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FURTHER RESULTS ON I AND I∗−CONVERGENCE OF

SEQUENCES IN GRADUAL NORMED LINEAR SPACES

CHIRANJIB CHOUDHURY(1) AND SHYAMAL DEBNATH(2)

Abstract. In this paper, following a very recent and new approach, we introduce

the notion of gradual I−limit point, gradual I−cluster point, and prove certain

properties of both the notions. We also investigate some new properties of gradual

I−Cauchy and gradual I∗−Cauchy sequences and show that the condition (AP )

plays a crucial role to relate both the notions. Finally, we investigate the notion

of I and I∗−divergence of sequences in gradual normed linear spaces and prove

the essence of the condition (AP ) again to establish the relationship between the

notions.

1. Introduction and Background

In 1965, the concept of fuzzy sets [33] was introduced by Zadeh as one of the ex-

tensions of the classical set-theoretical concept. Nowadays it has wide applications

in different branches of science and engineering. The term “fuzzy number” plays a

vital role in the study of fuzzy set theory. Fuzzy numbers were essentially the gen-

eralization of intervals, not numbers. Indeed fuzzy numbers do not obey a couple of

algebraic properties of the classical numbers. So the term “fuzzy number” is debat-

able to many researchers due to its different behavior. The term “fuzzy intervals” is

often used by many authors instead of fuzzy numbers. To overcome the confusion

among the researchers, in 2008, Fortin et.al. [11] introduced the notion of gradual

real numbers as elements of fuzzy intervals. Gradual real numbers are mainly known

by their respective assignment function which is defined in the interval (0, 1]. So in
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some sense, every real number can be viewed as a gradual number with a constant

assignment function. The gradual real numbers also obey all the algebraic properties

of the classical real numbers and have been used in computation and optimization

problems.

In 2011, Sadeqi and Azari [26] first introduced the concept of gradual normed linear

space. They studied various properties of the space from both the algebraic and

topological points of view. Further investigation in this direction has been occurred

due to Ettefagh et. al. [9, 10] and many others. For an extensive study on gradual

real numbers, one may refer to [1, 5, 18, 31].

On the other hand in 2001, the concept of ideal convergence was first intro-

duced by Kostyrko et. al. [16] mainly as an extension of statistical convergence.

They also showed that the ideal convergence was also a generalized form of some

other known convergence concepts. Later on, several investigations in this direction

have been carried out. In [3, 24], the notion of I−Cauchy sequences was investi-

gated. In [6, 7], Esi studied ideal convergence of strongly almost summable single

and double sequences in 2−normed and n−normed settings. In [21, 22], Mursaleen

and Mohiuddine investigated ideal convergence of single and double sequences re-

spectively in probabilistic normed spaces. In [23], Mursaleen et. al. investigated

ideal convergence in intuitionistic fuzzy normed spaces. In [32], Tripathy and Haz-

arika investigated ideal convergence in paranormed spaces. For an extensive view,

[4, 8, 12, 13, 14, 15, 17, 19, 20, 25, 27, 28, 29, 30] can be addressed where many more

references can be found.

Research on the convergence of sequences in gradual normed linear spaces has not

yet gained much ground and it is still in its infant stage. The research carried out

so far shows a strong analogy in the behavior of convergence of sequences in gradual

normed linear spaces. Recently, Choudhury and Debnath [2] have introduced the

notion of I−convergence of sequences in gradual normed linear spaces. This paper

is the continuation of the above work.
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2. Definitions and Preliminaries

Definition 2.1. [11] A gradual real number r̃ is defined by an assignment function

Ar̃ : (0, 1] → R. The set of all gradual real numbers is denoted by G(R). A gradual

number is said to be non-negative if for every ξ ∈ (0, 1], Ar̃(ξ) ≥ 0. The set of all

non-negative gradual real numbers is denoted by G∗(R).

Definition 2.2. [11] Let ∗ be any operation in R and suppose r̃1, r̃2 ∈ G(R) with

assignment functions Ar̃1 and Ar̃2 respectively. Then r̃1∗r̃2 ∈ G(R) is defined with the

assignment function Ar̃1∗r̃2 given by Ar̃1∗r̃2(ξ) = Ar̃1(ξ)∗Ar̃2(ξ), ∀ξ ∈ (0, 1]. Then the

gradual addition r̃1 + r̃2 and the gradual scalar multiplication cr̃(c ∈ R) are defined

by

Ar̃1+r̃2(ξ) = Ar̃1(ξ) + Ar̃2(ξ) and Acr̃(ξ) = cAr̃(ξ), ∀ξ ∈ (0, 1].

For any real number p ∈ R, the constant gradual real number p̃ is defined by the

constant assignment function Ap̃(ξ) = p for any ξ ∈ (0, 1]. In particular, 0̃ and 1̃ are

the constant gradual numbers defined by A0̃(ξ) = 0 and A1̃(ξ) = 1 respectively. One

can easily verify that G(R) with the gradual addition and multiplication forms a real

vector space [11].

Definition 2.3. [26] Let X be a real vector space. The function || · ||G : X → G∗(R)

is said to be a gradual norm on X , if for every ξ ∈ (0, 1], following three conditions

are true for any x, y ∈ X

(G1) A||x||G(ξ) = A0̃(ξ) if and only if x = 0;

(G2) A||λx||G(ξ) = |λ|A||x||G(ξ) for any λ ∈ R;

(G3) A||x+y||G(ξ) ≤ A||x||G(ξ) + A||y||G(ξ).

The pair (X, || · ||G) is called a gradual normed linear space (GNLS).

Example 2.1. [26] Let X = R
n and for x = (x1, x2, ..., xn) ∈ R

n, ξ ∈ (0, 1], define

||·||G by A||x||G(ξ) = eξ
∑n

i=1 |xi|. Then, ||·||G is a gradual norm on R
n and (Rn, ||·||G)

is a GNLS.

Definition 2.4. [26] Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is

said to be gradual convergent to x ∈ X , if for every ξ ∈ (0, 1] and ε > 0, there exists

N(= Nε(ξ)) ∈ N such that A||xk−x||G(ξ) < ε, ∀n ≥ N .
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Definition 2.5. [26] Let (xk) be a sequence in the GNLS (X, ||·||G). Then (xk) is said

to be gradual Cauchy, if for every ξ ∈ (0, 1] and ε > 0, there exists N(= Nε(ξ)) ∈ N

such that A||xk−xj ||G(ξ) < ε, ∀k, j ≥ N .

Theorem 2.1. ([26], Theorem 3.6) Let (X, || · ||G) be a GNLS, then every gradual

convergent sequence in X is also a gradual Cauchy sequence.

Definition 2.6. [16] Let X be a non-empty set. A family of subsets I ⊂ P (X) is

called an ideal on X if and only if

(i) ∅ ∈ I;

(ii) for each A,B ∈ I implies A ∪ B ∈ I;

(iii) for each A ∈ I and B ⊂ A implies B ∈ I.

Some standard examples of ideal are given below:

(i) The set If of all finite subsets of N is an admissible ideal in N. Here N denotes

the set of all natural numbers.

(ii) The set Id of all subsets of natural numbers having natural density 0 is an

admissible ideal in N.

(iii) The set Ic = {A ⊆ N :
∑

a∈A a−1 < ∞} is an admissible ideal in N.

(iv) Suppose N =
∞
⋃

p=1

Dp be a decomposition of N (for i 6= j, Di ∩Dj = ∅). Then the

set I of all subsets of N which intersects finitely many Dp’s forms an ideal in N.

More important examples can be found in [12] and [15].

Definition 2.7. [16] Let X be a non-empty set. A family of subsets F ⊂ P (X) is

called a filter on X if and only if

(i) ∅ /∈ F ;

(ii) for each A,B ∈ F implies A ∩ B ∈ F ;

(iii) for each A ∈ F and B ⊃ A implies B ∈ F .

An ideal I is called non-trivial if I 6= ∅ and X /∈ I. The filter F = F(I) =

{X − A : A ∈ I} is called the filter associated with the ideal I. A non-trivial ideal

I ⊂ P (X) is called an admissible ideal in X if and only if I ⊃ {{x} : x ∈ X}.
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Definition 2.8. [16] Let I ⊂ P (N) be a non-trivial ideal on N. A real-valued se-

quence (xk) is said to be I-convergent to l if for each ε > 0, the set {k ∈ N :| xk − l |≥ ε}

belongs to I. l is called the I-limit of the sequence (xk) and is written as I−lim
k
xk = l.

Definition 2.9. [16] Let I be an admissible ideal in N. A real valued sequence (xk)

is said to be I∗−convergent to l, if there exists a set M = {m1 < m2 < ... < mk < ...}

in the associated filter F(I) such that lim
k∈M

xk = l. Symbolically, I∗ − lim
k
xk = l.

Definition 2.10. [16] A real number x0 is said to be I−limit point of a real-valued

sequence (xk) provided that there is a set M = {m1 < m2 < ... < mk < ...} ⊂ N such

that M /∈ I and lim
k
xmk

= x0.

The set of all I−limit points of the sequence (xk) is denoted by I(Λx).

Definition 2.11. [16] A real number x0 is said to be I−cluster point of a real-valued

sequence (xk) provided that for each ε > 0, the set {k ∈ N : |xk − x0| < ε} /∈ I.

The set of all I−cluster points of the sequence (xk) is denoted by I(Γx).

Definition 2.12. [24] A real-valued sequence (xk) is said to be I−Cauchy, if for

every ε > 0, there exists a N ∈ N such that {k ∈ N : |xk − xN | ≥ ε} ∈ I.

Definition 2.13. [24] A real-valued sequence (xk) is said to be I∗−Cauchy if there

exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N, M ∈ F(I) such that the

subsequence (xmk
) is a ordinary Cauchy sequence.

Definition 2.14. [3] A real-valued sequence (xk) is said to be I−divergent if there

exists some l ∈ R such that for any B > 0, {k ∈ N : |xk − l| ≤ B} ∈ I.

Definition 2.15. [3] A real-valued sequence (xk) is said to be I∗−divergent if there

exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N such that M ∈ F(I) and xmk
is

divergent i.e., there exists a real number l ∈ R satisfying |xmk
− l| → ∞ as k → ∞.

Definition 2.16. [16] An admissible ideal I is said to satisfy the condition (AP ), if

for every countable family of mutually disjoint sets {Cn}n∈N from I, there exists a

countable family of sets {Bn}n∈N such that the symmetric difference Cj△Bj is finite

for every j ∈ N and
∞
⋃

j=1

Bj ∈ I.
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Definition 2.17. [2] Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is

said to be gradually I−convergent to x ∈ X if for every ξ ∈ (0, 1] and ε > 0, the set

C(ξ, ε) = {k ∈ N : A||xk−x||G(ξ) ≥ ε} ∈ I. Symbolically, xk

I−||·||G
−−−−→ x.

Definition 2.18. [2] Let I be an admissible ideal in N and (xk) be a sequence in the

GNLS (X, || · ||G). Then (xk) is said to be gradually I∗−convergent to x ∈ X if there

exists a set M = {m1 < m2 < ... < mk < ...} ∈ F(I) such that the subsequence

(xmk
) is gradual convergent to x. Symbolically, xk

I∗−||·||G
−−−−−→ x.

Definition 2.19. [2] Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is

said to be gradually I−Cauchy if for every ε > 0 and ξ ∈ (0, 1], there exists a natural

number N(= Nε(ξ)) such that the set C(ξ, ε) = {k ∈ N : A||xk−xN ||G(ξ) ≥ ε} ∈ I.

Theorem 2.2. [2] Let (X, || · ||G) be a GNLS. Then every gradually I−convergent

sequence in X is gradually I−Cauchy sequence.

Definition 2.20. [2] Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is

said to be gradually I∗−Cauchy if there exists a set M = {m1 < m2 < ... < mk <

..} ∈ F(I) such that the subsequence (xmk
) is gradual Cauchy sequence.

Theorem 2.3. [2] Let I be an admissible ideal in N and (xk) be a sequence in the

GNLS (X, || · ||G). If (xk) is gradually I∗−Cauchy then it is gradually I−Cauchy.

Throughout the article, I will denote the non-trivial admissible ideal in N.

3. Gradual I−limit points and Gradual I−cluster points

Definition 3.1. Let I be an admissible ideal in N and (xk) be a sequence in the

GNLS (X, || · ||G). Then x0 ∈ X is said to be gradual I−limit point of (xk), if there

exists a set M = {m1 < m2 < ... < mk < ...} /∈ I such that xmk

||·||G
−−→ x0.

For any sequence (xk), the set of all gradual I−limit points is denoted by

I − || · ||G(Λ(xk)).

Definition 3.2. Let I be an admissible ideal in N and (xk) be a sequence in the

GNLS (X, || · ||G). Then x0 ∈ X is said to be gradual I−cluster point of (xk) if for

any ε > 0 and ξ ∈ (0, 1], the set {k ∈ N : A||xk−x0||G(ξ) < ε} /∈ I.
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For any sequence (xk), the set of all gradual I−cluster points is denoted by

I − || · ||G(Γ(xk)).

Example 3.1. Let X = R
n and || · ||G be the norm defined in Example 2.1. Consider

the decomposition of N given by N =
∞
⋃

r=1

Dr, where Dr = {2r−1(2s− 1) : s ∈ N}, r ∈

N. Clearly, Di ∩ Dj = ∅ for i 6= j. Consider the sequence (xk) in R
n defined by

xk = (0, 0, ..., 0, 1− 1
r
) whenever k ∈ Dr. Then,

(i) (0, 0, ..., 0, 1− 1
r
) ∈ Id − || · ||G(Λ(xk)), r = 1, 2, ...

(ii) (0, 0, ..., 0, 1) ∈
(

Id − || · ||G(Γ(xk))
)

\
(

Id − || · ||G(Λ(xk))
)

.

Justification. (i) For every n−tuple of the form (0, 0, ..., 0, 1 − 1
r
) (r = 1, 2, ...),

there exists a set Dr /∈ Id (because d(Dr) = 2−r 6= 0) such that (xk)k∈Dr

||·||G
−−→

(0, 0, ..., 0, 1− 1
r
). Therefore, (0, 0, ..., 0, 1− 1

r
) ∈ Id − || · ||G(Λ(xk)) for r = 1, 2, .. .

(ii) Now to prove (0, 0, ..., 0, 1) /∈ Id − || · ||G(Λ(xk)), we assume the contrary. Then

by definition, there exists M = {m1 < m2 < ... < mk < ...} ⊂ N such that d(M) > 0

and xmk

||·||G
−−→ (0, 0, ..., 0, 1). As N =

∞
⋃

r=1

Dr, so the following relation holds for a

j ∈ N:

(3.1)

M = M∩N = M∩

(

∞
⋃

r=1

Dr

)

=
∞
⋃

r=1

(M∩Dr) =

(

j
⋃

r=1

(M ∩Dr)

)

∪

(

∞
⋃

r=j+1

(M ∩Dr)

)

.

Now it is easy to verify that the set M ∩ Dr is finite for r = 1, 2, .. and so the set
j
⋃

r=1

(M ∩Dr) is also finite and eventually (3.1) yields the following

(3.2) d(M) ≤ d

(

∞
⋃

r=j+1

(M ∩Dr)

)

.

Again, as
∞
⋃

r=j+1

(M ∩ Dr) ⊆ {1 · 2j, 2 · 2j, 3 · 2j , ...}, so from (3.2) we have for any

j = 1, 2, 3, ...,

d(M) ≤ d({1 · 2j, 2 · 2j, 3 · 2j, ...}) = 2−j.

This implies that d(M) = 0, which is a contradiction. Hence our assumption was

wrong and we must have (0, 0, ..., 0, 1) /∈ Id − || · ||G(Λ(xk)).
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Next we will show that (0, 0, ..., 0, 1) ∈ Id − || · ||G(Γ(xk)). For any ξ ∈ (0, 1] and

j ∈ N, we have

d({k ∈ N : eξ(1−
1

j
) < A||xk||G(ξ) < eξ}) = d

(

N \

(

j
⋃

r=1

Dr

))

= 2−j 6= 0.

Therefore,

(3.3) {k ∈ N : eξ(1−
1

j
) < A||xk||G(ξ) < eξ} /∈ Id for r = 1, 2, ...

Let ε > 0 be arbitrary. Then, by Archimedean property there exists some n0 ∈ N

such that eξ

n0

< ε which results the following inclusion

{k ∈ N : eξ(1−
1

j
) < A||xk||G(ξ) < eξ} = {k ∈ N : A||xk−(0,0,...,0,1)||G(ξ) <

eξ

n0

}

⊂ {k ∈ N : A||xk−(0,0,...,0,1)||G(ξ) < ε}.

Now from (3.3), it is clear that the set in the left-hand side of the above inclusion

does not belong to Id, so the set in the right-hand side also does not belong to Id.

Hence (0, 0, ..., 0, 1) ∈ Id − || · ||G(Γ(xk)).

Theorem 3.1. Let (xk) be a sequence in the GNLS (X, ||·||G) such that xk

I−||·||G
−−−−→ x0.

Then I − || · ||G(Λ(xk)) = {x0}.

Proof. The proof is easy, so omitted. �

Theorem 3.2. For any sequence (xk) in the GNLS (X, || · ||G), I − || · ||G(Λ(xk)) ⊂

I − || · ||G(Γ(xk)).

Proof. Let x0 ∈ I−|| · ||G(Λ(xk)). Then there exist a set M = {m1 < m2 < ... < mk <

...} /∈ I such that xmk

||·||G
−−→ x0. This means that for any ε > 0 and ξ ∈ (0, 1], there

exists k0 ∈ N such that A||xmk
−x0||G(ξ) < ε∀k ≥ k0. Let B = {k ∈ N : A||xk−x0||G(ξ) <

ε}. Then B ⊇ M \ {m1, m2, ..., mk0} and since I is an admissible with M /∈ I, so

B /∈ I. Hence x0 ∈ I − || · ||G(Γ(xk)) and the inclusion is true.

To prove that the inclusion is strict, consider Example 3.1. It was shown that

(0, 0, ..., 0, 1) ∈ Id − || · ||G(Γ(xk)) whereas (0, 0, ..., 0, 1) /∈ Id − || · ||G(Λ(xk)). �

Theorem 3.3. Let (xk) and (yk) be two sequences in the GNLS (X, || · ||G) such that

{k ∈ N : xk 6= yk} ∈ I. Then,

(i) I − || · ||G(Λ(xk)) = I − || · ||G(Λ(yk)) and (ii) I − || · ||G(Γ(xk)) = I − || · ||G(Γ(yk)).
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Proof. (i) Let x0 ∈ I − || · ||G(Λ(xk)). Then, there exists a set M ⊂ N with

M = {m1 < m2 < ... < mk < ...} /∈ I such that xmk

||·||G
−−→ x0. Now since the

inclusion {k ∈ M : xk 6= yk} ⊆ {k ∈ N : xk 6= yk} holds, so N = {k ∈ M : xk =

yk} /∈ I and N ⊆ M . Let N = {n1 < n2 < ... < nk < ...} Then, ynk

||·||G
−−→ x0

holds and eventually we have I − || · ||G(Λ(xk)) ⊆ I − || · ||G(Λ(yk)). By symmetry,

I−||·||G(Λ(yk)) ⊆ I−||·||G(Λ(xk)). Hence we have, I−||·||G(Λ(xk)) = I−||·||G(Λ(yk)).

(ii) Suppose x0 ∈ I−|| · ||G(Γ(xk)). Then by definition, for any ε > 0, and ξ ∈ (0, 1],

the set B = B(ξ, ε) = {k ∈ N : A||xk−x0||G(ξ) < ε} /∈ I. Let C = C(ξ, ε) = {k ∈ N :

A||yk−x0||G(ξ) < ε}. We claim that C /∈ I. Because if C ∈ I, then N \ C ∈ F(I) and

then by the hypothesis we obtain, (N\C)∩{k ∈ N : xk = yk} ∈ F(I). Consequently,

the inclusion (N\B) ⊃ (N\C)∩{k ∈ N : xk = yk} leads us to the contradiction that

N \ B ∈ F(I). Therefore, we must have, C /∈ I i.e., x0 ∈ I − || · ||G(Γ(yk)). Thus,

I−|| · ||G(Γ(xk)) ⊆ I−|| · ||G(Γ(yk)). By symmetry, I−|| · ||G(Γ(yk)) ⊆ I−|| · ||G(Γ(xk)).

Hence we have, I − || · ||G(Γ(xk)) = I − || · ||G(Γ(yk)). �

4. Gradual I and I∗−Cauchy sequences

For ε > 0, and a sequence (xk) in the GNLS (X, || · ||G), we denote En(ξ, ε) = {k ∈

N : A||xk−xn||G(ξ) ≥ ε}, n ∈ N.

Theorem 4.1. Let I be an admissible ideal in N and (xk) be a sequence in the GNLS

(X, || · ||G). Then, the following conditions are equivalent:

(i) (xk) is a gradually I−Cauchy sequence,

(ii) For any ε > 0, there exists D ∈ I such that for all p, q /∈ D, A||xp−xq||G(ξ) < ε,

(iii) For any ε > 0, {n ∈ N : En(ξ, ε) /∈ I} ∈ I.

Proof. (i) ⇒ (ii) Let (xk) be a gradually I−Cauchy sequence. Then by definition,

for any ε > 0 and ξ ∈ (0, 1], there exists a N ∈ N such that EN(ξ,
ε
2
) ∈ I. Put D =

EN (ξ,
ε
2
). Then, for any p, q /∈ D we have A||xp−xN ||G(ξ) <

ε
2
and A||xq−xN ||G(ξ) <

ε
2

which consequently implies

A||xp−xq||G(ξ) = A||xp−xN+xN−xq||G(ξ) ≤ A||xp−xN ||G(ξ) + A||xq−xN ||G(ξ) <
ε

2
+

ε

2
= ε.
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(ii) ⇒ (iii) To prove (iii) from (ii), it is sufficient to show that {n ∈ N : En(ξ, ε) /∈

I} ⊂ D. If possible suppose there is a natural number s ∈ {n ∈ N : En(ξ, ε) /∈ I}

such that s /∈ D. Then, Es(ξ, ε) /∈ I. Take t ∈ Es(ξ, ε) \ D. Then we have

t /∈ D and A||xt−xs||G(ξ) ≥ ε. But this is a contradiction because s, t /∈ D implies

A||xt−xs||G(ξ) < ε by our assumption. Hence, {n ∈ N : En(ξ, ε) /∈ I} ⊂ D.

(iii) ⇒ (i) Suppose for any ε > 0, {n ∈ N : En(ξ, ε) /∈ I} ∈ I. Then, {n ∈ N :

En(ξ, ε) ∈ I} ∈ F(I) and so is non-empty. Let N ∈ {n ∈ N : En(ξ, ε) ∈ I}. Then,

for any ε > 0 and ξ ∈ (0, 1], {k ∈ N : A||xk−xN ||G(ξ) ≥ ε} ∈ I holds and hence (xk) is

gradually I−Cauchy sequence. �

Corollary 4.1. Let I be an admissible ideal in N. Then a gradually Cauchy sequence

(xk) in the GNLS (X, || · ||G) is also gradually I−Cauchy.

Now, we give an example to show that the reverse of Theorem 2.3 is not necessarily

true.

Example 4.1. Let X = R
n and || · ||G be the norm defined in Example 2.1. Consider

the ideal I consisting of all subsets of N which intersects finitely many Dr’s where

Dr = {2r−1(2s − 1) : s ∈ N}, r ∈ N is the decomposition of N into disjoint subsets

i.e., N =
∞
⋃

r=1

Dr and Di ∩Dj = ∅ for i 6= j. Consider the sequence (xk) in R
n defined

by xk = (0, 0, ..., 0, 1
r
), if k ∈ Dr. Now since the sequence ( 1

n
) is a Cauchy sequence

in R, so as a consequence for given ε > 0, there exists some N ∈ N such that the

following inequality,

A||(0,0,...,0, 1

m
)−(0,0,...,0, 1

n
)||G

(ξ) = eξ
∣

∣

∣

∣

1

m
−

1

n

∣

∣

∣

∣

< eξ ·
ε

2eξ
=

ε

2

holds for all m,n ≥ N . Now take D =
N
⋃

r=1

Dr. Then clearly D ∈ I and for any

p, q /∈ D, A||xp−xq||G(ξ) < ε. Therefore by Theorem 4.1, (xk) is gradually I−Cauchy.

But we claim that (xk) is not gradually I∗−Cauchy.

To prove our claim, we assume the contrary. Then by definition, there exists a set

M = {m1 < m2 < ... < mk < ..} ∈ F(I) such that the subsequence (xmk
) is gradual

Cauchy sequence i.e., for any ε > 0 and ξ ∈ (0, 1], there exists some k0 ∈ N such that

(4.1) A||xmi
−xmj

||G(ξ) < ε ∀i, j ≥ k0.
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Now, M ∈ F(I) implies N \ M ∈ I. By the construction of I, there exists m ∈ N

such that N \ M ⊂
m
⋃

r=1

Dr which subsequently implies that Dm+1, Dm+2 ∈ M . Now

by the construction of Dr’s, we can say that for the obtained k0 in (4.1), there exists

mi ∈ Dm+1 and mj ∈ Dm+2 such that mi, mj ≥ k0. But then the following equality

A||xmi
−xmj

||G(ξ) = eξ
∣

∣

∣

∣

1

m+ 1
−

1

m+ 2

∣

∣

∣

∣

=
eξ

(m+ 1)(m+ 2)

contradicts (4.1) for any particular choice of ε with ε < eξ

(m+1)(m+2)
. Thus our as-

sumption was wrong and hence (xk) is not gradually I∗−Cauchy.

Theorem 4.2. Let I be an admissible ideal in N which satisfies the condition (AP ).

Then, every gradually I−Cauchy sequence in the GNLS (X, || · ||G) is also gradually

I∗−Cauchy sequence.

Proof. Suppose (xk) be an I−Cauchy sequence in the GNLS (X, || · ||G). Then for

any ε > 0 and ξ ∈ (0, 1], there exists a natural number N(= Nε(ξ)) such that

{k ∈ N : A||xk−xN ||G(ξ) < ε} ∈ F(I). In particular, for ε = 1
p
, p ∈ N we have

Mp = {k ∈ N : A||xk−xnp ||G(ξ) <
1
p
} ∈ F(I) where np = N 1

p
(ξ). Now as I satisfies

(AP ), so by Lemma (4) of [24], there exists M = {m1 < m2 < ... < mk < ...} ∈ F(I)

such thatM\Mp is a finite set for all p ∈ N. Let ε > 0 be given. Then by Archimedean

property, we choose p0 ∈ N such that 2
p0

< ε. Clearly, the set M \Mp0 is a finite set

and eventually there exists k0 ∈ N such that mi, mj ∈ Mp0 for all i, j ≥ k0

i.e., A||xmi
−xnp ||G(ξ) <

1
p0

and A||xmj
−xnp ||G(ξ) <

1
p0

for all i, j ≥ k0.

Now

A||xmi
−xmj

||G(ξ) = A||xmi
−xnp+xnp−xmj

||G(ξ)

≤ A||xmi
−xnp ||G(ξ) + A||xmj

−xnp ||G(ξ)

<
1

p0
+

1

p0
=

2

p0
< ε ∀i, j ≥ k0.

Hence, (xk) is gradually I∗−Cauchy sequence. �

5. I and I∗−divergence in GNLS

Definition 5.1. Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is said to

be gradually divergent if there exists an element x ∈ X such that for any ξ ∈ (0, 1],

A||xk−x||G(ξ) → ∞ as k → ∞.
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Definition 5.2. Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is said to

be gradually I−divergent if there exists an element x ∈ X such that for any positive

real number B and ξ ∈ (0, 1], {k ∈ N : A||xk−x||G(ξ) ≤ B} ∈ I.

It is easy to observe that if I is admissible, then a gradually divergent sequence is

gradually I−divergent.

Definition 5.3. Let (xk) be a sequence in the GNLS (X, || · ||G). Then (xk) is said to

be gradually I∗−divergent if there exists M = {m1 < m2 < ... < mk < ...} ∈ F(I)

such that (xmk
) is gradually divergent i.e., for any ξ ∈ (0, 1], there exists atleast one

element x ∈ X such that A||xmk
−x||G(ξ) → ∞ as k → ∞.

Theorem 5.1. Let I be an admissible ideal in N and (xk) be a sequence in the

GNLS (X, || · ||G). Then, if (xk) is gradually I∗−divergent then (xk) is gradually

I−divergent.

Proof. From the assumption, it is clear that there exists a set M = {m1 < m2 < ... <

mk < ...} ∈ F(I) such that for any ξ ∈ (0, 1], there exists at least one x ∈ X such

that A||xmk
−x||G(ξ) → ∞ as k → ∞. This means that for any positive real number

B, there exists k0 ∈ N such that A||xmk
−x||G(ξ) > B for all k > k0. Thus, we have

{k ∈ N : A||xk−x||G(ξ) ≤ B} ⊆ (N \M) ∪ {1, 2, 3, ..., k0} ∈ I, as I is admissible.

Hence, the sequence (xk) is gradually I−divergent. �

The following example shows that the reverse of the above theorem is not always

true.

Example 5.1. Consider the ideal I of Example 4.1. Define a sequence (xk) in R
n as

follows xk = (0, 0, ..., 0, r), if k ∈ Dr. Then (xk) is I−divergent but not I∗−divergent.

Justification. Clearly, A||xk−0||G(ξ) = reξ for k ∈ Dr. Then for any B > 0 and

ξ ∈ (0, 1], there exists m ∈ N such that B < meξ and eventually the following

inclusion holds

(5.1) {k ∈ N : A||xk−0||G(ξ) ≤ B} ⊆ {k ∈ N : A||xk−0||G(ξ) ≤ meξ}.
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Also, A||xk−0||G(ξ) = reξ for k ∈ Dr implies

(5.2) {k ∈ N : A||xk−0||G(ξ) ≤ meξ} =

m
⋃

r=1

Dr ∈ I.

From (5.1) and (5.2), we obtain {k ∈ N : A||xk−0||G(ξ) ≤ B} ∈ I. Hence (xk) is

I−divergent.

But the above sequence is not gradually I∗−divergent. Because for any H ∈ I

there exists m ∈ N such that H ⊆
m
⋃

r=1

Dr and as a consequence Dm+1 ⊆ N \H . Let

M = {m1 < m2 < ... < mk < ...} denote the set N \H , then M ∈ F(I) and (xmk
) is

gradual convergent to (0, 0, .., 0, m+ 1), a contradiction. Hence (xk) is not gradually

I∗−divergent.

We end up by providing a theorem that gives a condition under which gradual

I−divergence of a sequence in the GNLS (X, || · ||G) implies gradual I∗−divergence.

Theorem 5.2. Let I be an admissible ideal in N and (xk) be a sequence in the GNLS

(X, || · ||G). Then, gradually I−divergence of (xk) implies gradually I∗−divergence if

I satisfies the condition (AP ).

Proof. By hypothesis, for every ξ ∈ (0, 1], there exists a x ∈ X such that for any

B > 0, C(ξ, B) = {k ∈ N : A||xk−x||G(ξ) ≤ B} ∈ I. This enables us to construct a

countable family of mutually disjoint sets {Cm(ξ)}m∈N in I by considering

C1(ξ) = {k ∈ N : A||xk−x||G(ξ) ≤ 1}

and

Cm(ξ) = {k ∈ N : m− 1 < A||xk−x||G(ξ) ≤ m} = C(ξ,m) \ C(ξ,m− 1), for m ≥ 2.

Now since I satisfies the condition (AP ), so for the above countable collection

{Cm(ξ)}m∈N, there exists another countable family of subsets {Bm(ξ)}m∈N of N sat-

isfying

(5.3) Cr(ξ)△Br(ξ) is finite ∀r ∈ N andB(ξ) =

∞
⋃

r=1

Br(ξ) ∈ I.
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Let B > 0 be arbitrary. Now choose m ∈ N such that B < m+1. Then, the following

inclusion holds

{k ∈ N : A||xk−x||G(ξ) ≤ B} ⊆
m+1
⋃

r=1

Cr(ξ) ∈ I.

Using (5.3) we can say that there exists an integer k0 ∈ N, such that

m+1
⋃

r=1

Br(ξ) ∩ (k0,∞) =
m+1
⋃

r=1

Cr(ξ) ∩ (k0,∞).

Choose k ∈ N \ B(ξ) ∈ F(I) such that k > k0. Then we must have k /∈
m+1
⋃

r=1

Br(ξ)

and eventually k /∈
m+1
⋃

r=1

Cr(ξ). But then A||xk−x||G(ξ) > B for all k > k0 in M(=

N \ B(ξ)), which means that (xk) is gradually I∗−divergent. This completes the

proof. �

6. Conclusion

In this paper, we firstly investigated the notion of gradual I limit and gradual

I cluster points and proved Theorem 3.2 to describe the relationship between the

notions. Then, we moved our attention to I and I∗−Cauchy sequences in the gradual

normed linear spaces and established Theorem 4.2 which revealed the significance of

the condition (AP ) under which an I−Cauchy sequence becomes I∗−Cauchy. At

the end, we have investigated the concept of I and I∗−divergence and established

Theorem 5.1 and Theorem 5.2 to represent their interrelationship.

Summability theory and the convergence of sequences have wide applications in

various branches of mathematics particularly, in mathematical analysis. The obtained

results may be useful for future researchers to explore various notions of convergences

in the gradual normed linear spaces in more detail.
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