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FRACTIONAL OSTROWSKI TYPE INEQUALITIES VIA

(s, r)−CONVEX FUNCTION

ALI HASSAN (1) AND ASIF RAZA KHAN(2)

Abstract. We are introducing very first time a generalized class named it the class

of (s, r)−convex functions in mixed kind. This generalized class contains many

subclasses including class of s−convex functions in 1st and 2nd kind, P−convex

functions, quasi convex functions and the class of ordinary convex functions. Also,

we would like to state the generalization of the classical Ostrowski inequality via

fractional integrals, which is obtained for functions whose first derivative in abso-

lute values is (s, r)− convex function in mixed kind. Moreover we establish some

Ostrowski type inequalities via fractional integrals and their particular cases for the

class of functions whose absolute values at certain powers of derivatives are (s, r)−
convex functions in mixed kind by using different techniques including Hölder’s

inequality and power mean inequality. Also, various established results would be

captured as special cases. Moreover, some applications in terms of special means

would also be given.

1. Introduction

From literature, we recall and introduce some definitions for various convex (con-

cave) functions.

Definition 1.1. [3] A function η : I ⊂ R → R is said to be convex (concave) function,

if

η (tx+ (1− t)y) ≤ (≥)tη(x) + (1− t)η(y),

∀x, y ∈ I, t ∈ [0, 1].

2010 Mathematics Subject Classification. 26A33, 26A51, 26D15, 26D99, 47A30, 33B10.

Key words and phrases. Ostrowski inequality, convex functions, power mean inequality, Hölder’s
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We recall here definition of P−convex(concave) function from [14].

Definition 1.2. Let η : I ⊂ R → R is a P−convex(concave) function, if η is a

non-negative and ∀x, y ∈ I and t ∈ [0, 1], we have

η (tx+ (1− t)y) ≤ (≥)η(x) + η(y).

Here we also have definition of quasi−convex(concave) function (for detailed dis-

cussion see [16].

Definition 1.3. A function η : I ⊂ R → R is known as quasi−convex(concave), if

η(tx+ (1− t)y) ≤ (≥)max{η(x), η(y)}

for all x, y ∈ I, t ∈ [0, 1].

Now we present definition of s−convex functions in the first kind as follows which

are extracted from [22]:

Definition 1.4. Let s ∈ [0, 1]. A function η : I ⊂ [0,∞) → [0,∞) is said to be

s−convex (concave) function in the 1st kind, if

η (tx+ (1− t)y) ≤ (≥)tsη(x) + (1− ts)η(y),

∀x, y ∈ I, t ∈ [0, 1].

Remark 1. Note that in this definition we also included s = 0. Further if we put

s = 0, we get quasi−convexity (see Definition 1.3).

For second kind convexity we recall definition from [22].

Definition 1.5. Let s ∈ [0, 1]. A function η : I ⊂ [0,∞) → [0,∞) is said to be

s−convex (concave) function in the 2nd kind, if

η (tx+ (1− t)y) ≤ (≥)tsη(x) + (1− t)sη(y),

∀x, y ∈ I, t ∈ [0, 1].

Remark 2. In the similar manner, we have slightly improved definition of second

kind convexity by including s = 0. Further if we put s = 0, we easily get P−convexity

(see Definition 1.2).
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Definition 1.6. [5] Let h1, h2 : [0, 1] → (0,∞) and m ∈ (0, 1]. The function η : I ⊂
[0,∞) → R is said to be (m, h1, h2)−convex(concave) function if

η (tx+m(1− t)y) ≤ (≥)h1(t)η(x) +mh2(t)η(y),(1.1)

∀x, y ∈ I, t ∈ [0, 1].

Now we introduce a new class of function which would be called class of (s, r)−
convex (concave) functions in the mixed kind:

Definition 1.7. Let (s, r) ∈ [0, 1]2. A function η : I ⊂ [0,∞) → [0,∞) is said to be

(s, r)−convex (concave) function in mixed kind, if

η (tx+ (1− t)y) ≤ (≥)trsη(x) + (1− tr)sη(y),(1.2)

∀x, y ∈ I, t ∈ [0, 1].

Remark 3. In Definition 1.7, we have the following cases.

(1) If we choose s = 1 in (1.2), we get r−convex (concave) in 1st kind function.

(2) If we choose s = 1, and r = 0, in (1.2) we get quasi−convex (concave) func-

tion.

(3) If we choose r = 1, in (1.2), we get s−convex (concave) in 2nd kind function.

(4) If we choose r = 1, and s = 0 in (1.2), we get P−convex (concave) function.

(5) If we choose s = r = 1 in (1.2), gives us ordinary convex (concave) function.

In almost every field of science, inequalities play an important role. Although it is

very vast discipline but our focus is mainly on Ostrowski type inequalities. In 1938,

Ostrowski established the following interesting integral inequality for differentiable

mappings with bounded derivatives. This inequality is well known in the literature

as Ostrowski inequality.

Theorem 1.1. [23] Let ϕ : [ρa, ρb] → R be differentiable on (ρa, ρb) with the property

that |ϕ′(t)| ≤ M for all t ∈ (ρa, ρb). Then

∣

∣

∣

∣

ϕ(x)− 1

ρb − ρa

∫ ρb

ρa

ϕ(t)dt

∣

∣

∣

∣

≤ (ρb − ρa)M

[

1

4
+

(

x− ρa+ρb
2

ρb − ρa

)2
]

,(1.3)

for all x ∈ (ρa, ρb).
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Ostrowski inequality has applications in numerical integration, probability and

optimization theory, statistics, information and integral operator theory. Until now,

a large number of research papers and books have been written on generalizations of

Ostrowski inequalities and their numerous applications in [7]-[13] and [17]-[21].

Definition 1.8. [25] The Riemann-Liouville integral operator of order ζ > 0 with

ρa ≥ 0 is defined as

Jζ
ρa
ϕ(x) =

1

Γ(ζ)

∫ x

ρa

(x− t)ζ−1ϕ(t)dt,

J0
ρa
ϕ(x) = ϕ(x).(1.4)

In case of ζ = 1, the fractional integral reduces to the classical integral.

Definition 1.9. [25] The Riemann-Liouville integrals Iζ
ρ+a
ϕ and I

ζ

ρ−
b

ϕ of ϕ ∈ L1([ρa, ρb])

having order ζ > 0 with ρa ≥ 0, ρa < ρb are defined by

I
ζ

ρ+a
ϕ(x) =

1

Γ(ζ)

∫ x

ρa

(x− t)ζ−1
ϕ(t)dt, x > ρa

and

I
ζ

ρ−
b

ϕ(x) =
1

Γ(ζ)

∫ ρb

x

(t− x)ζ−1
ϕ(t)dt, x < ρb,

respectively. Here Γ(ζ) =
∫

∞

0
e−uuζ−1du is the Gamma function and I0

ρ+a
ϕ(x) =

I0
ρ−
b

ϕ(x) = ϕ(x).

Theorem 1.2. [25] Let ϕ : I → R be differentiable mapping on I0, with ρa, ρb ∈
I, ρa < ρb ϕ′ ∈ L1[ρa, ρb] and for ζ > 1, Montgomery identity for fractional integrals

holds:

ϕ(x) =
Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb)− Jζ−1

ρa
(P1(x, ρb)ϕ(ρb)) + Jζ

ρa
(P1(x, ρb)ϕ

′(ρb)),

where P1(x, t) is the fractional Peano Kernel defined by:

P1(x, t) =























t− ρa

ρb − ρa
(ρb − x)1−ζΓ(ζ), if t ∈ [ρa, x],

t− ρb

ρb − ρa
(ρb − x)1−ζΓ(ζ), if t ∈ (x, ρb].

Let [ρa, ρb] ⊆ (0,+∞), we may define special means as follows:
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(a) The arithmetic mean

A = A(ρa, ρb) :=
ρa + ρb

2
;

(b) The geometric mean

G = G(ρa, ρb) :=
√
ρaρb;

(c) The harmonic mean

H = H(ρa, ρb) :=
2

1

ρa
+

1

ρb

;

(d) The logarithmic mean

L = L(ρa, ρb) :=







ρa if ρa = ρb
ρb − ρa

ln ρb − ln ρa
, if ρa 6= ρb

;

(e) The identric mean

I = I(ρa, ρb) :=











ρa if ρa = ρb

1

e

(

ρb
ρb

ρaρa

)
1

ρb−ρa

, if ρa 6= ρb.
;

(f) The p−logarithmic mean

Lp = Lp(ρa, ρb) :=











ρa if ρa = ρb
[

ρ
p+1
b − ρa

p+1

(p+ 1)(ρa − ρb)

]

1

p

, if ρa 6= ρb.
;

where p ∈ R \ {0,−1}.

In order to prove our main theorems, we need the following lemma that has been

obtained in [26].

Lemma 1.1. Let ϕ : [ρa, ρb] → R be a differentiable mapping on (ρa, ρb) with a < b.

If ϕ′ ∈ L1([ρa, ρb]), then x ∈ (ρa, ρb) the identity for fractional integrals holds:

(

(x− ρa)
ζ + (ρb − x)ζ

ρb − ρa

)

ϕ(x)− Γ(ζ + 1)

ρb − ρa

[

I
ζ

x−
ϕ(ρa) + I

ζ

x+ϕ(ρb)
]

=
(x− ρa)

ζ+1

ρb − ρa

∫ 1

0

tζϕ′(tx+ (1− t)ρa)dt−
(ρb − x)ζ+1

ρb − ρa

∫ 1

0

tζϕ′(tx+ (1− t)ρb)dt.
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Throughout this paper, we denote

I(ϕ, x, ρa, ρb, ζ) =

(

(x− ρa)
ζ + (ρb − x)ζ

ρb − ρa

)

ϕ(x)− Γ(ζ + 1)

ρb − ρa

[

I
ζ

x−
ϕ(ρa) + I

ζ

x+ϕ(ρb)
]

,

ζκ
ρb
ρa
(x) =

(x− ρa)
ζ+1 + (ρb − x)ζ+1

ρb − ρa
.

We also make use of Euler’s beta function, which is for x, y > 0 defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
.

The main aim of our study is to generalize the ostrowski inequality (1.3) for

(s, r)−convex in mixed kind, which is given in Section 2. Moreover we establish

some Ostrowski type inequalities for the class of functions whose derivatives in ab-

solute values at certain powers are (s, r)−convex functions in mixed kind by using

different techniques including Hölder’s inequality [28] and power mean inequality [27].

Also we give the special cases of our results and applications of midpoint inequalities

in special means. In the last section gives us conclusion with some remarks and future

ideas to generalize the results.

2. Generalization of Ostrowski inequality via fractional Integrals

Theorem 2.1. Suppose all the assumptions of Lemma 1.1 hold. Additionally, assume

that |ϕ′| is (s, r)−convex function on [ρa, ρb] and |ϕ′(x)| ≤ M(M > 0), then

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(

1

ζ + rs+ 1
+

B
(

ζ+1
r
, s+ 1

)

r

)

ζκ
ρb
ρa
(x).

∀x ∈ (ρa, ρb).

Proof. From the Lemma 1.1 we have

|I(ϕ, x, ρa, ρb, ζ)| ≤ (x− ρa)
ζ+1

ρb − ρa

∫ 1

0

tζ |ϕ′(tx+ (1− t)ρa)| dt

+
(ρb − x)ζ+1

ρb − ρa

∫ 1

0

tζ |ϕ′(tx+ (1− t)ρb)| dt.(2.1)

Since |ϕ′| is (s, r)−convex on [ρa, ρb] and |ϕ′(x)| ≤ M, we have

∫ 1

0

tζ |ϕ′(tx+ (1− t)ρa)| dt ≤ M

∫ 1

0

tζ (trs + (1− tr)s) dt(2.2)
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and similarly
∫ 1

0

tζ |ϕ′(tx+ (1− t)ρb)| dt ≤ M

∫ 1

0

tζ (trs + (1− tr)s) dt.(2.3)

By using inequalities (2.2) and (2.3) in (2.1), we get

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(

1

ζ + rs+ 1
+

B
(

ζ+1
r
, s+ 1

)

r

)

ζκ
ρb
ρa
(x).

�

Corollary 2.1. In Theorem 2.1, one can see the following.

(1) If one takes α = β = s and γ = δ = 1, where s ∈ (0, 1] in inequality (2.1),

then one has the Ostrowski inequality for s−convex functions in 1st kind via

fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(

1

ζ + s+ 1
+

B
(

ζ+1
s
, 2
)

s

)

ζκ
ρb
ρa
(x).

(2) If one takes α = δ = s, and β = γ = 1, where s ∈ (0, 1] in inequality (2.1),

then one has the Ostrowski inequality for s−convex functions in 2nd kind via

fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(

1

ζ + s+ 1
+B (ζ + 1, s+ 1)

)

ζκ
ρb
ρa
(x).

(3) If one takes α = δ = s, and ζ = β = γ = 1, where s ∈ (0, 1] in inequality

(2.1), then one has the inequality (2.1) of Theorem 2 in [1].

(4) If one takes α = δ = s, and β = γ = 1, where s ∈ (0, 1] in inequality (2.1),

then one has the inequality (2.6) of Theorem 7 in [26].

(5) If one takes α = δ = 0, and β = γ = 1, in inequality (2.1), then one has the

Ostrowski inequality for P−convex functions via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(

1

ζ + 1
+B (ζ + 1, 1)

)

ζκ
ρb
ρa
(x).

(6) If one takes α = β = γ = δ = 1, in inequality (2.1), then one has the Ostrowski

inequality for convex functions via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(

1

ζ + 2
+B (ζ + 1, 2)

)

ζκ
ρb
ρa
(x).

(7) If one takes ζ = α = β = γ = δ = 1, in inequality (2.1), then one has the

Ostrowski inequality (1.3) for convex function.
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Theorem 2.2. Suppose all the assumptions of Lemma 1.1 hold. Additionally, assume

that |ϕ′|q is (s, r)−convex function on [ρa, ρb], q ≥ 1 and |ϕ′(x)| ≤ M, then

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζ + 1)1−
1

q

(

1

ζ + rs+ 1
+

B
(

ζ+1
r
, s+ 1

)

r

)
1

q

ζκ
ρb
ρa
(x),

(2.4)

∀x ∈ (ρa, ρb).

Proof. From the Lemma 1.1 and using power mean inequality [27], we have

|I(ϕ, x, ρa, ρb, ζ)| ≤
(x− ρa)

ζ+1

ρb − ρa

(
∫ 1

0

tζdt

)1− 1

q
(
∫ 1

0

tζ |ϕ′ (tx+ (1− t)ρa)|q dt
)

1

q

+
(ρb − x)ζ+1

ρb − ρa

(
∫ 1

0

tζdt

)1− 1

q
(
∫ 1

0

tζ |ϕ′ (tx+ (1− t)ρb)|q dt
)

1

q

.

(2.5)

Since |ϕ′|q is (s, r)−convex on [ρa, ρb]. and |ϕ′(x)| ≤ M, we get

∫ 1

0

tζ |ϕ′ (tx+ (1− t)ρa)|q dt ≤ M q

∫ 1

0

tζ (trs + (1− tr)s) dt(2.6)

and

∫ 1

0

tζ |ϕ′ (tx+ (1− t)ρb)|q dt ≤ M q

∫ 1

0

tζ (trs + (1− tr)s) dt.(2.7)

Using the inequalities (2.5)− (2.7), we get

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζ + 1)1−
1

q

(

1

ζ + rs+ 1
+

B
(

ζ+1
r
, s+ 1

)

r

)
1

q

ζκ
ρb
ρa
(x).

�

Corollary 2.2. In Theorem 2.2, one can see the following.

(1) If one takes s = 1 and r ∈ (0, 1] in inequality (2.4), then one has the Ostrowski

inequality for r−convex functions in 1st kind via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζ + 1)1−
1

q

(

1

ζ + r + 1
+

B
(

ζ+1
r
, 2
)

r

)
1

q

ζκ
ρb
ρa
(x).
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(2) If one takes r = 1 and s ∈ (0, 1] in inequality (2.4), then one has the Ostrowski

inequality for s−convex functions in 2nd kind via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζ + 1)1−
1

q

(

1

ζ + s+ 1
+B (ζ + 1, s+ 1)

)
1

q

ζκ
ρb
ρa
(x).

(3) If one takes r = 1 and s ∈ (0, 1] in inequality (2.4), then one has the inequality

(2.8) of Theorem 9 in [26].

(4) If one takes ζ = r = 1 and s ∈ (0, 1] in inequality (2.4), then one has the

inequality (2.3) of Theorem 4 in [1].

(5) If one takes r = 1 and s = 0 in inequality (2.4), then one has the Ostrowski

inequality for P−convex functions via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζ + 1)1−
1

q

(

1

ζ + 1
+B (ζ + 1, 1)

)
1

q

ζκ
ρb
ρa
(x).

(6) If one takes r = s = 1, in inequality (2.4), then one has the Ostrowski inequal-

ity for convex functions via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζ + 1)1−
1

q

(

1

ζ + 2
+B (ζ + 1, 2)

)
1

q

ζκ
ρb
ρa
(x).

Theorem 2.3. Suppose all the assumptions of Lemma 1.1 hold. Additionally, assume

that |ϕ′|q is (s, r)−convex function on [ρa, ρb], q > 1 and |ϕ′(x)| ≤ M(M > 0), then

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(ζp+1)
1
p

(

1
rs+1

+
B( 1

r
,s+1)
r

)
1

q

ζκ
ρb
ρa
(x),(2.8)

∀x ∈ (ρa, ρb), where p−1 + q−1 = 1.

Proof. From the Lemma 1.1 and using Hölder’s inequality [28], we have

|I(ϕ, x, ρa, ρb, ζ)| ≤
(x− ρa)

ζ+1

ρb − ρa

(
∫ 1

0

tζpdt

)

1

p
(
∫ 1

0

|ϕ′ (tx+ (1− t)ρa)|q dt
)

1

q

+
(ρb − x)ζ+1

ρb − ρa

(
∫ 1

0

tζpdt

)

1

p
(
∫ 1

0

|ϕ′ (tx+ (1− t)ρb)|q dt
)

1

q

.(2.9)

Since |ϕ′|q is (s, r)−convex and |ϕ′(x)| ≤ M, we have
∫ 1

0

|ϕ′ (tx+ (1− t)ρa)|q dt ≤ M q

∫ 1

0

trs + (1− tr)sdt(2.10)

and
∫ 1

0

|ϕ′ (tx+ (1− t)ρb)|q dt ≤ M q

∫ 1

0

trs + (1− tr)sdt.(2.11)
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Using inequalities (2.9)− (2.11), we get

|I(ϕ, x, ρa, ρb, ζ)| ≤ M

(ζp+1)
1
p

(

1
rs+1

+
B( 1

r
,s+1)
r

)
1

q

ζκ
ρb
ρa
(x).

�

Corollary 2.3. In Theorem 2.3, one can see the following.

(1) If one takes s = 1 and r ∈ (0, 1] in inequality (2.8), then one has the Ostrowski

inequality for r−convex functions in 1st kind via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζp+ 1)
1

p

(

1

r + 1
+

B
(

1
r
, 2
)

r

)
1

q

ζκ
ρb
ρa
(x).

(2) If one takes r = 1 and s ∈ (0, 1] in inequality (2.8), then one has the Ostrowski

inequality for s−convex functions in 2nd kind via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζp+ 1)
1

p

(

1

s + 1
+B (1, s+ 1)

)
1

q

ζκ
ρb
ρa
(x).

(3) If one takes r = 1 and s ∈ (0, 1] in inequality (2.8), then one has the inequality

(2.7) of Theorem 8 in [26].

(4) If one takes r = ζ = 1 and s ∈ (0, 1] in inequality (2.8), then one has the

inequality (2.2) of Theorem 3 in [1].

(5) If one takes r = 1 and s = 0 in inequality (2.8), then one has the Ostrowski

inequality for P−convex functions via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζp+ 1)
1

p

(1 +B (1, 1))
1

q
ζκ

ρb
ρa
(x).

(6) If one takes s = r = 1, in inequality (2.8), then one has the Ostrowski inequal-

ity for convex functions via fractional integrals:

|I(ϕ, x, ρa, ρb, ζ)| ≤
M

(ζp+ 1)
1

p

(

1

2
+B (1, 2)

)
1

q

ζκ
ρb
ρa
(x).

Theorem 2.4. Let ϕ : [ρa, ρb] → R be differentiable on (ρa, ρb), ϕ
′ : [ρa, ρb] → R be

integrable on [ρa, ρb] and η : I ⊂ R → R, be a (s, r)−convex(concave) function in
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mixed sense, then we have the inequalities

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)
(ρb − x)1−ζ

(ρb − ρa)rs

[

(x− ρa)
rs−1

∫ x

ρa

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt

+
((ρb − ρa)

r − (x− ρa)
r)s

ρb − x

∫ ρb

x

η

[

(t− ρb)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

,(2.12)

∀x ∈ [ρa, ρb] .

Proof. Utilizing the Theorem 1.2, we get

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

= Jζ
ρa
(P1(x, ρb)ϕ

′(ρb))

=
1

Γ(ζ)

∫ ρb

ρa

P1(x, t)
ϕ′(t)

(ρb − t)1−ζ
dt

=

(

x− ρa

ρb − ρa

)[

(ρb − x)1−ζ

x− ρa

∫ x

ρa

{t− ρa}ϕ′(t)

(ρb − t)1−ζ
dt

]

+

(

1−
(

x− ρa

ρb − ρa

))[

(ρb − x)1−ζ

ρb − x

∫ ρb

x

{t− ρb}ϕ′(t)

(ρb − t)1−ζ
dt

]

,

∀x ∈ [ρa, ρb] . Next by using the (s, r)−convex(concave) function in mixed sense of

η : I ⊂ [0,∞) → R, we get

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)

(

x− ρa

ρb − ρa

)αγ

η

[

(ρb − x)1−ζ

x− ρa

∫ x

ρa

{t− ρa}ϕ′(t)

(ρb − t)1−ζ
dt

]

+

(

1−
(

x− ρa

ρb − ρa

)βγ
)δ

η

[

(ρb − x)1−ζ

ρb − x

∫ ρb

x

{t− ρb}ϕ′(t)

(ρb − t)1−ζ
dt

]

,

∀x ∈ [ρa, ρb] . Applying Jensen’s integral inequality [8], We get the Inequality (2.12).

�

Corollary 2.4. In Theorem 2.4, one can see the following.



1042 ALI HASSAN AND ASIF RAZA KHAN

(1) If one takes s = 1 and r ∈ (0, 1] in (2.12), then one has the Ostrowski in-

equality for r−convex(concave) functions in 1st kind:

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)
(ρb − x)1−ζ

(ρb − ρa)r

[

(x− ρa)
r−1

∫ x

ρa

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt

+
(ρb − ρa)

r − (x− ρa)
r

(ρb − x)

∫ ρb

x

η

[

(t− ρb)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

.

(2) If one takes s = 1 and r = 0 in (2.12), we get quasi−convex(concave) function.

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)
(ρb − x)1−ζ

(x− ρa)

[
∫ x

ρa

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

.

(3) If one takes r = 1 and s ∈ [0, 1) (2.12), then one has the Fractional Ostrowski

type inequality for s−convex(concave) functions in 2nd kind:

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)
(ρb − x)1−ζ

(ρb − ρa)s

[

(x− ρa)
s−1

∫ x

ρa

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt

+(ρb − x)s−1

∫ ρb

x

η

[

(t− ρb)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

.

(4) If one takes r = 1 and s = 0 in (2.12), then one has the Fractional Ostrowski

type inequality for P−convex (concave) functions:

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)(ρb − x)1−ζ

[

1

x− ρa

∫ x

ρa

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt

+
1

ρb − x

∫ ρb

x

η

[

(t− ρb)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

.

(5) If one takes s = r = 1 in (2.12), then one has the Fractional Ostrowski type

inequality for convex(concave) functions:

η

[

ϕ(x)− Γ(ζ)

ρb − ρa
(ρb − x)1−ζJζ

ρa
ϕ(ρb) + Jζ−1

ρa
(P1(x, ρb)ϕ(ρb))

]

≤ (≥)
(ρb − x)1−ζ

ρb − ρa

[
∫ x

ρa

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt+

∫ ρb

x

η

[

(t− ρb)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

.
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3. Applications of Midpoint Inequalties

If we replace ϕ by −ϕ and x = ρa+ρb
2

in Theorem 2.4, we get

Theorem 3.1. Let ϕ : [ρa, ρb] → R be differentiable on (ρa, ρb), ϕ
′ : [ρa, ρb] → R be

integrable on [ρa, ρb] and η : I ⊂ R → R, be a (s, r)−convex(concave) function in

mixed sense, then

η

[

Γ(ζ)
(

ρb−ρa
2

)1−ζ

ρb − ρa
Jζ
ρa
ϕ(ρb)− f

(

ρa + ρb

2

)

− Jζ−1
ρa

(

P1

(

ρa + ρb

2
, b

)

ϕ(ρb)

)

]

≤ (≥)
2ζ−1

(ρb − ρa)ζ

[

1

2sr−1

∫ ρa

ρa+ρb
2

η

[

(t− ρa)ϕ
′(t)

(ρb − t)1−ζ

]

dt

+
(2r − 1)s

2rs−1

∫

ρa+ρb
2

ρb

η

[

(t− ρb)ϕ
′(t)

(ρb − t)1−ζ

]

dt

]

.(3.1)

Remark 4. In Theorem 3.1, if we put ζ = 1 in (3.1). we get

η

(

1

ρb − ρa

∫ ρb

ρa

ϕ(t)dt− ϕ

(

ρa + ρb

2

))

≤ (≥)
1

ρb − ρa

[

1

2sr−1

∫

ρa+ρb
2

ρa

η[(ρa − t)ϕ′(t)]dt

+
(2r − 1)s

2rs−1

∫ ρb

ρa+ρb
2

η[(ρb − t)ϕ′(t)]dt

]

.

Remark 5. Assume that η : I ⊂ [0,∞) → R be an (s, r)−convex(concave) function

in mixed kind:

(1) If we take ζ = 1, ϕ(t) = 1
t
in inequality (3.1) where t ∈ [ρa, ρb] ⊂ (0,∞), then

we have

(ρb − ρa)η

[

A(ρa, ρb)− L(ρa, ρb)

A(ρa, ρb)L(ρa, ρb)

]

≤ (≥)
1

2sr−1

∫

ρa+ρb
2

ρa

η

[

t− ρa

t2

]

dt+
(2r − 1)s

2rs−1

∫ ρb

ρa+ρb
2

η

[

t− ρb

t2

]

dt.
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(2) If we take ζ = 1, ϕ(t) = − ln t in inequality (3.1), where t ∈ [ρa, ρb] ⊂ (0,∞),

then we have

(ρb − ρa)η

[

ln

(

A(ρa, ρb)

I(ρa, ρb)

)]

≤ (≥)
1

2sr−1

∫

ρa+ρb
2

ρa

η

[

t− ρa

t

]

dt+
(2r − 1)s

2rs−1

∫ ρb

ρa+ρb
2

η

[

t− ρb

t

]

dt.

(3) If we take ζ = 1, ϕ(t) = tp, p ∈ R \ {0,−1} in inequality (3.1), where t ∈
[ρa, ρb] ⊂ (0,∞), then we have

(ρb − ρa)η
[

Lp
p(ρa, ρb) + Ap(ρa, ρb)

]

≤ (≥)
1

2sr−1

∫

ρa+ρb
2

ρa

η

[

p (ρa − t)

t1−p

]

dt+
(2r − 1)s

2rs−1

∫ ρb

ρa+ρb
2

η

[

p (ρb − t)

t1−p

]

dt.

Remark 6. In Theorem 2.2, one can see the following.

(1) Let x = ρa+ρb
2

, ζ = 1, 0 < ρa < ρb, q ≥ 1 and ϕ : R → R
+, ϕ(x) = xn in (2.4).

Then

|A (ρa, ρb)− Ln
n (ρa, ρb)| ≤

M (ρb − ρa)

(2)2−
1

q

(

1

sr + 2
+

B
(

2
r
, s+ 1

)

r

)
1

q

.

(2) Let x = ρa+ρb
2

, ζ = 1, 0 < ρa < ρb, q ≥ 1 and ϕ : (0, 1] → R, ϕ(x) = − ln x in

(2.4). Then

|ln I (ρa, ρb)− lnA (ρa, ρb)| ≤
M (ρb − ρa)

(2)2−
1

q

(

1

sr + 2
+

B
(

2
r
, s+ 1

)

r

)
1

q

.

Remark 7. In Theorem 2.3, one can see the following.

(1) Let x = ρa+ρb
2

, ζ = 1, 0 < ρa < ρb, q ≥ 1 and ϕ : R → R
+, ϕ(x) = xn in (2.8).

Then

|A (ρa, ρb)− Ln
n (ρa, ρb)| ≤

M (ρb − ρa)

2 (p+ 1)
1

p

(

1

sr + 1
+

B
(

1
r
, s+ 1

)

r

)
1

q

.

(2) Let x = ρa+ρb
2

, ζ = 1, 0 < ρa < ρb, q ≥ 1 and ϕ : (0, 1] → R, ϕ(x) = − ln x in

(2.8). Then

|ln I (ρa, ρb)− lnA (ρa, ρb)| ≤
M (ρb − ρa)

2 (p+ 1)
1

p

(

1

sr + 1
+

B
(

1
r
, s+ 1

)

r

)
1

q

.
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4. Conclusion and Remarks

4.1. Conclusion. Ostrowski inequality is one of the most celebrated inequalities,

we can find its various generalizations and variants in literature. In this paper, we

presented the generalized notion of (s, r)−convex functions in mixed kind, this class

of functions contains many important classes including class of s−convex functions

in 1st and 2nd kind [4], P−convex functions, quasi convex functions and the class of

convex functions. We have stated our first main result in section 2, the generalization

of Ostrowski inequality [23] via fractional integral and others results obtained by using

different techniques including Hölder’s inequality [28] and power mean inequality [27].

Also, various established results would be captured as special cases. Moreover, some

applications in terms of special means would also be given.

4.2. Remarks and Future Ideas.

(1) One may do similar work to generalize all results stated in this article by

applying weights.

(2) One may also do similar work by using various different classes of convex

functions including Godunova-Levin s−convex function in 1st and 2nd kind

and Godunova-Levin (s, r)−convex function in mixed kind and h−convex

functions.

(3) One may try to state all results stated in this article for fractional integral

with respect to another function.

(4) One may also state all results stated in this article for higher dimensions.

(5) One may also generalize all results using time scale domain.

(6) One may also generalize all results using Fractional sets, intutionistic Frac-

tional sets and single valued Neutrosophic sets.

References

[1] M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski type inequalities for functions

whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(2010), 1071–1076.

[2] A. Arshad and A. R. Khan, Hermite−Hadamard−Fejer Type Integral Inequality for s −
p−Convex Functions of Several Kinds, TJMM., 11 (2) (2019), 25–40.

[3] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54(1948), 439–460.



1046 ALI HASSAN AND ASIF RAZA KHAN

[4] M. J. Vivas Cortez, J. E. Hernández, Ostrowski and Jensen-type inequalities via (s,m)−convex

functions in the second sense, Bol. Soc. Mat. Mex., 26(2020), 287–302.
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