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NONLINEAR IMPLICIT CAPUTO-HADAMARD FRACTIONAL
DIFFERENTIAL EQUATION WITH FRACTIONAL BOUNDARY

CONDITIONS

NEDJEMEDDINE DERDAR

Abstract. In this paper, we establish the existence and uniqueness of solutions for

a class of problem for nonlinear implicit fractional differential equations of Caputo-

Hadamard type with fractional boundary conditions. The results are obtained by

using Banach fixed point theorem and Schauder’s fixed point theorem. An example

is included to show the applicability of our results.

1. Introduction

The origins of fractional calculation go back to the late 17th century. In fact, some

mathematicians (L’Hopsital, Leibnitz(1695) began to consider how to define the frac-

tional derivative. But it is only during the last three decades that fractional calcula-

tion has been the most interesting and the applications of fractional derivatives have

become more diversified. There are several definitions of fractional derivatives, the

definitions of Riemann-Liouville (1832), Riemann (1849), Caputo (1997), Grünwald-

Letnikov (1867), we refer the reader to [[27], [33]].

Fractional calculus is widely and efficiently used to describe many phenomena aris-

ing in engineering, physics, control theory, bioengineering and biomedical sciences,

viscoelasticity, finance, stochastic processes and economy. Recently, fractional differ-

ential equations have attracted many authors (see for instance [[1], [2], [10], [11], [18],

[30]] and references therein).

The Caputo-Hadamard derivative is a new approach obtained from the Hadamard
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derivative by changing the order of its differential and integral parts. Despite the

different requirements on the function itself, the main difference between the Caputo-

Hadamard fractional derivative and the Hadamard fractional derivative is that the

Caputo-Hadamard derivative of a constant is zero [25]. And the most important ad-

vantage of Caputo-Hadamard derivative is that it provided a new definition through

which the integer order initial conditions can be defined for fractional. Details and

properties of Hadamard fractional derivatives, integrals and Caputo-Hadamard de-

rivative can be found in [[15], [28], [30]].

The implicit fractional differential equations (IFDEs) are a very important class of

fractional differential equations. This type of equation is derived from the implicit

ordinary differential equation (IODE) of the form

f(t, x(t), x′(t), . . . , x(n−1)) = 0,

with different kind of initial or boundary conditions, for more details see [[5], [6], [19],

[20], [22], [32]].

Benchohra et al. [[7], [12], [13]] and Nieto et al. [[26],[31]] have initiated the study of

of implicit fractional differential equations (IFDEs) of the form

Dαx(t) = f(t, x(t), Dαx(t)).

with different kind of initial or boundary conditions. This kind of equation is impor-

tant in many disciplines in different fields of science and engineering [35].

In [34], Vivek, Elsayed and Kanagarajan proved the existence and stability of solu-

tion for a class of boundary value problem (BVP) for nonlinear fractional implicit

differential equations (FIDEs) with complex order






cDθy(t) = f(t, y(t),cDθy(t)), θ = m+ iα t ∈ J := [0, T ]

ay(0) + by(T ) = c,

where cDθ is the Caputo fractional derivative of order α ∈ C. Let α ∈ R+,

0 < α < 1, m ∈ (0, 1], and f : J×R2 −→ R is given continuous function. Here a, b, c

are real constants with a+ b 6= 0. The results are based upon the Banach contraction

principle and Schaefer’s fixed point theorem.

In [17], Derbazi and Hammouche proved the existence and uniqueness of solutions to
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the boundary-value problem of the fractional differential equations







cDα
0+y(t) = f(t, y(t),cDβ

0+y(t)), 0 < t < 1

y(0) = 0, y′(0) = aIσ1

0+y(η1),
cD

β1

0+y(1) = bIσ2

0+y(η2)

where cDν is the Caputo fractional derivative of order ν ∈ {α, β, β1} such that

2 < α ≤ 3, 0 < β, β1 ≤ 1, Iθ0+ is the Riemann-Liouville fractional integral of or-

der θ > 1, θ ∈ {σ1, σ2}, J := [0, 1], and f : T ×R2 −→ R is a continuous function, a,

b are suitably chosen real constants. The results are based upon the Banach contrac-

tion principle, Schauder fixed point theorem and Krasnoselskii’s fixed point theorem.

In [29] Karthikeyan and Arul we examine the existence and uniqueness of integral

boundary value problem for implicit fractional differential equations (IFDE’s) involv-

ing Caputo-Hadamard fractional derivative differential equations







CHDϑx(t) = f(t, x(t), CHDϑx(t)), t ∈ J := [b, T ],

x(b) = 0, x(T ) = λ
∫ σ

b
x(s)ds, b < σ < T , λ ∈ R,

where CHDα is the Caputo-Hadamard fractional derivative, 1 < ϑ ≤ 2, g : J × R×

R −→ R is a continuous function. We prove the existence and uniqueness results by

utilizing Banach and Schauder’s fixed point theorem.

In this paper, we establish the existence and uniqueness of solutions for a class of

problem for nonlinear implicit fractional differential equations of Caputo-Hadamard

type with fractional boundary conditions

(1.1)







C
HD

rx(t) = f(t, x(t), CHD
rx(t)), t ∈ J := [1, T ], 1 < r ≤ 2,

x(1) = 0, αHI
qx(η) + βC

HD
γx(T ) = λ, q, γ ∈ (0, 1],

where C
HD

(.) is the Caputo-Hadamard fractional derivative, HI
q is the standard Hadamard

fractional integral, f : J×R×R −→ R is a given function, α, β, λ are real constants,

and η ∈ (1, T ).

This paper is organized as follows. In section 2, we introduce some notations and

lemmas, and state some preliminaries results needed in later section 2. In Section 3,

we give two results, one based on Banach fixed point theorem (3.1) and another one

based on Schauder’s fixed point theorem (3.2). In Section 4, we illustrate the results

obtained with an example.
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2. Preliminaries

In this section we present some basic definitions, notations and preliminaries facts

which are used throughout this paper.

Let J := [1, T ] be an interval in R where T > 1. we denote by C(J,R) the space

of continuous functions x : J −→ R. The space C(J,R) is a Banach space with

supremum norm ‖.‖ defined by

‖x‖∞ = sup{|x(t)| : t ∈ J}.

Let now [a, b], (−∞ < a < b < +∞) be interval finite and we let AC([a, b], R) be

the space of functions g : [a, b] −→ R that are absolutely continuous.

Let δ = t d
dt
is the Hadamard derivative, δn = δ(δn−1), we consider the set of functions:

ACn
δ ([a, b], R) = {g : [a, b] −→ R : δn−1g(t) ∈ AC([a, b], R)}.

Definition 2.1. (See [30]) The Hadamard fractional integral of order α > 0 for a

continuous function g : [1,+∞) −→ R is defined as

(2.1) HI
α
1 g(t) =

1

Γ(α)

∫ t

1

(

log
t

s

)α−1

g(s)
ds

s
.

where Γ is the Euler gamma function, and log(.) = loge(.).

Definition 2.2. (See [30], [33]) For a function g ∈ ACn
δ ([a, b], R), the Caputo-

Hadamard fractional derivative of order α is defined as

(2.2) C
HD

α
1 g(t) =

1

Γ(n− α)
(t

d

dt
)n

∫ t

a

(

log
t

s

)n−α−1

g(s)
ds

s
, n− 1 < α < n,

where δn = (t d
dt
)n, n = [α] + 1, and [α] denotes the integer part of the real number

α.

Lemma 2.1. ([25, Lemma 2.5, p.6]) Let g ∈ ACn
δ [a, b] or g ∈ Cn

δ [a, b] and α ∈ C.

Then

(2.3) HI
α
a (

C
HD

α
a g)(t) = g(t)−

n−1
∑

k=0

δ(k)g(a)

k!
(log

t

a
)k.

Proposition 2.1. ([30, Property 2.16, p.112], [25]) Let α > 0, β > 0, n = [α] + 1

and a > 0, then

(2.4)
(

HI
α
a+(log

x

a

)β−1)

(x) =
Γ(β)

Γ(β + α)

(

log
x

a

)β+α−1

,
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(2.5)
(

C
HD

α
a+(log

x

a

)β−1)

(x) =
Γ(β)

Γ(β − α)

(

log
x

a

)β−α−1

, β > α.

Theorem 2.1. ((See [23]) Let x(t) ∈ ACn
δ [a, b], 0 < a < b < ∞ and α ≥ 0, β ≥ 0,

then

(2.6) CDα
a (I

βx)(t) = (Iβ−αx)(t),

(2.7) CDα(CDβx)(t) = (CDα+βx)(t).

Theorem 2.2 (Banach’s fixed point theorem). ([36, Theorem 1.41, p.16]) Let (X, d)

be a complete metric space, and F : Ω −→ Ω a contraction mapping:

(2.8) d(F(x),F(y)) ≤ kd(x, y),

where 0 < k < 1, for each x, y ∈ Ω. Then, there exists a unique fixed point x of F in

Ω: F(x) = x.

Theorem 2.3 (Schauder’s fixed point theorem). ([36, Theorem 1.42, p. 16]) Let X

be a Banach space and Ω ⊂ X a convex, closed and bounded set. If F : Ω −→ Ω is a

continuous operator such that F(Ω) ⊂ X , F(Ω) is relatively compact, then F has at

least one fixed point in Ω.

3. Main results

Definition 3.1. A function x ∈ AC2
δ (J, R) is said to be a solution of the problem

(1.1) if x satisfies the equation C
HD

rx(t) = f(t, x(t), CHD
rx(t)), and satisfies the

conditions x(1) = 0, αHI
qx(η) + βC

HD
γx(T ) = λ.

To prove the existence of solutions to the problem (1.1), we need the following

auxiliary lemma.

Lemma 3.1. Let h : [0, +∞) −→ R be a continuous function. A function x is a

solution of the fractional integral equation

x(t) =
1

Γ(r)

∫ t

1

(log
t

s
)r−1h(s)

ds

s
+

log t

Λ

[

λ−
α

Γ(r + q)

∫ η

1

(log
η

s
)r+q−1h(s)

ds

s
(3.1)

−
β

Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1h(s)

ds

s

]

,
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where

Λ =
α(log η)q+1

Γ(q + 2)
+

β(log T )1−γ

Γ(2− γ)
,

if and only if x is a solution of the fractional boundary value problem,

(3.2) C
HD

rx(t) = h(t), 1 < r ≤ 2,

(3.3) x(1) = 0, αHI
qx(η) + βC

HD
γx(T ) = λ, q, γ ∈ (0, 1].

Proof. Applying the Hadamard fractional integral of order r to both sides of (3.2)

and then using Lemma 2.1, we obtain

(3.4) x(t) = c0 + c1 log t+ HI
rh(t),

Applying the first boundary condition (3.3) in (3.4), we find that

(3.5) x(1) = c0 = 0.

Using Proposition 2.1, we can write

(3.6) C
HD

γx(t) =
c1

Γ(2− γ)
(log t)1−γ + HI

r−γh(t),

and

(3.7) HI
qx(t) =

c1

Γ(2 + q)
(log t)1+q + HI

r+qh(t),

Using the second boundary condition (3.3), we get

(3.8) α
[ c1

Γ(2 + q)
(log η)q+1+HI

r+qh(η)
]

+β
[ c1

Γ(2− γ)
(log T )1−γ+HI

r−γh(T )
]

= λ,

thus,

(3.9)
[α(log η)q+1

Γ(2 + q)
+

β(log T )1−γ

Γ(2− γ)

]

c1 + αHI
r+qh(η) + βHI

r−γh(T ) = λ.

Consequently,

(3.10) c1 =
λ

Λ
−

α

Λ
HI

r+qh(η)−
β

Λ
HI

r−γh(T ),

where

Λ =
α(log η)q+1

Γ(2 + q)
+

β(log T )1−γ

Γ(2− γ)
.

Substituting into (3.4), we obtain (3.1). �
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Our first result is based on Banach fixed point theorem. We assume the following

conditions to prove the existence of a solution of problem (1.1):

(H1) The function f : J × R× R −→ R is continuous.

(H2) There exist constants L1 > 0, 0 < L2 < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ L1|u− ū|+ L2|v − v̄|,

for any u, v, ū and v̄ ∈ R for a.e., t ∈ J .

Theorem 3.1. If the hypotheses (H1)-(H2) are satisfied, and if

(3.11) ρ :=
L1

1− L2

[

(log T )r

Γ(r + 1)
+

|α|(logT )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(log T )r−γ+1

|Λ|Γ(r − γ + 1)

]

< 1,

then there exists a unique solution x ∈ AC2
δ (J, R) for problem (1.1) on J .

Proof. Transform the problem (1.1) into a fixed point problem. Consider the operator

F : C(J, R) −→ C(J, R) defined by

Fx(t) =
1

Γ(r)

∫ t

1

(log
t

s
)r−1σx(s)

ds

s
+

log t

Λ

[

λ−
α

Γ(r + q)

∫ η

1

(log
η

s
)r+q−1σx(s)

ds

s

(3.12)

−
β

Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1σx(s)

ds

s

]

,

where

σx(s) = f
(

s, x(s), Drx(s)
)

.

It is clear that the fixed points of F are solutions of problem (1.1).

Let x, y ∈ AC2
δ (J, R). Then for each t ∈ J we have

(3.13)

∣

∣

∣

∣

∣

(Fx)(t)− (Fy)(t)

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

1

Γ(r)

∫ t

1

(log
t

s
)r−1σx(s)

ds

s
+

log t

Λ

[

λ−
α

Γ(r + q)

∫ η

1

(log
η

s
)r+q−1σx(s)

ds

s

−
β

Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1σx(s)

ds

s

]

−
1

Γ(r)

∫ t

1

(log
t

s
)r−1σy(s)

ds

s

−
log t

Λ

[

λ−
α

Γ(r + q)

∫ η

1

(log
η

s
)r+q−1σy(s)

ds

s
−

β

Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1σy(s)

ds

s

]
∣

∣

∣

∣

∣

≤
1

Γ(r)

∫ t

1

(log
t

s
)r−1|σx(s)− σy(s)|

ds

s
+

|α| log t

|Λ|Γ(r + q)

∫ η

1

(log
η

s
)r+q−1|σx(s)− σy(s)|

ds

s

+
|β| log t

|Λ|Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1|σx(s)− σy(s)|

ds

s
,

where

σx(t) = f(t, x(t), σx(t)),

and

σy(t) = f(t, y(t), σy(t)).

By (H2), we have

|σx(t)− σy(t)| = |f(t, x(t), σx(t))− f(t, y(t), σy(t))|(3.14)

≤ L1|x(t)− y(t)|+ L2|σx(t)− σy(t)|,

so

(3.15) |σx(t)− σy(t)| ≤
L1

1− L2
|x(t)− y(t)|.

By replacing (3.15) in the inequality (3.13), we get

(3.16) |(Fx)(t)− (Fy)(t)| ≤
1

Γ(r)

L1

1− L2

∫ t

1

(log
t

s
)r−1|x(s)− y(s)|

ds

s
+
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|α| log t

|Λ|Γ(r + q)

L1

1− L2

∫ η

1

(log
η

s
)r+q−1|x(s)− y(s)|

ds

s

+
|β| log t

|Λ|Γ(r− γ)

L1

1− L2

∫ T

1

(log
T

s
)r−γ−1|x(s)− y(s)|

ds

s

≤

[

1

Γ(r)

L1

1− L2

∫ t

1

(log
t

s
)r−1ds

s
+

|α| log t

|Λ|Γ(r + q)

L1

1− L2

∫ η

1

(log
η

s
)r+q−1ds

s

+
|β| log t

|Λ|Γ(r − γ)

L1

1− L2

∫ T

1

(log
T

s
)r−γ−1ds

s

]

|x(s)− y(s)|

≤
L1

1− L2

[

(log T )r

Γ(r + 1)
+

|α|(logT )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(log T )r−γ+1

|Λ|Γ(r− γ + 1)

]

|x(s)− y(s)|.

Thus

(3.17) ‖(Fx)(t)− (Fy)(t)‖∞ ≤ ρ‖x− y‖∞,

for x, y ∈ AC2
δ (J, R), where

(3.18) ρ :=
L1

1− L2

[

(log T )r

Γ(r + 1)
+

|α|(logT )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(log T )r−γ+1

|Λ|Γ(r − γ + 1)

]

.

Consequently by (3.11), F is a contraction. As a consequence of Banach fixed point

theorem, we deduce that F has a fixed point which is a solution of the problem

(1.1). �

The second result is based on Schauder’s fixed point theorem.

(H3) There exist p, ν, ω ∈ C(J,R+) with ω∗ = supt∈J ω(t) < 1, ν∗ = supt∈J ν(t)

and p∗ = supt∈J p(t), such that

|f(t, u, v)| ≤ p(t) + ν(t)|u|+ ω(t)|v|,

for any u, v ∈ R for a.e., t ∈ J .

Theorem 3.2. Assume that conditions (H1), (H3) hold. If

(3.19) ω∗ +Mν∗ < 1,

with

M :=
(log T )r

Γ(α+ 1)
+

|α|(log T )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(logT )r−γ+1

|Λ|Γ(r − γ + 1)
,
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then the problem (1.1) has at least one solution.

Proof. Let

(3.20) R ≥
Mp∗ + |λ|(1−ω∗) log T

|Λ|

1− (ω∗ +Mν∗)
,

and consider

(3.21) DR = {x ∈ C(J,R) : ‖x‖∞ ≤ R}.

Clearly, the subset DR is closed, bounded and convex. We shall use Schander’s fixed

point theorem to prove that the operator F defined by (3.12) has a fixed point. The

proof will be given in three steps.

Step 1: F is continuous.

Let {xn} be a sequence such that xn −→ x in AC2
δ (J, R), then for each t ∈ J .

(3.22)

∣

∣

∣

∣

∣

F(xn)(t)− F(x)(t)

∣

∣

∣

∣

∣

≤
1

Γ(r)

∫ t

1

(log
t

s
)r−1|gn(s)− g(s)|

ds

s
+

|α| log t

|Λ|Γ(r + q)

∫ η

1

(log
η

s
)r+q−1|gn(s)− g(s)|

ds

s

+
|β| log t

|Λ|Γ(r− γ)

∫ T

1

(log
T

s
)r−γ−1|gn(s)− g(s)|

ds

s

≤

[

(log T )r

Γ(α + 1)
+

|α|(log T )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(logT )r−γ+1

|Λ|Γ(r − γ + 1)

]

|gn(s)− g(s)|,

where g, gn ∈ C(J,R) such that

g(t) = f(t, x(t), g(t)), and gn(t) = f(t, xn(t), gn(t)).

Since g is a continuous functions (i.e., f is continuous), then by the Lebesgue domi-

nated convergence theorem, we have

(3.23) ‖F(xn)(t)− F(x)(t)‖∞ −→ 0 as n −→ ∞.

Therefore F(xn)(t) −→ F(x)(t) as n −→ ∞ which implies that F is continuous.

Step 2: F(DR) ⊂ DR

Let x ∈ DR. We show that F(x) ∈ DR. For each t ∈ J , we have

(3.24)

∣

∣

∣

∣

∣

F(x)(t)

∣

∣

∣

∣

∣
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≤
1

Γ(r)

∫ t

1

(log
t

s
)r−1|g(s)|

ds

s
+

|α| log t

|Λ|Γ(r + q)

∫ η

1

(log
η

s
)r+q−1|g(s)|

ds

s

+
|β| log t

|Λ|Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1|g(s)|

ds

s
+

|λ| log t

|Λ|
,

where g ∈ C(J,R) is such that

g(t) = f(t, x(t), g(t))

From (H3), for t ∈ J we have

|g(t)| = |f(t, x(t), g(t))|(3.25)

≤ p(t) + ν(t)|x(t)|+ ω(t)|g(t)|

≤ p∗ + ν∗‖x‖∞ + ω∗|g(t)|.

Hence,

(3.26) |g(t)| ≤
p∗ + ν∗R

1− ω∗
.

By replacing (3.26) in the inequality (3.24), we get

(3.27)

∣

∣

∣

∣

∣

F(x)(t)

∣

∣

∣

∣

∣

≤
1

Γ(r)

∫ t

1

(log
t

s
)r−1|g(s)|

ds

s
+

|α| log t

|Λ|Γ(r + q)

∫ η

1

(log
η

s
)r+q−1|g(s)|

ds

s

+
|β| log t

|Λ|Γ(r − γ)

∫ T

1

(log
T

s
)r−γ−1|g(s)|

ds

s
+

|λ| log t

|Λ|

≤
(p∗ + ν∗R

1− ω∗

)

[

(log T )r

Γ(r + 1)
+

|α|(logT )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(log T )r−γ+1

|Λ|Γ(r− γ + 1)

]

+
|λ| log T

|Λ|

=
M(p∗ + ν∗R)

(1− ω∗)
+

|λ| log T

|Λ|

≤ R.

Step 3: we show that F(DR) is equicontinuous.

By step 2, it is obvious that F(DR) ⊂ DR is bounded. For the equicontinuity of

F(DR).
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Let t1, t2 ∈ (1, T ], t1 < t2 and let x ∈ DR. Then

(3.28)

∣

∣

∣

∣

∣

F(x)(t2)−F(x)(t1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

Γ(r)

∫ t1

1

(log
t2

s
)r−1g(s)

ds

s
−

1

Γ(r)

∫ t2

1

(log
t1

s
)r−1g(s)

ds

s

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

Γ(r)

∫ t1

1

[

(log
t2

s
)r−1 − (log

t1

s
)r−1

]

g(s)
ds

s
+

1

Γ(r)

∫ t2

t1

(log
t2

s
)r−1g(s)

ds

s

∣

∣

∣

∣

∣

≤
|g(s)|

Γ(r)

∣

∣

∣

∫ t1

1

[

(log
t2

s
)r−1 − (log

t1

s
)r−1

]ds

s

∣

∣

∣
+

|g(s)|

Γ(r)

∣

∣

∣

∫ t2

t1

(log
t2

s
)r−1ds

s

∣

∣

∣

≤
p∗ + ν∗R

(1− ω∗)Γ(r)

∣

∣

∣

∫ t1

1

[

(log
t2

s
)r−1 − (log

t1

s
)r−1

]ds

s

∣

∣

∣
+

p∗ + ν∗R

(1− ω∗)Γ(r)

∣

∣

∣

∫ t2

t1

(log
t2

s
)r−1ds

s

∣

∣

∣

≤
p∗ + ν∗R

(1− ω∗)Γ(r + 1)

[

∣

∣

∣
(log t1)

r + (log
t2

t1
)r − (log t2)

r
∣

∣

∣
+
∣

∣

∣
(log

t2

t1
)r
∣

∣

∣

]

≤
p∗ + ν∗R

(1− ω∗)Γ(r + 1)

[

∣

∣

∣
(log t1)

r − (log t2)
r
∣

∣

∣

]

.

As t1 −→ t2, the right hand side of the obove inequality tends to zero, proving

the equicontinuity. In either case the Arzela-Ascoli theorem yields that F(DR) is

relatively compact, and hence Schauder’s fixed point theorem asserts that F has a

fixed point. By construction, a fixed point of F is a solution of problem (1.1). �

4. Example

Consider the following nonlinear problem

(4.1)











C
HD

3

2x(t) =
t

10
cos(x(t)) +

t−2

5
sin(CHD

3

2x(t)) +
3t−3

5
, t ∈ [1, e],

x(1) = 0,
1

2
HI

1

2x(2) + 2CHD
1

3x(e) =
3

4
,

we see that r =
3

2
, q =

1

2
, γ =

1

3
, η = 2, α =

1

2
, β = 2, λ = 3

4
, T = e

and

(4.2) f(t, u, v) =
t

10
cosu+

1

5t2
sin v +

3

5t3
, t ∈ [1, e], u, v ∈ R.
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Clearly, the function f is continuous, and for u, v, u, v ∈ R and t ∈ [1, e].

We have

|f(t, u, v)− f(t, ū, v̄)| ≤
t

10
| cosu− cosu|+

1

5t2
| sin v − sin v|(4.3)

≤
e

10
|u− ū|+

1

5
|v − v̄|,

Hence, condition (H2) is satisfied with L1 =
e

10
, L2 =

1

5
.

Thus,

(4.4)

ρ :=
L1

1− L2

[

(log T )r

Γ(r + 1)
+

|α|(log T )(log η)r+q

|Λ|Γ(r + q + 1)
+

|β|(log T )r−γ+1

|Λ|Γ(r− γ + 1)

]

= 0.53050 < 1,

so it follows from Theorem 3.1 that the problem (4.1) has a unique solution x ∈

C2
δ ([1, e], R).

(4.5) |f(t, u, v)| ≤
3

5t3
+

t

10
| cos(u)|+

1

5t2
| sin(v)|,

so condition (H3) is satisfied with p(t) =
3

5t3
, ν(t) =

t

10
, ω(t) =

1

5t2
,

and ν∗ =
e

10
, ω∗ =

1

5
.

We shall show that condition (3.19) holds with T = e. Indeed,

(4.6) ω∗ +Mν∗ = 0.62440 < 1.

Simple computations show that all conditions of Theorem 3.2 are satified. It follows

that the problem (4.1) has at least solution defined on [1, e].

5. Conclusions

In this paper, we have discussed the existence and uniqueness of solutions for a class

of nonlinear implicit fractional differential equations with fractional boundary condi-

tions involving the Caputo-Hadamard fractional derivative. The Caputo-Hadamard

derivative is a new approach obtained from the Hadamard derivative by changing

the order of its differential and integral parts. Our results in action prove that the

Caputo-Hadamard approach works perfectly. Banach contraction principle theorem

was the key of our analysis to establish existence and uniqueness of solution of our
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problem by adding suitable conditions on the nonlinear term. We succeeded to es-

tablish existence of solutions by using Schauder fixed point theorem. we present an

example to demonstrate the consistency of our the theoretical findings.
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