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EXISTENCE AND UNIQUENESS OF WEAK SOLUTION FOR
NONLINEAR WEIGHTED (p, q)-LAPLACIAN SYSTEM WITH

APPLICATION ON AN OPTIMAL CONTROL PROBLEM

SALAH A. KHAFAGY(1), EADA. A. EL-ZAHRANI(2) AND HASSAN M. SERAG(3)

Abstract. In this paper, we prove the existence and uniqueness results of weak

solution for weighted (p, q)-Laplacian system with Dirichlet boundary condition.

The proof of the results is made by Browder theorem method. Also, the optimal

control of the weighted (p, q)-Laplacian system will be study as an application.

1. Introduction

Existence results of weak solutions for nonlinear systems involving weighted (p, q)-

Laplacian operators have been studied using the sub-supersolutions method (see [1, 4,

9, 10, 11, 14]), the theory of nonlinear monotone operators method (see [18, 19]), the

Browder theorem method (see [3]) and the mountain pass theorem with the saddle

point theorem (see [20]).

In [7], under some certain conditions on a(x) and f(x, u), the author proved the

existence and uniqueness of weak solution for the following weighted p-Laplacian

boundary value problem

(1.1)







−∆P,pu+ λa(x)|u|p−2u = f(x, u) in Ω,

u = 0 on ∂Ω,

using the method of the Browder theorem. Existence and uniqueness of weak solu-

tions for nonlinear systems involving p-Laplacian or weighted p -Laplacian operators

using the Browder theorem method have been the subject of much recent interest

(we refer only to [2, 8]).
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Here, by the Browder theorem method, we are concerned with the existence and

uniqueness of weak solution for a quasilinear weighted (p, q)-Laplacian system

(1.2)



















−∆P,pu+ λa(x)|u|p−2u = f(x, u, v)

−∆Q,qv + λb(x)|v|q−2v = g(x, u, v)

in Ω,

in Ω,

u = v = 0 on ∂Ω,

where ∆P,p with p > 2 and P = P (x) is a weighted function, denotes the weighted

p-Laplacian defined by ∆P,pu ≡ div[|P (x)∇u|p−2∇u], λ is a positive parameter, 0 <

α ≤ a(x) ≤ β < +∞, 0 < γ ≤ b(x) ≤ δ < +∞ and Ω ⊂ R
N is a bounded domain

with smooth boundary ∂Ω. Let f : Ω×R×R → R be a caratheodory (CAR) function

which is decreasing with respect to the second variable and g : Ω × R × R → R be

also a caratheodory (CAR) function which is decreasing with respect to the third

variable, i.e.,

(1.3)







f(x, s1, t) ≤ f(x, s2, t) for a.e. x ∈ Ω and s1, s2 ∈ R, s1 ≥ s2,

g(x, s, t1) ≤ g(x, s, t2) for a.e. x ∈ Ω and t1, t2 ∈ R, t1 ≥ t2.

Assume, moreover, that there exists f0 ∈ Lp
′

(Ω), g0 ∈ Lq
′

(Ω), p′ = p
p−1

, q′ = q
q−1

and c1 > 0, c2 > 0 such that

(1.4)







|f(x, s, t)| ≤ c1[f0(x) + |s|p−1 + |t|
q/p′

]

|g(x, s, t)| ≤ c2[g0(x) + |s|
p/q′

+ |t|q−1].

Also, the optimal control of the weighted (p, q)-Laplacian system will be studied as

an application. In the present work, besides the Browder theorem method as in the

most of the papers, we consider the case of a system and, instead of the Laplacian,

we work with the weighted p−Laplacian.

Our paper is organized as follows: section 2 contains some basic definitions con-

cerning the nonlinear operators that will be used throughout the paper. Also, the

space setting of the problem and some basic characteristics, as the equivalent norm

and imbedding results, will be introduced. In section 3, we state the main results of

existence and uniqueness of weak solutions of the problem (1.2). Section 4 is devoted

for the study of optimal control as an application.
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2. Preliminaries and Space Setting

First, the aim of this section is to recall some basic definitions concerning the

operators which we use extensively in this paper (see [6]).

Definition 2.1. Let A : V → V ∗ be an operator on a real Banach space V , where

V ∗ is the dual space of V . We say that the operator A is:

(i) bounded iff it maps bounded sets into bounded sets i.e. for each r > 0 there

exists M > 0 (M depending on r) such that

‖u‖ ≤ r =⇒ ‖A(u)‖ ≤M, ∀u ∈ V ;

(ii) coercive: iff lim
‖u‖→∞

〈A(u),u〉
‖u‖

= ∞;

(iii) monotone iff 〈A(u1)− A(u2), u1 − u2〉 ≥ 0 for all u1, u2 ∈ V ;

(iv) strictly monotone iff 〈A(u1) − A(u2), u1 − u2〉 > 0 for all u1, u2 ∈ V,

u1 6= u2;

(v) strongly monotone iff 〈A(u1)−A(u2), u1−u2〉 > k‖u1−u2‖ for all u1, u2 ∈ V,

u1 6= u2;

(vi) continuous iff un −→ u implies A(un) −→ A(u), for all un, u ∈ V ;

(vii) strongly continuous iff un
w

−→ u implies A(un) −→ A(u), for all un, u ∈ V ;

(viii) demicontinuous iff un −→ u implies A(un)
w

−→ A(u), for all un, u ∈ V ;

Consequently, the following remarks are satisfied:

Remark 1. Every strongly continuous operator is continuous which is demicontinu-

ous operator.

Remark 2. Every strongly continuous operator is bounded operator.

Remark 3. Every strictly monotone operator is monotone operator.

Theorem 2.1. (Browder Theorem [13]) Let A be a reflexive real Banach space.

Moreover let A : V → V ∗ be an operator which is: bounded, demicontinuous, coercive,

and monotone on the space V . Then, the equation A(u) = f has at least one solution

u ∈ V for each f ∈ V ∗. If moreover, A is strictly monotone operator, then the

equation A(u) = f has precisely one solution u ∈ V for every f ∈ V ∗.
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Now, we recall the precise definition of the weighted Sobolev space W 1,p(P,Ω)

which is the set of all real valued functions u defined in Ω for which

(2.1) ‖u‖W 1,p(P,Ω) =





∫

Ω

|u|p +

∫

Ω

P (x)|∇u|p





1/p

<∞,

where P (x) is a weight function, i.e., a measurable function which is strictly positive

a.e. in Ω, satisfying the conditions

(2.2) P (x) ∈ L1
Loc(Ω), (P (x))

− 1
p−1 ∈ L1

Loc(Ω), with p > 1,

and

(2.3) (P (x))−s ∈ L1(Ω), with s ∈ (
N

p
,∞) ∩ [

1

p− 1
,∞).

Since we are dealing with the Dirichlet problem, we introduce the space W 1,p
0 (P,Ω)

which is the closure of C∞
0 (Ω) in W 1,p(P,Ω) with respect to the norm

(2.4) ‖u‖W 1,p
0 (P,Ω) =





∫

Ω

P (x)|∇u|p





1/p

<∞,

which is equivalent to the norm given by (2.1). Due to (2.2), both spaces W 1,p(P,Ω)

and W 1,p
0 (P,Ω) are well defined reflexive Banach Spaces. Also, the space W 1,p

0 (P,Ω)

is compactly imbedded into the space Lp(Ω), i.e.

(2.5) W
1,p
0 (P,Ω) →֒ Lp(Ω).

For a discussion about the space setting we refer the reader to [5] and the references

therein.

The space setting of the problem under study is the Banach spaceW = W
1,p
0 (P,Ω)×

W
1,q
0 (Q,Ω) and the norm of z = (u, v) ∈ W is given by ‖z‖W = ‖u‖W 1,p

0 (P,Ω) +

‖v‖W 1,q
0 (Q,Ω), where ‖u‖W 1,p

0 (P,Ω) = (
∫

Ω

P (x)|∇u|p)1/p and ‖v‖W 1,q
0 (Ω) = (

∫

Ω

Q(x)|∇v|q)1/q.

By the continuity of the embedding W 1,p
0 (P,Ω)×W 1,q

0 (Q,Ω) →֒ Lp(Ω)×Lq(Ω), there

exists positive constants cpemb, cqemb such that

(2.6) ‖u‖Lp(Ω) ≤ cpemb‖u‖W 1,p
0 (P,Ω), ‖v‖Lq(Ω) ≤ cqemb‖v‖W 1,q

0 (Q,Ω) for all (u, v) ∈ W.

where cpemb is the constant of the embedding of W 1,p
0 (P,Ω) into Lp(Ω) and cqemb is

the constant of the embedding of W 1,q
0 (Q,Ω) into Lq(Ω).
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Throughout this paper we denote by 〈·, ·〉 the duality pairing between W and W ∗.

3. Existence and Uniqueness Results

In this section, using the method of Browder theorem, the existence and uniqueness

of weak solution for equation (1.2) will be proved.

Definition 3.1. we say that (u, v) ∈ W =W
1,p
0 (P,Ω)×W 1,q

0 (Q,Ω) is a weak solution

of system (1.2) if
∫

Ω

P (x)|∇u|p−2∇u ∇φ+ λ

∫

Ω

a(x)|u|p−2uφ =

∫

Ω

f(x, u, v)φ for all φ ∈ W
1,p
0 (P,Ω),

∫

Ω

Q(x)|∇v|q−2∇v ∇ψ + λ

∫

Ω

b(x)|v|q−2vψ =

∫

Ω

g(x, u, v)ψ for all ψ ∈ W
1,q
0 (Q,Ω).

The main result concerning problem (1.2) is the following theorem:

Theorem 3.1. Let p, q ≥ 2, λ > 0 and f, g ∈ CAR(Ω × R × R) satisfy (1.3) and

(1.4). Then problem (1.2) has a unique weak solution.

Proof. We define for λ > 0, the operator T : Ω×W → W ∗ as

T (u, v) := A(u, v) + λB(u, v)− C(u, v),

where the operators A,B : W →W ∗and C(x, u, v) : Ω×W →W ∗ are given by

〈A(u, v), (φ, ψ)〉 =

∫

Ω

P (x)|∇u|p−2∇u∇φ+

∫

Ω

Q(x)|∇v|q−2∇v∇ψ,

〈B(u, v), (φ, ψ)〉 =

∫

Ω

a(x)|u|p−2uφ+

∫

Ω

b(x)|v|q−2vψ,

and

〈C(x, u, v), (φ, ψ)〉 =

∫

Ω

f(x, u, v)φ+

∫

Ω

g(x, u, v)ψ,

for all (u, v) ∈ W.

Now, (u, v) ∈ W is a weak solution of (1.2) if

〈T (u, v), (φ, ψ)〉 = 〈A(u, v), (φ, ψ)〉+ λ 〈B(u, v), (φ, ψ)〉 − 〈C(x, u, v), (φ, ψ)〉 = 0,

holds for any (φ, ψ) ∈ W. Thus, to find a weak solution of (1.2) is equivalent to finding

(u, v) ∈ W which satisfies the operator equation T (u, v) = 0.
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Now, we focus on the operators A,B, and C :

a) A,B and C are well defined. The operator A(u, v) can be written as the sum

of the two operators A1(u, v) and A2(u, v) where

〈A1(u, v), (φ, ψ)〉 =

∫

Ω

P (x)|∇u|p−2∇u ∇φ

and

〈A2(u, v), (φ, ψ)〉 =

∫

Ω

Q(x)|∇v|q−2∇v ∇ψ.

Using Hölder’s inequality, it is easy to prove that both A1 and A2 are well defined,

so their sum, the operator A will be the same. Similarly, the operator B(u, v) may

be written as the sum of the two operators B1(u, v) and B2(u, v) where

〈B1(u, v), (φ, ψ)〉 =

∫

Ω

a(x)|u|p−2uφ and 〈B2(u, v), (φ, ψ)〉 =

∫

Ω

b(x)|v|q−2vψ.

It is easy to prove that both B1 and B2 are well defined, so their sum, the operator

B will be the same.

Also, the operator C(x, u, v) can be written as the sum of C1(x, u, v) and C2(x, u, v)

where

〈C1(x, u, v), (φ, ψ)〉 =

∫

Ω

f(x, u, v)φ and 〈C2(x, u, v), (φ, ψ)〉 =

∫

Ω

g(x, u, v)ψ.

For the operator C1, using Hölder’s inequality, we can easily see that

|〈C1(x, u, v), (φ, ψ)〉| ≤ c1





∫

Ω

(f0(x) + |u|p−1 + |v|q/p
′

) |φ|





≤ c1





∫

Ω

|f0(x)|
p′





1/p′ 



∫

Ω

|φ|p





1/p

+c1





∫

Ω

|u|p





1/p′ 



∫

Ω

|φ|p





1/p

+





∫

Ω

|v|q





1/p′ 



∫

Ω

|φ|p





1/p

= c1

[

||f0||Lp′ (Ω) + ||u||
p/p′

Lp(Ω) + ||v||
q/p′

Lq(Ω)

]

||φ||Lp(Ω) <∞.

Similarly for the operator C2,and hence C is well defined.
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b) A,B and C are bounded operators. Indeed, for every u, v such that

||u||W 1,p
0 (P,Ω) ≤M and ||v||W 1,q

0 (Q,Ω) ≤ N , one obtains

||A1(u, v)||W ∗ = sup
||φ||

W
1,p
0

(Ω)
≤1

|〈A1(u), φ〉| ≤ sup
||φ||

W
1,p
0

(Ω)
≤1

∫

Ω

P (x)|∇u|p−2∇u ∇φ.

Using Hölder’s inequality, A1 becomes

||A1(u, v)||W ∗ = sup
||φ||

W
1,p
0

(Ω)
≤1





∫

Ω

P (x)|∇u|p





1/p′ 



∫

Ω

P (x)|∇φ|p





1/p

≤Mp/p′ .

Similarly,

||A2(u, v)||W ∗ = sup
||ψ||

W
1,q
0

(Ω)
≤1





∫

Ω

Q(x)|∇v|q





1/q′ 



∫

Ω

Q(x)|∇ψ|q





1/q

≤ N q/q′ .

Hence A is bounded. Also,

||B1(u, v)||W ∗ = sup
||φ||

W
1,p
0

(Ω)
≤1

|〈B1(u), φ〉|

≤ β sup
||φ||

W
1,p
0 (P,Ω)

≤1





∫

Ω

|u|p





1/p′ 



∫

Ω

|φ|p





1/p

≤ βc
1+(p/p′)
pemb Mp/p′ .

Similarly,

||B2(u, v)||W ∗ ≤ δ sup
||ψ||

W
1,q
0

(Q,Ω)
≤1





∫

Ω

|v|q





1/q′ 



∫

Ω

|ψ|p





1/q

≤ δc
1+(q/q′)
qemb N q/q′ .

Then B is bounded.

Finally, for the operator C1(x, u, v), a simple calculation shows that

||C1(x, u, v)||W ∗ = sup
||φ||

W
1,p
0 (P,Ω)

≤1

|〈C1(x, u, v), φ〉|

≤ c1 sup
||φ||

W
1,p
0

(P,Ω)
≤1

∫

Ω

(f0(x) + |u|p−1 + |v|q/p
′

) |φ|

≤ c1 sup
||φ||

W
1,p
0 (P,Ω)

≤1

[

||f0||Lp′ (Ω) + ||u||
p/p′

Lp(Ω) + ||v||
q/p′

Lq(Ω)

]

||φ||Lp(Ω)

≤ c1cpemb( ||f0||Lp′(Ω) + c
p/p′

pemb ‖u‖
p/p′

W 1,p
0 (P,Ω)

+ c
q/p′

qemb ||v||
q/p′

W 1,q
0 (Q,Ω)

)

≤ c1cpemb( ||f0||Lp′(Ω) + c
p/p′

pembM
p/p′ + c

q/q′

qemb N
q/p′).
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By routine calculations for the operator C2(x, u, v), one has

||C2(x, u, v)||W ∗ = sup
||ψ||

W
1,q
0 (Q,Ω)

≤1

|〈C2(x, u, v), ψ〉| ≤

≤ c2cqemb( ||g0||Lq′ (Ω) + c
q/q′

qembN
q/q′ + c

p/q′

pemb M
p/q′).

Hence C(x, u, v) is bounded.

c) A,B and C are continuous operators. If un −→ u in W
1,p
0 (P,Ω), vn −→ v in

W
1,q
0 (Q,Ω). Then, we have ‖un − u‖W 1,p

0 (P,Ω) −→ 0, ‖vn − v‖W 1,q
0 (Q,Ω) −→ 0 so that

‖∇un −∇u‖Lp(Ω) −→ 0, ‖∇vn −∇v‖Lq(Ω) −→ 0.

Applying Dominated Convergence Theorem, one obtains

∥

∥(|∇un|
p−2∇un − |∇u|p−2∇u)

∥

∥

Lp(Ω)
−→ 0,

∥

∥(|∇vn|
q−2∇vn − |∇v|q−2∇v)

∥

∥

Lq(Ω)
−→ 0.

Now, for A1, we deduce that

‖A1(un)− A1(u)‖W ∗ = sup
||φ||

W
1,p
0 (P,Ω)

≤1

|〈A1(un)− A1(u), φ〉|

≤ sup
||v||

W
1,p
0

(P,Ω)
≤1





∫

Ω

P (x)[|∇un|
p−2∇un − |∇u|p−2∇u]p

′





1/p′

×





∫

Ω

P (x)|φ|p





1/p

→ 0 for n→ ∞.

Similarly,

‖A2(vn)−A2(v)‖W ∗ = sup
||ψ||

W
1,q
0

(Q,Ω)
≤1

|〈A2(vn)−A2(v), ψ〉|

≤ sup
||ψ||

W
1,q
0 (Q,Ω)

≤1





∫

Ω

Q(x)[|∇vn|
q−2∇vn − |∇v|q−2∇v]q

′





1/q′

×





∫

Ω

Q(x)|ψ|q





1/q

→ 0 for n→ ∞.

Hence A is continuous.
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Also, for B1, we can show that

‖B1(un)− B1(u)‖W ∗ = sup
||φ||

W
1,p
0

(P,Ω)
≤1

|〈B1(un)−B1(u), φ〉|

≤ βcpemb





∫

Ω

([|un|
p−2un − |u|p−2u])p

′





1/p′

→ 0 for n→ ∞.

Also,

‖B2(vn)− B2(v)‖W ∗ ≤ δcqemb





∫

Ω

([|vn|
q−2vn − |v|q−2v])q

′





1/q

→ 0 for n→ ∞.

Hence B is continuous.

Finally, the continuity of C1, C2 follows from the continuity of the Nemytskij op-

erator associated with f, g and acting from W into W.

d) Let p ≥ 2, ∀ x1, x2 ∈ R
N , we have the following inequality (see [17])

(3.1) |x2|
p ≥ |x1|

p + p |x1|
p−2

x1(x2 − x1) +
|x2 − x1|

p

2p−1 − 1
.

Now, using (3.1), one obtains

〈A1(u)−A1(φ), u− φ〉 =

∫

Ω

P (x)[|∇u|p−2∇u− |∇φ|p−2∇φ](∇u−∇φ)

= −

∫

Ω

P (x)|∇u|p−2∇u(∇φ−∇u)

−

∫

Ω

P (x)|∇φ|p−2∇φ(∇u−∇φ)

≥
1

p(2p−1 − 1)

∫

Ω

P (x) |∇u−∇φ|p

+
1

p(2p−1 − 1)

∫

Ω

P (x) |∇φ−∇u|p

≥
2

p(2p−1 − 1)

∫

Ω

P (x) |∇u−∇φ|p

= c(p) ‖u− φ‖p
W 1,p

0 (P,Ω)
for p ≥ 2.
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Similarly,

〈A2(v)− A2(ψ), v − ψ〉 ≥
2

q(2q−1 − 1)

∫

Ω

Q(x) |∇v −∇ψ|q

= c(q) ‖v − ψ‖q
W 1,q

0 (Q,Ω)
for q ≥ 2.

Hence,

〈A(u, v)− A(φ, ψ), (u, v)− (φ, ψ)〉 ≥

c(p) ‖u− φ‖p
W 1,p

0 (P,Ω)
+ c(q) ‖v − ψ‖q

W 1,q
0 (Q,Ω)

for p, q ≥ 2.
(3.2)

Similarly,

〈B1(u)− B1(φ), u− φ〉 =

∫

Ω

a(x)[|u|p−2u− |φ|p−2φ](u− φ)

≥
2

p(2p−1 − 1)

∫

Ω

a(x) |u− φ|p ≥ αc(p) ‖u− φ‖pLp(Ω) ≥ 0.

Also,

〈B2(v)−B2(ψ), v − ψ〉 ≥ γc(q) ‖v − ψ‖qLq(Ω) ≥ 0.

Hence,

(3.3) 〈B(u, v)− B(φ, ψ), (u, v)− (φ, ψ)〉 ≥ 0.

Similarly, we get

〈F (u)− F (φ), u− φ〉 =

∫

Ω

[f(x, u, v)− f(x, φ, v)](u− φ).

Since f is decreasing with respect to u, then

[f(x, u, v)− f(x, φ, v)](u− φ) ≤ 0,

consequently,

〈C1(u)− C1(φ), u− φ〉 =

∫

Ω

[f(x, u, v)− f(x, φ, v)](u− φ) ≤ 0,

and

〈C2(v)− C2(ψ), v − ψ〉 =

∫

Ω

[g(x, u, v)− g(x, u, ψ)](v − ψ) ≤ 0.

Hence,

(3.4) 〈C(u, v)− C(φ, ψ), (u, v)− (φ, ψ)〉 ≤ 0.
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Equations (3.2), (3.3) and (3.4) imply that

〈T (u, v)− T (φ, ψ), (u, v)− (φ, ψ)〉 ≥ c(p) ‖u− φ‖p
W 1,p

0 (P,Ω)
+ c(q) ‖v − ψ‖q

W 1,q
0 (Q,Ω)

.

Hence,

(3.5) 〈T (u, v)− T (φ, ψ), (u, v)− (φ, ψ)〉 ≥ cmin[‖u− φ‖p
W 1,p

0 (P,Ω)
+ ‖v − ψ‖q

W 1,q
0 (Q,Ω)

],

for p, q ≥ 2, where cmin = min{c(p), c(q)}.

Now, to apply Browder Theorem, it remains to prove that T is a coercive operator.

From (3.5), we find

〈T (u, v)− T (0, 0), (u, v)〉 ≥ 〈T (0, 0), u− v〉+cmin[‖u‖
p

W 1,p
0 (P,Ω)

+‖v‖q
W 1,q

0 (Q,Ω)
] for p, q ≥ 2.

On the other hand

〈T (0, 0), u− v〉 = 〈A(0, 0), u− v〉+ λ 〈B(0, 0), u− v〉 − 〈C(0, 0), u− v〉

= −

∫

Ω

f(x, 0, 0)u−

∫

Ω

g(x, 0, 0)v ≥ −c1

∫

Ω

f0(x)u− c2

∫

Ω

g0(x)v

≥ −c1(

∫

Ω

[f0(x)]
p′)1/p

′

(

∫

Ω

|u|p)1/p − c2(

∫

Ω

[g0(x)]
q′)1/q

′

(

∫

Ω

|v|q)1/q

≥ −c1cpemb ||f0||Lp′ (Ω) ||u||W 1,p
0 (P,Ω) − cqemb ||g0||Lq′ (Ω) ||v||W 1,q

0 (Q,Ω) .

This implies that

〈T (u, v), (u, v)〉 ≥cmin[‖u‖
p

W 1,p
0 (P,Ω)

+ ‖v‖q
W 1,q

0 (Q,Ω)
]− cpemb ||f0||Lp′ (Ω) ||u||W 1,p

0 (P,Ω)

− cqemb ||g0||Lq′ (Ω) ||v||W 1,q
0 (QΩ) .

Therefore,

lim
〈T (u, v), (u, v)〉

||(u, v)||W
≥ cmin lim

[‖u‖p
W 1,p

0 (P,Ω)
+ ‖v‖q

W 1,q
0 (Q,Ω)

]

‖u‖W 1,p
0 (P,Ω) + ‖v‖W 1,q

0 (Q,Ω)

= ∞ as ||(u, v)||W → ∞

This proves the coercivity condition and so, the existence of weak solution for (1.2).

The uniqueness of weak solution of (1.2), is a direct consequence of (3.5). Suppose

that (u1, v1), (u2, v2) be a weak solutions of (1.2) such that (u1, v1) 6= (u2, v2).

Consequently, (3.5) becomes

0 = 〈T (u1, v1)− T (u2, v2), (u1, v1)− (u2, v2〉

≥ cmin[‖u1 − u2‖
p

W 1,p
0 (P,Ω)

+ ‖v1 − v2‖
q

W 1,q
0 (Q,Ω)

] ≥ 0 for p, q ≥ 2.
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therefore (u1, v1) = (u2, v2). This completes the proof. �

4. Optimal Control

Optimal control deals with the problem of finding a control law for a given system

such that a certain optimality criterion is achieved. Control problems include a cost

(energy) functional that is a function of state and control variables. An optimal

control is a set of partial differential equations describing the paths of the control

variables that minimize the cost or energy functional. So, the optimal control problem

requires the following initial data:

• Space of control U (Hilbert or Banach space)

• For a given control ξ, the state y(ξ) of the system is given by the solution of an

operator equation Ay(ξ) = given function of control ξ. The operator A is called the

model of the system.

• The observation z(ξ) = given function of y(ξ).

• The cost function J(ς) = given function of z(ξ).

• The control problem is then to find inf J(ς) over a closed convex subset Uad of U.

The model A of the weighted (p, q)-Laplacian system under study (1.2) is given by

Ay = A{y1, y2} = {−∆P,py1 + λa(x)|y1|
p−2y1,−∆Q,qy2 + λb(x)|y2|

q−2y2}.

Using the theory of Lions [15] , we can formulate the control problem as the fol-

lowing:

The Banach space U = W
1,p
0 (P,Ω)×W

1,q
0 (Q,Ω) being the space of controls. For a

control ξ(ξ1, ξ2), the state y(ξ) = {y1(ξ), y2(ξ)} of the system, from (1.2), is given by

(4.1)



















−∆P,py1(ξ) + λa(x)|y1(ξ)|
p−2y1(ξ) = f + ξ1

−∆Q,qy2(ξ) + λb(x)|y2(ξ)|
q−2y2(ξ) = g + ξ2

in Ω,

in Ω,

y1(ξ) = y2(ξ) = 0 on ∂Ω.

The non–quadratic cost functional is given by

(4.2) J(ς) =

∫

Ω

P (x) |y1(ς)− zd1|
p +

∫

Ω

Q(x) |y2(ς)− zd2|
q +M(‖ς1‖

p
p + ‖ς2‖

q
q),

where Zd = {zd1, zd2} ∈ W
1,p
0 (P,Ω)×W

1,q
0 (Q,Ω) and M is a positive constant.
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The control problem then is to find inf J(ς) over a closed convex subset Uad of

W
1,p
0 (P,Ω) × W

1,q
0 (Q,Ω). Since the cost function is given by (4.2), there exists a

unique optimal control ξ = {ξ1, ξ2} ∈ Uad which is characterized by (see [12, 15, 16])

(4.3) J
′

(ξ)(ς − ξ) ≥ 0 for all ς ∈ Uad.

From (4.2), we have for w = (w1, w2) ∈ W
1,p
0 (P,Ω)×W

1,q
0 (Q,Ω),

J
′

(ξ) · w =
d

dζ
J(ξ + ζw)

∣

∣

∣

∣

ξ=0

= p

∫

Ω

P (x) |y1(ξ)− zd1|
p−2 (y1(ξ)− zd1)

∂

∂ξ
y1(ξ) · w1

+pM

∫

Ω

|ξ1|
p−2

ξ1 · w1

+q

∫

Ω

Q(x) |y2(ξ)− zd2|
q−2 (y2(ξ)− zd2)

∂

∂ξ
y2(ξ) · w2

+qM

∫

Ω

|ξ2|
q−2

ξ2 · w2.(4.4)

But, if we set ∂
∂ξ
yi(ξ) · wi = ψi(wi), i = 1, 2, then (4.4) is equivalent to

(4.5)

0 ≤ p
∫

Ω

P (x) |y1(ξ)− zd1|
p−2 (y1(ξ)− zd1)ψ1(w1) + pM

∫

Ω

|ξ1|
p−2

ξ1 · w1

+q
∫

Ω

Q(x) |y2(u)− zd2|
q−2 (y2(u)− zd2)ψ2(w2) + qM

∫

Ω

|ξ2|
q−2

ξ2. · w2.

Let us define the adjoint state P (ξ) = {P1(ξ), P2(ξ)} as the solution in (W 1,p
0 (P,Ω))∗×

(W 1,q
0 (Q,Ω))∗ of

(4.6)



















A∗P (ξ) = {
∫

Ω

P (x) |y1(ξ)− zd1|
p−2 (y1(ξ)− zd1),

Q(x) |y2(ξ)− zd2|
q−2 (y2(ξ)− zd2)} in Ω,

P (ξ) = {P1(ξ), P2(ξ)} = 0 on ∂Ω,

then from (4.1) and (4.5), we deduce that

(4.7) p

∫

Ω

[P1(ξ)(ς1 − ξ1) +M |ξ1|
p−2

ξ1] + q

∫

Ω

[P2(ξ)(ς2 − ξ2) +M |ξ2|
q−2

ξ2] ≥ 0.

So, the main theorem of control problem is the following:
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Theorem 4.1. If the cost function is given by (4.2), the optimal control u is char-

acterized by (4.6) and (4.7) together with (4.1).

5. Conclusion

Interest in general forms of nonlinear partial differential problems, whose leading

operator is of the (p, q)-Laplacian type, has greatly increased over the last few decades.

The main reason is that this kind of nonlinear operator appears naturally in the study

of nonlocal diffusion with special features. In this work, we are dealing with system

involving weighted (p, q)-Laplacian operator. Existence and uniqueness of weak so-

lution through the Browder theorem method are established. As an application, an

optimal control problem related to the system under study has been formulated and

analyzed. There are several interesting subjects for future work. The first one is

to generalize the results obtained in this paper from systems involving weighted p-

Laplacian operator to systems involving singular p-Laplacian or fractional Laplacian

ones, that is, div[|x|−ap|∇u|p−2∇u] under some certain conditions on a and p or (−∆)s

with with s ∈ (0, 1), respectively. The second one is to the use of a method other

than the Browder theorem method, such as the sub-super solution method.
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