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CLASS OF ANALYTIC UNIVALENT FUNCTIONS WITH FIXED
FINITE NEGATIVE COEFFICIENTS DEFINED BY ¢—ANALOGUE
DIFFERENCE OPERATOR

7. M. SALEH ) AND A. O. MOSTAFA @

ABSTRACT. In this paper using a g—analogue operator, we define class of univalent
functions with fixed finite negative coefficients and determine coefficient estimates
and other properties for this class. Various results obtained in this paper are shown

to be sharp.

1. INTRODUCTION

Let S denote the class of functions of the form:
(1.1) .F(z):z+2akzk,
k=2

which are analytic in D = {z € C :| z |< 1}. We also denote by T the subclass of S

consisting of functions of the form:

apz®, (ax > 0).
2

(1.2) Flz)=2—

k=
Given 0 < a < 1, a function F € T is said to be in the class T*(a) of starlike

{55) -

For a function F € T, the Jackson’s g—derivative [12] (0 < ¢ < 1), which is already

functions of order « in D if

introduced in several earlier investigations (see, for example [2, 3, 4, 5],[8],[10],[17,
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18, 19]);
F(2)=F(q2) 220
_ (1—-q)z
VoF(2) = {}'/(0) z=0 "’
that is
(13) - Z qakz 7
k=2
where
. 1—¢
(1) iy = 7= [0l =0

Asq— 17, [jl,=7 and V,F(z) = F ().
Mostafa and Saleh [13] defined the HY',  operator for A > >0, 0 < ¢ < 1, by

H)\,uqf( ):‘F(’Z)a
H}\%q]:(z) =HrpugF(2) =1 =X+ p)F(2) + (A —p)2V,F(z) + Au22v2f(2),

Ha o (2) = Hapa(My 0 7 (2)),

A,q

and

f\n,u,q‘/—-.(z) = HX:MQ(HTM}]F( ))
(1.5) = 22— ngfk()\, p)agz®, m € Ny.

k=2
where
(1.6) XA 1) = [1 = A+ p+ [K]g(A — pp+ Aulk — 1]5)]™
Note that

(i) limgi- HY, F(2) =
Raducanu and Orhan [16] );

(ii) HiY ,F (2) = D' F(z)(see [11], [20] and [6] );

(iil) HY ,F (2) = DY, F(2) (see Aouf et al. [7] );

(iv) limg,— HY, ,F(2) = DYF(2) (see Al-Oboudi [1] ).

¥, F(2) see Orhan et al. [15] (see also [9], [14] and

Now, by making use of the operator HY', ,, we have
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Definition 1.1. Let 0 <~y <1, A>u>0,0< ¢ < 1, m € Ny, and F € T, such
that HY', ,F(2) # 0 for z € D. We say that F € Y*(\, p1,7) if

NV (HY 0 (2)
(1.7) Re { — 77—2(2) > 7,
Atisg
which is equivalent to
V(R P )

(1.8) M) <1

' 2Va(HY, o F(2) ’

;{&n:: q(z) +(1—2v)

Note: for different values of ¢, A, i, y, we have: /

0 g ¥ 0 2) = V0 0) = {70 e { g o o
(i) Y (2, 0,79) = Y1, (1) = { F() : Re { T} > 7}

(i) Y™(1,0,7) = Y™ (7) {f(z)  Re {%ﬁ(”} > 7}.

2. MAIN RESULTS

Unless indicated, let A > >0,0<g <1, mée Ny, 0 <~y < 1and F(2) given by
(1.2).

Theorem 2.1. The function F € Y (A, p,7y) if and only if
(2.1) D ([Klg = VXA pax < 1—7.

k=2
Proof. Assume that (2.1) holds true. It is sufficient to show that

NVg(HYo (2))
Hy, F(2)

A g

-1 <1 —7.

We have

2V (HY, 0 (2))

/\uq 1

F(2)

> a1 = [Klo)xg (N, p)ar”
Z = 220:2 Xg'fk()\, ) ag 2"
ZZiz([/f]q - 1)X(T1),1k()‘nu)ak
= o
This last expression is bounded above by 1—+. Then F € Y;*(A, i1,7). Now, let F €
Y7M(A, i, 7), then

. {zv o mf(z»} e { - zmk]qng,{@,makzk} .

/\,u,q

Hy o F (2) 2= Do Xg(As a2t

A g
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2Vq(HY, F(2)

Choose values of z on real axis so that is real. Letting z — 1~ through

Hf\’fu,q}'(z)
real values, we have
1— Z[k]qngk(% N)akzk >y - Z ”YXZ?;C(A, ,u)a/gzk.
k=2 k=2

Thus we obtain

D Ky =X wag <1 =7,

k=2
which is (2.1). Hence the theorem. O

Corollary 2.1. If F € Y*(A, i, 7y), then we have

l—~
([Klg = XA )

This equality is attained for the function F given by

(2.2) ap <

l—~
22 R A Ae W

Let Y7 (A, i, 7, ¢n) be the subclass of Yi'(A, u,y) consisting of functions of the form

n (1 — i N
(2.4) Fla)=2- ; ([, —(v)x;’zz% W k;rl e

where here and in the rest of the paper 0 < c¢; <1 and Y . ,¢; < 1.

Theorem 2.2. Let F(z) be defined by (2.4). Then F(z) € YJ'(X, i1,7, ¢,) if and only

if
(2.5) > (kg = DX wag < L =11 = ).
k=n+1 i=2

The result is sharp.

Proof. Putting

in (2.1), we have

@7 ot i ([k]q—v)xi,’fk(ku)akgl’
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which implies 2.5. The result is sharp for the function
n

L Gl=1) . (=0-Yl.e),
28 PO et T - oo

for k >n+ 1. O

Corollary 2.2. If F(z) be defined by (2.4) and F(z) € Y7' (A, 11,7, ¢,), then

ak<

S MWy =gy - FEnt:

The result is sharp for the function F(z) given by (2.8).

Theorem 2.3. If F € YJ'(\, 1,7, ¢n), then

A =>sa)
(2.10) k;ﬂa 0 : 1] DXt i)
and
2.11) $ g < 2 =0 =)

Nt ([n 4+ g = VX1 (A 1)

Proof. Let F € Y7*(A, 11,7, ¢,). Then, in view of (2.5), we have

(2.12) ([n+ 1y = X (A 1) Z ar < (1=7)(1=2_c),

which immediately yields the first assertion.
For the proof of the second assertion, by appealing to (2.5), we have

(e o] n oo

(213) X o) Y Kgar < (L= =)+ n) D a,

k=n+1 i=2 k=n+1

which in view of (2.10), can be putten in the form:

R14) PO 3 g < (1= )1 = 3 ) o0 2z,

k=n+1 =2 ([n + 1](1 - 7)

Upon simplifying the right hand side of (2.14), we have the assertion (2.11). O
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Theorem 2.4. Let the function F(z) € Y' (A, p1,7,¢,). Then

D 0 -Te) e
S Z - D)

qu(A 0o
) (1 _7)(1 - Zz 201) | |n+1
)XqZ(A,u) ([k]g = VX% (A 1)

< |FR)] < 2] + 2 Z
(2.15)

with equality for

2N al-7) (- 0-%le)
F5 = z; (lilg = MxguA ) ([klg — Vx5 (A 1) '

Proof. For F(z) € Y[*(\, 1,7, ¢n). Then

& ci(1—79) j = k
[F(2)| = Z_Z . — zZ—Zakz
— (li], —v)xqi(A )t
< ol + 2l Z _m( + 2" Z ar,
qz k=n+1
and
- ci(1—17) = k
|F(2)] z— — 2t — apz
R S e el BT S
which in view of (2.10), we have (2.15). O

Theorem 2.5. Let F(z) € Y (A, 11,7, ¢,), then

e ey el -0-The)
! "Z W R (e s W Rl
e(l—7) 1,0 -1 - 3", e)
< VoFte )‘“*'z‘; o T [t Uy = om

(2.16)
with equality for

XaiOA ) ([ + 1y = Y)Xgha (A 1)

_1_22 qu —7) [+ 11 =7 =36
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Proof. For F(z) € Y[*(A, 1,7, ¢n). Then

L [l o
V) = 1-3 D DR LI
V) z; ([g = Mg\, 1) k;l[ o
<1 qcl —) "
< +‘Z'Z g T 2 B
and
. [Z]qCZ(l —7) -1 N k=1
v F() = |1- E— kl,arz
Vo ) e R DR
il =) BN
> 1— |z . -7 kgt
| ‘; ([Z]q_7>X:17?i(A’M) 4 k—;rl[ o
which in view of (2.11), we have (2.16). =

Theorem 2.6. Let F(z) be defined by (2.4), F(z) € YJ' (A, 11,7, ¢n). Then F(z) is
covex of order p (0 < p < 1) in 0 < |z| <1y, where ry is the largest value for which

(2.17) + el <1 p,

zn: Joci(i =g +1=p)(1 =7) i1 [Klg([k —1]g +1—p)A 7)1 -3 ci)
— ([ilg — X (A 1) 0 (kg = X (0 1)

7

for k >mn+ 1. The result is sharp for the function F(z) given by (2.8).

Proof. Tt is sufficent to show that

(2.18) Z;(iz)’) <1—p (d <)
We have
20 B S B e
F'(2) 1->", % |Z|Z—1 - [Klgax |Z|k—1
Then
(%.20)
ZZ2 [z]qcz(([[.]_q 1], J)rxtvi(;’):)l P k;ﬂ Sl <1—p.

Hence by Theorem 2.2 and (2.20) we have

[gci(f—1g +1—p) A —7) , - 1 (Klg([k —1]g +1—p)(1 — 7)1 =37 5ci) k-1 B
(21 ZX:Q (ldg = VX (0 ) d (kg = X0 (s 1) st
Theorem 2.6 follows easily from (2.21). O

Theorem 2.7. The class Y;”()\, Wy Yy Cn) is closed under convex linear compination.
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Proof. Let F(z) be defined by (2.4). Define the function h(z) by

n

c(1— i k
(2.22) hiz) =z - — ([il —(v)xi,’zz)\,mz B k:zwbkz |

Suppose that F(z) and h(z) are in the class Y;'(A, 11,7, ¢,,), we only need to prove
that

(2.23) G(z) =¢F(z) + (1= Qhlz) (0<¢<T,

also be in the class. Since

n o0

220 G =r- Yt = Y (Gt (1= O

i=2 q PY)Xq,i()\7 /’L) k=n+1

then

— (Kl = xg(A p) -

(2:25) > o e - O < (=3,
k=n+1 v =2

with the aid of Theorem 2.2. Hence G(z) € Y'(A, 11,7, ¢,,). This clearly completes

the proof of the Theorem. O

The Theorems 2.8, 2.9 generalize Theorem 2.7, so we omit the proofs.

Theorem 2.8. Let the functions

n

Cz(]- —
(2.26) Fi(2) =2 — Z z — Z ax ;2"
be in the class Y' (A, p, 7, ¢a) for every j =1,2,...,x. Then the function F(z) defined
by
(2.27) F(z) =) d;F5(2) (d; 2 0),

is also in the class Y7 (A, p, 7, ¢n), where

(2.28) > d=1.
j=1

Theorem 2.9. Let the function F;(z) defined by (2.26) be in the class Y3' (X, i, 7, ¢n),
for each 7 =1,2,...,x, then the function ¢(z) defined by

n

(2.29) dz)=2-Y i a(l = Z br2*,

=2 V)Xq i k=n+1
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also be in the class Y7' (A, i1, 7, ¢,), where

1 xT
(2.30) by = — 2 (g -
J:

Theorem 2.10. Let

— ci(1—7) i
. Pl =2 i o
and
23 Fl)=: S oGl i ) [CaD L)Y

— (g = xgiw) o= (Kl = Ixgn(d )

for k >n+1. Then the function F(z) is in the class YJ*(\, p, 7y, cn) if and only if it

can be expressed in the form
(2.33) F(z) = i MeFr(2)
k=n
where n, >0 (k> n) and
(2.34) i ne=1.
k=n

Proof. We suppose that the function F(z) can be expressed in the form (2.33). Then
from (2.31), (2.32) and (2.34) we have

Z)=2z— ” aill = Z_ nkl_ (1->0 2CZ)ZI<;
(2.35)  F(2) 2T, v)xqz k;; )qu(A R
Since
i (1 =) (1 =30y e) (Ko = V)xgn(d 1)
WS Blg = xg (A ) (1=")
= (1= ) > m
=2 k=n+1

= (1- Zcz-)(l — )

(2.36) < (1- En: ).

Then F(2) € YJH(A, 11,7, ¢n)-
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Conversely, assuming that F(z) defined by (2.4) be in the class Y7*(A, p, 7, ¢n)
which satisfies (2.9) for k£ > n + 1, we obtain

([klg = VXG5 (A, 1)

(T=m1=>1a)
and
(2.38) ne=1— Z e
k=n+1
This compelets the proof of the Theorem 2.10. U

Corollary 2.3. The extreme points of the class Y (A, p, 7y, ¢n) are the functions F,(2)
(k > n) given by (2.31) and (2.32) in Theorem 2.10.

Remark 1. For different values of A\, i, q and v in our results, we have results for

the special classes defined in the introduction.
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