point and the existence of periodic solutions. Noting

that system (1.5) has four different delays, the bifurcating method is hard to deal

with model (1.5) if delays will be used as bifurcating parameters. By means of the

mathematical analysis method, the property of the solutions of system (1.5) has been

discussed.

This paper is organized as follows: In section 2, the boundedness of the solutions

and the uniqueness of the equilibrium point of system (1.5) are studied. In section

3, the instability of the solutions and periodic oscillation of the solutions of system

(1.5) are investigated. In section 4, numerical simulations are carried out to illustrate

our results. Some main conclusions are drawn in section 5.

2. Preliminaries

For convenience, if (x1∗, x2∗, x3∗, x4∗, y1∗, y2∗, y3∗, y4∗)
T is an equilibrium point. Let

ui(t) = xi(t) − xi∗, uj(t) = yj(t) − yj∗(i = 1, · · · , 4, j = 5, · · · , 8), then system (1.5)

can be written as follows:











































































u′

1(t) = −k1u1(t) + x4∗u5(t) + y1∗u4(t− τ4) + u5(t)u4(t− τ4),

u′

2(t) = −k2u2(t) + x1∗u6(t) + y2∗u1(t− τ1) + u6(t)u1(t− τ1),

u′

3(t) = −k3u3(t) + x2∗u7(t) + y3∗u2(t− τ2) + u7(t)u2(t− τ2),

u′

4(t) = −k4u4(t) + x3∗u8(t) + y4∗u3(t− τ3) + u8(t)u3(t− τ3),

u′

5(t) = −x4∗u1(t)− x1∗u4(t− τ4)− u1(t)u4(t− τ4)− c1u5(t),

u′

6(t) = −x1∗u2(t)− x2∗u1(t− τ1)− u2(t)u1(t− τ1)− c2u6(t),

u′

7(t) = −x2∗u3(t)− x3∗u2(t− τ2)− u3(t)u2(t− τ2)− c3u7(t),

u′

8(t) = −x3∗u4(t)− x4∗u3(t− τ3)− u4(t)u3(t− τ3)− c4u8(t).

(2.1)
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The linearized system of (2.1) around (x1∗, x2∗, x3∗, x4∗, y1∗, y2∗, y3∗, y4∗)
T is











































































u′

1(t) = −k1u1(t) + x4∗u5(t) + y1∗u4(t− τ4),

u′

2(t) = −k2u2(t) + x1∗u6(t) + y2∗u1(t− τ1),

u′

3(t) = −k3u3(t) + x2∗u7(t) + y3∗u2(t− τ2),

u′

4(t) = −k4u4(t) + x3∗u8(t) + y4∗u3(t− τ3),

u′

5(t) = −x4∗u1(t)− x1∗u4(t− τ4)− c1u5(t),

u′

6(t) = −x1∗u2(t)− x2∗u1(t− τ1)− c2u6(t),

u′

7(t) = −x2∗u3(t)− x3∗u2(t− τ2)− c3u7(t),

u′

8(t) = −x3∗u4(t)− x4∗u3(t− τ3)− c4u8(t).

(2.2)

System (2.2) can be written as a matrix form:

(2.3) u′(t) = Au(t) + Bu(t− τ)

where u = (u1, u2, · · · , u8)
T , u(t − τ) = (u1(t − τ1), u2(t − τ2), u3(t − τ3), u4(t −

τ4), 0, 0, 0, 0)
T , A and B both are 8× 8 matrices:

A = (aij)8×8 =



































−k1 0 0 0 x4∗ 0 0 0

0 −k2 0 0 0 x1∗ 0 0

0 0 −k3 0 0 0 x2∗ 0

0 0 0 −k4 0 0 0 x3∗

−x4∗ 0 0 0 −c1 0 0 0

0 −x1∗ 0 0 0 −c2 0 0

0 0 −x2∗ 0 0 0 −c3 0

0 0 0 −x3∗ 0 0 0 −c4



































,

B = (bij)8×8 =



































0 0 0 y1∗ 0 0 0 0

y2∗ 0 0 0 0 0 0 0

0 y3∗ 0 0 0 0 0 0

0 0 y4∗ 0 0 0 0 0

0 0 0 −x1∗ 0 0 0 0

−x2∗ 0 0 0 0 0 0 0

0 −x3∗ 0 0 0 0 0 0

0 0 −x4∗ 0 0 0 0 0



































.



946 CHUNHUA FENG

Lemma 2.1. If matrix R (= A + B) is a nonsingular matrix, then there exists a

unique positive equilibrium point for system (1.5).

Proof. Obviously, zero is an equilibrium point of system (2.2) (or (2.3)), and if system

(2.2) has a unique zero equilibrium point, then corresponding system (1.5) has a

unique positive equilibrium point (x1∗, x2∗, x3∗, x4∗, y1∗, y2∗, y3∗, y4∗)
T . Assume that

v∗ is another equilibrium point of system (2.2), then we have the following algebraic

equation

A(v∗) +B(v∗)− A · 0− B · 0 = R(v∗) = 0(2.4)

From (2.4) since R (= A+B) is a nonsingular matrix, by basic algebraic knowledge

we get

v∗ = 0(2.5)

This means that v∗ must be zero. The proof is completed.

�

Lemma 2.2. All solutions of system (1.5) are uniformly bounded.

Proof. To prove the boundedness of the solutions in system (1.5), we construct a

Lyapunov function V (t) =
∑4

i=1
1
2
[x2

i (t) + y2i (t)]. Calculating the derivative of V (t)

through system (1.5) we get

V ′(t)|(1.5) =
4

∑

i=1

[x′

i(t)xi(t) + y′i(t)yi(t)]

= −k1x
2
1 + y1x4x1 − k2x

2
2 + y2x1x2 − k3x

2
3 + y3x2x3 − k4x

2
4

+y4x3x4 + µ1y1 − y1x1x4 − c1y
2
1 + µ2y2 − y2x2x1 − c2y

2
2

+µ3y3 − y3x3x2 − c3y
2
3 + µ4y4 − y4x4x3 − c4y

2
4

= −

4
∑

i=1

kix
2
i −

4
∑

i=1

ciy
2
i +

4
∑

i=1

µiyi(2.6)

Obviously, when xi(t), yi(t)(1 ≤ i ≤ 4) tend to infinity, x2
i (t), y

2
i (t), are higher order

infinity. Noting that k1, µi, and ci are positive constants, therefore, there exists
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suitably large L > 0 such that V ′(t)|(1.5) < 0 as |xi| > L, |yi| > L. This means that

all solutions of system (1.5) are uniformly bounded. �

3. Periodic oscillation of the solutions

Theorem 3.1. Assume that zero is the unique equilibrium point of system (2.2)

(or(2.3)) for selecting parameter values. Let α1, α2, · · · , α8 and β1, β2, · · · , β8 be char-

acteristic values of matrix A and B, respectively. If all Re(αi) < 0, and Re(βi) ≤ 0,

then the trivial solution of system (2.2) is stable, implying that the unique posi-

tive equilibrium point of system (2.1) is stable. If there exists some Re(αk) > 0, or

Re(αk) < 0, but |Re(αk)| < Re(βk) or |Re(αk)| < |Im(βk)|, then the unique equilib-

rium point of system (2.2) is unstable, implying that the unique equilibrium point of

system (1.5) is unstable. System (1.5) generates a periodic oscillatory solution.

Proof. Obviously, based on the property of differential equation, since αi and βi

(i = 1, 2, · · · , 8) are characteristic values of matrix A and B, respectively. Noting

that there exist four characteristic values are zeros of matrix B, then the characteristic

equation corresponding to system (2.2) is the following:

Π4
i=1(λ− αi) = 0(3.1)

and

Π8
j=5(λ− αj − βje

−λτj ) = 0(3.2)

If for some Re(αi) > 0, i ∈ {1, 2, 3, 4}, we have Re(λ) = Re(αi) > 0. Thus, the trivial

solution is unstable. If for some |Re(αk)| < Re(βk) or |Re(αk)| < |Im(βk)|, k ∈

{5, 6, 7, 8}, we are led to an investigation of the nature of the roots for some k

λ− αk − βke
−λτk = 0(3.3)

Equation (3.3) is a transcendental equation which is hard to find all solutions for

the equation. However, we show that there exists a positive real part eigenvalue

of equation (3.3) under the assumption of Theorem 1. If |Re(αk)| < Re(βk) or

|Re(αk)| < |Im(βk)|, let λ = σ+ iθ, αk = αk1+ iαk2, βk = βk1+ iβk2, where Re(αk) =
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αk1, Re(βk) = βk1. Separating the real and imaginary parts from equation (3.3), we

have the real part

(3.4) σ = αk1 + βk1e
−στk cos(θτk)− βk2e

−στk sin(θτk).

We show that equation (3.3) has a positive real part root. Let

(3.5) h(σ) = σ − αk1 − βk1e
−στk cos(θτk) + βk2e

−στk sin(θτk).

Obviously, h(σ) is a continuous function of σ. When σ = 0 we have h(0) = −αk1 −

βk1 cos(θτk) + βk2 sin(θτk) < 0. Noting that limσ→+∞ e−στj = 0, so there exists a

suitably large σ̃(> 0) such that h(σ̃) = σ̃−αk1−βk1e
−σ̃τk cos(θτk)+βk2e

−σ̃τk sin(θτk) >

0. By means of the Intermediate Value Theorem, there exists a σ̄ ∈ (0, σ̃) such

that h(σ̄) = σ̄ − αk1 − βk1e
−σ̄τk cos(θτk) + βk2e

−σ̄τk sin(θτk) = 0. This means that

the characteristic value λ has a positive real part. Therefore, the trivial solution

of system (2.2) is unstable for any time delays, implying that the unique positive

equilibrium point of system (1.5) is unstable [16]. Since all solutions of system (1.5)

are bounded, the instability of the positive equilibrium point and the boundedness

of the solutions will force system (1.5) to generate a limit cycle, namely, a periodic

oscillatory solution. The proof is completed.

�

Theorem 3.2. Assume that there exists a unique equilibrium point of system (1.5)

for selecting parameter values. Let matrix R = A+B. If R has a positive real eigen-

value or there has at least one eigenvalue which has a positive real part. Then the

unique equilibrium point of system (1.5) is unstable, implying that system (1.5) has

a periodic oscillatory solution.

Proof. Consider a special case in system (2.2): τ1 = τ2 = τ3 = τ4 = 0. Then system

(2.2) can be written as a without time delay system:

u′(t) = Au(t) +Bu(t) = Ru(t)(3.6)

The characteristic equation corresponding to system (3.6) is the following

det(λIij − R) = 0(3.7)
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where Iij is the 8×8 identity matrix. Since R has a positive real eigenvalue or there has

at least one eigenvalue which has a positive real part, so the characteristic equation

(3.7) has a positive real eigenvalue or there has at least one eigenvalue which has a

positive real part. Therefore, the trivial solution u1(t), u2(t) · · · , u8(t) of system (3.6)

is unstable, implying that the trivial solution u1(t−τ1), · · · , u4(t−τ4), u5(t), · · · , u8(t)

of system (2.2) is unstable. On the other hand, when t is sufficiently large, we have

u1(t) ∼ u1(t− τ1), u2(t) ∼ u2(t− τ2), u3(t) ∼ u3(t− τ3), u4(t) ∼ u4(t− τ4). Hence the

trivial solution of system (2.2) is unstable, implying that the unique equilibrium point

of system (1.5) is unstable. It suggests that system (1.5) has a periodic oscillatory

solution. This concludes the proof.

�

4. Simulation results

The simulation is based on the system (1.5), first the parameters are selected as

follows: k1 = 1.45, k2 = 1.24, k3 = 1.48, k4 = 1.38, µ1 = 1.75, µ2 = 1.85, µ3 =

1.80, µ4 = 1.88, c1 = 0.26, c2 = 0.28, c3 = 0.25, c4 = 0.24. The time delays τ1 =

0.75, τ2 = 0.65, τ3 = 0.55, τ4 = 0.72. Then the unique positive equilibrium point

is x1∗ = 1.0578, x2∗ = 1.3170, x3∗ = 1.1265, x4∗ = 1.3245, y1∗ = 1.3421, y2∗ =

1.6317, y3∗ = 1.2656, y4∗ = 1.6165. The characteristic values of R = A + B are

1.0104,−0.5517±1.7882i,−1.2988±0.9111i,−0.7578±0.5152i,−2.3737. Therefore, R

is a nonsingular matrix. the characteristic values of A are 0.5912,−2.3212,−0.8550±

1.1783i,−0.7600 ± 0.9451i,−0.8100 ± 0.9757i, the characteristic values of B are

0, 0, 0, 0, 1.4531,−1.4531,±1.4531i. Since there is a characteristic value α1 = 0.5912 >

0, the condition of Theorem 3.1 are satisfied. There exists a periodic oscillatory

solution for system (1.5) (see Fig.1). Figure 1 indicates that this periodic oscilla-

tion is stable around the equilibrium point. The oscillatory frequency of each com-

ponent of the solution is the same. In order to see the effect of time delays, we

change time delays as τ1 = 0.45, τ2 = 0.48, τ3 = 0.42, τ4 = 0.46. The other parame-

ters are the same as Fig.1, we see that the oscillatory behavior is still maintained

but the oscillatory frequency is changed (see Fig.2). Figure 2 suggests that os-

cillatory frequency increases slightly when time delays are slightly reduced. Then



950 CHUNHUA FENG

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

(b) Solid line: y
1
(t), dashed line: y

2
(t), dashdotted line: y

3
(t), dotted line: y

4
(t).

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

(a) Solid line: x
1
(t), dashed line: x

2
(t), dashdotted line: x

3
(t), dotted line: x

4
(t).

Fig. 1 Periodic oscillatory solutions, delays: 0.75, 0.65, 0.55, 0.72,
equilibrium: 1.0578, 1.3170, 1.1265, 1.3245, 1.3421, 1.6317, 1.2656, 1.6165.

we change the parameters as k1 = 1.15, k2 = 1.12, k3 = 1.18, k4 = 1.16, µ1 =

2.45, µ2 = 2.42, µ3 = 2.40, µ4 = 2.38, c1 = 0.36, c2 = 0.38, c3 = 0.35, c4 = 0.34.

The time delays τ1 = 1.15, τ2 = 1.18, τ3 = 1.12, τ4 = 1.16, and τ1 = 1.05, τ2 =

1.25, τ3 = 1.08, τ4 = 1.12, respectively, and the unique positive equilibrium point

is x1∗ = 1.4441, x2∗ = 1.3915, x3∗ = 1.4215, x4∗ = 1.4011, y1∗ = 1.1852, y2∗ =

1.0804, y3∗ = 1.2057, y4∗ = 1.1422. The characteristic values of R = A + B are

0.3954,−0.0334 ± 1.0451i,−0.1671 ± 1.9531i,−1.4766 ± 2.2207i,−2.2909. Noting

that there exists a characteristic value 0.3954, therefore, R is a nonsingular matrix

and the conditions of Theorem 3.2 are satisfied, system (1.5) generates an oscillatory

solution (see Fig.3 and Fig.4). In Figure 3, time delays are selected as 1.15, 1.18, 1.12,

and 1.16. In Figure 4, we change time delays as 1.05, 1.25, 1.08, and 1.12. We see that

oscillatory amplitude and frequency both are slightly changed. This means that a

change slightly of time delay does not affect the oscillatory behavior of the solutions.

We point out that our criterion only is a sufficient condition.
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Fig. 2 Periodic oscillatory solutions, delays: 0.45, 0.48, 0.42, 0.46,
equilibrium: 1.0578, 1.3170, 1.1265, 1.3245, 1.3421, 1.6317, 1.2656, 1.6165.
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Fig. 3 Periodic oscillatory solutions, delays: 1.15, 1.18, 1.12, 1.16,
equilibrium: 1.4441, 1.3915, 1.4215, 1.4011, 1.1852, 1.0804, 1.2057, 1.1422.
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5. Conclusion

In this paper, we have discussed the periodic oscillatory behavior of the solutions

for a model of four-disk dynamo system with delays. From mathematical analysis

point of view, for a time delayed system, if all solutions of the system are uniformly

bounded, and there exists a unique unstable equilibrium point, which will force the

system to generate a limit cycle, namely, a periodic solution. A set of restrictive

conditions for parameters of the system is provided to guarantee the boundedness of
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Fig. 4 Periodic oscillatory solutions, delays: 1.05, 1.25, 1.08, 1.12,
equilibrium: 1.4441, 1.3915, 1.4215, 1.4011, 1.1852, 1.0804, 1.2057, 1.1422.

the solutions and the uniqueness of the equilibrium point of the system. Two theorems

are given to ensure the instability of the equilibrium point. It can be seen that the

theoretical analysis is in good agreement with computer simulation, which indicates

that the criterion is valid and the obtained result is correct. From the numerical

simulation, time delays affect the oscillatory frequency. Chaos can be explored with

big delays. The present criterion is different from the bifurcation method. We may

extend this method to any n-disk dynamo system with delays. It is also our future

work.
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