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SOME PROPERTIES AND CRITERIA FOR SUB-CHAOTIC

C0-SEMIGROUPS

MANSOOREH MOOSAPOOR (1) AND ISMAIL NIKOUFAR(2)

Abstract. In this paper, we get a closer view to sub-chaotic C0-semigroups.

We show that if a C0-semigroup contains a subspace-chaotic operator, then it is

sub-chaotic. We prove that there are sub-chaotic C0-semigroups that contain no

subspace-chaotic operator. We also prove that if ϕ is a bounded and holomorphic

function on the unit disk, then the multiplication C0-semigroup generated by ϕ

can not be sub-chaotic. Moreover, we state some criteria for a C0-semigroup to be

sub-chaotic based on the properties of the operators that made the semigroup.

1. Introduction

A bounded and linear operator T on a Banach space X is called hypercyclic if

orb(T, x) = {x, Tx, ..., T nx} is dense in X for some x ∈ X . The concept of hyper-

cyclicity and some related concepts like chaoticity are interesting topics for researchers

in dynamical systems and investigated by them in various mathematical structures.

One of these structures is a semigroup. By a C0-semigroup on a Banach space X , we

mean a family (Tt)t≥0 of bounded linear operators on X such that:

(i) T0 = I,

(ii) for any s ≥ 0 and any t ≥ 0, Ts+t = TsTt,

(iii) for any s ≥ 0 and any x ∈ X , limt→sTtx = Tsx.

The orbit of an element x ∈ X under C0-semigroup (Tt)t≥0 is defined by

orb((Tt)t≥0, x) = {Ttx : t ≥ 0}.
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We say a C0-semigroup (Tt)t≥0 is hypercyclic, if orb((Tt)t≥0, x) is dense in X for some

x ∈ X . It is notable that if (Tt)t≥0 is hypercyclic, then Tt is hypercyclic for any t > 0,

see [9, Theorem 2.3].

If for every pair of sets U and V of open subsets of X , we have Tt(U) ∩ V 6= φ

for some t ≥ 0, then (Tt)t≥0 is called topologically transitive. When X is a separable

space, hypercyclicity of C0-semigroup (Tt)t≥0 is equivalent to topologically transitivity

of it, see [13, p. 186].

Let (Tt)t≥0 be a C0-semigroup on X . If we consider

Ax := limt→0
1

t
(Ttx− x),

then there is a dense subset of X that Ax exists on it and we denote this subset by

D(A). In this case, A with domain D(A) is named the generator of (Tt)t≥0, see [13].

Subrahmonian Moothathu established in [20] that for a C0-semigroup (Tt)t≥0 on a

complex Banach space with generator A, if σ(A) 6= φ, then orb((Tt)t≥0, x) is linearly

independent for any hypercyclic vector x. Also, one can see more properties for

C0-semigroups with σ(A) 6= φ in [21].

A new category of C0-semigroups that is named recurrent C0-semigroups was in-

troduced and investigated in [18]. Moreover, sufficient conditions for recurrence of

C0-semigrous and their direct sum can be found in [18]. Also, one can find the con-

cept of γ-boundedness for C0-semigroups and a characterization for generation of

γ-bounded C0-semigroups in [1].

A C0-semigroup (Tt)t≥0 on X is said a chaotic C0-semigroup if it is transitive and

the set of its periodic points is dense in X . Remember that if Ttx = x for some t > 0,

then x is said a periodic point for (Tt)t≥0.

We can not find any hypercyclic C0-semigroups on finite-dimensional spaces, see

[13, Theorem 7.15]. Thus, chaotic C0-semigroups can not exist on finite-dimensional

spaces, too. Moreover, it was established in [8] that hypercyclic C0-semigroups

can be constructed in any complex Banach spaces that are separable and infinite-

dimensional. But chaotic C0-semigroups do not satisfy this matter.

Desh et al. investigated various semigroups for hypercyclicity and chaoticity like

translation semigroups and semigroups that are generated by discrete shifts in [11].
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They also, stated various sufficient conditions for hypercyclicity and chaoticity of

semigroups. One can also see [10] and [15] for more information. Banasiak and

Moszynski stated some other conditions for chaoticity of semigroups based on eigen-

vectors in [2] by refining some conditions in [11]. They also introduced the concept

of subspace chaotic C0-semigroups or briefly sub-chaotic C0-semigroup as follows:

Definition 1.1. For a closed and non-trivial subspace M of X , we name a C0-

semigroup (Tt)t≥0 is sub-chaotic with the space of chaoticity M if (Tt|M)t≥0 is topo-

logically chaotic and M is invariant under (Tt)t≥0, i.e., Tt(M) ⊆ M for any t > 0, see

[2].

In 2012, Madore and Martinez-Avendano described subspace-hypercyclic opera-

tors. For an operator T on X and for a closed subspace M of X , if there is a vector

x ∈ M such that orb(T, x) ∩M is dense in M , then T is called M-hypercyclic, see

[16]. With a routine procedure it can be seen that if T (M) ⊆ M and T |M is a hyper-

cyclic operator, then T is M-hypercyclic. An operator on a Banach space X is called

subspace-chaotic with respect to closed subspace M or M-chaotic if it is M-transitive

and has a dense set of periodic points in M , see [23].

The concept of subspace-diskcyclicity was introduced in [3] and semi chaotic oper-

ators on Banch spaces were introduced in [5]. It was proved in [5] that semi chaotic

operators exist on every finite dimensional Banach spaces. One can also see [4] and

[19] for more information about this matter.

For a closed and non-trivial subspace M of X , we say that (Tt)t≥0 is M-hypercyclic

if orb((Tt)t≥0, x) ∩ M is dense in M for some x ∈ X , see [22]. If (Tt)t≥0 is a C0-

semigroup such that M is invariant under it and (Tt|M)t≥0 is hypercyclic, then we

can conclude that (Tt)t≥0 is M-hypercyclic. Throught this paper, X indicates a

complex and infinite-dimensional Banach space and we briefly called bounded linear

operators on X , operators. Also, we denote by M a closed and non-trivial subspace

of X .

In this paper, we want to discover some relations between subspace-chaotic opera-

tors and sub-chaotic C0-semigroups. Moreover, we want to obtain sufficient conditions

for a C0-semigroup to be sub-chaotic.
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In Setion 2, we show that if a C0-semigroup contains a subspace-chaotic operator,

then it is sub-chaotic. We establish that there are sub-chaotic C0-semigroups that

contain no subspace-chaotic operator. Also, we costruct a non-sub-chaotic multipli-

cation C0-semigroup. In Section 3, we state some various criteria for a C0-semigroup

to be sub-chaotic based on properties of operators that made the semigroup.

2. Subspace-chaotic Operators and Sub-chaotic C0-Semigroups

As it was mentioned in the introduction, chaotic C0-semigroups do not exist on

finite-dimensional spaces. Now, we establish in the next theorem that for a finite-

dimensional subspace M of a Banach space X and a C0-semigroup (Tt)t≥0 on this

space, (Tt)t≥0 can not be sub-chaotic with the space of chaoticity M .

Theorem 2.1. If (Tt)t≥0 is sub-chaotic C0-semigroup on X with the space of chaotic-

ity M , then M is infinite-dimensional.

Proof. Let M be a finite-dimensional subspace for X such that (Tt)t≥0 is sub-chaotic

for the space of chaoticity M . Hence, (Tt)t≥0 is invariant under M and (Tt|M)t≥0

is chaotic. So we can conclude that (Tt|M)t≥0 is a chaotic semigroup on finite-

dimentional space M . This is a contradiction as mentioned before the theorem and

so M is an infinite-dimensional space.

�

In the following lemma, we give a primarily relation between subspace-chaoticity

of an operator and its restriction.

Lemma 2.1. Consider that T is an M-chaotic operator on X with T (M) ⊆ M .

Then T |M is a chaotic operator.

Proof. Since T is M-chaotic, T is M-transitive. On the other hand, by [16, Theorem

3.5], T is M-hypercyclic. Let x ∈ M be an M-hypercyclic vector for T . Since

T (M) ⊆ M , x is an hypercyclic vector for T |M . Also, by M-chaoticity of T , this

operator has a dense set of periodic points in M . Hence, T |M has a dense set of

periodic points in M and so T |M is chaotic. �

The next corollary shows that an M-chaotic operator in a semigroup can build a

sub-chaotic semigroup.
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Corollary 2.1. For a C0-semigroup (Tt)t≥0, let M be a closed and non-trivial sub-

space of X and invariant under (Tt)t≥0.

(i) If Tt0 |M is chaotic for some t0 > 0, then (Tt)t≥0 is sub-chaotic with the space

of chaoticity M .

(ii) If there is some t0 > 0 such that Tt0 is M-chaotic, then (Tt)t≥0 is sub-chaotic

with the space of chaoticity M .

Proof. Part (i) is clear by definition of sub-chaotic semigroups. For proving part (ii),

note to this matter that by Lemma 2.1, this condition implies that T |M is chaotic. �

By using chaotic semigroups, one can construct sub-chaotic semigroups as follows.

Example 2.1. Presume that (Tt)t≥0 is a chaotic C0-semigroup. If we consider St :=

Tt ⊕ I and M := X ⊕ {0}, then (St|X⊕{0})t≥0 = (Tt ⊕ I|X⊕{0})t≥0 is sub-chaotic with

the space of chaoticity M . Since (Tt ⊕ I)t≥0 is not hypercyclic, (Tt ⊕ I)t≥0 is not

chaotic.

For instance, consider X = C0(R
+) with supremum norm, where

C0(R
+) = {f : f : R+ → C; limx→∞f(x) = 0}.

Let α be a positive and fixed integer. Then if we define

(Ttf)(x) = eαtf(x+ t), x ∈ R
+,

then (Tt)t≥0 is a chaotic C0-semigroup, see [13, p. 188]. Hence, (Tt ⊕ I)t≥0 is a

sub-chaotic C0-semigroup with the space of chaoticity M := C0(R
+)⊕ {0}.

In the following, we make a non-sub-chaotic semigroup.

Example 2.2. Consider that ϕ is bounded and holomorphic on the unit disk D. If

we define

T ϕ
tf = etϕf, t ≥ 0,

then (T ϕ
t )t≥0 is a C0-semigroup on H2, see [13, p. 206] and is called multiplication

C0-semigroup. Recall that the Hardy-Hilbert space consists of analytic functions which
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have power series representation with square-summable complex coefficients, see [17,

Definition 1.1.1]. That means

H2 = {f : f(z) = Σ∞
n=0anz

n and Σ∞
n=0|an|

2 < ∞}.

In [12] interesting theorems about multiplication C0-semigroups can be found. We

claim that multiplication C0-semigroup can not be sub-chaotic. Suppose on the con-

trary that (T ϕ
t )t≥0 is a sub-chaotic multiplication C0-semigroup with the space of

chaoticity M . Thus, (T ϕ
t |M)t≥0 is hypercyclic and so as we mentioned in the in-

troduction, T
ϕ
t |M is hypercyclic for any t > 0.

This means that T
ϕ
t0
is an analytic Toeplitz operator, that is M-hypercyclic. This is

a contradiction since analytic Toeplitz operators can not be subspace-hypercyclic, see

[16, p. 504].

We know that if (Tt)t≥0 is a hypercyclic C0-semigroup, then Tt is a hypercyclic

operator for any t ≥ 0. Now, it is natural to ask this question that does the sub-

chaoticity of a C0-semigroup (Tt)t≥0 imply that for any t > 0, Tt is a subspace-chaotic

operator? In the next corollary, we show that the answer is negative.

Corollary 2.2. There are C0-semigroups on a Banach space X such that they are

sub-chaotic with the space of chaoticity M , but they do not contain any subspace-

chaotic operators with respect to M .

Proof. As it is constructed in [6], there is a chaotic C0-semigroup (St)t≥0 such that for

any t ≥ 0, the operator St is not chaotic. Hence, St⊕I can not be a subspace-chaotic

operator with respect to X ⊕ {0}. We claim that (St ⊕ I|X⊕{0})t≥0 is a sub-chaotic

C0-semigroup with space chaoticity M := X ⊕ {0}.

For this, consider that U ⊕{0} and V ⊕{0} are optional open sets in M . Thus, U

and V are open sets in the space X . Now, since (St)t≥0 is chaotic, we can conclude

that St0(U) ∩ V is non-empty for some t0 ≥ 0. Therefore,

(St0 ⊕ I)(U ⊕ {0}) ∩ (V ⊕ {0})

= (St0(U)⊕ {0}) ∩ (V ⊕ {0})

= (St0(U) ∩ V )⊕ {0} 6= φ.
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So, (St ⊕ I|X⊕{0})t≥0 is topologically transitive. Also,

per((St)t≥0) = {x ∈ X : ∃t > 0;St(x) = x}

is dense in X . Let x ∈ per((St)t≥0). Then we can find a t0 > 0 so that St0(x) = x.

Therefore,

(St0 ⊕ I)(x⊕ {0}) = St0(x)⊕ I(0) = x⊕ {0}.

Hence, x⊕ {0} is a periodic element for (St0 ⊕ I)t≥0. Thus,

per((St)t≥0)⊕ {0} ⊆ per(St ⊕ I)t≥0.

Now, since per((St)t≥0) is dense in X , then per((St)t≥0) ⊕ {0} is dense in X ⊕ {0}.

Therefore, (St ⊕ I)t≥0 has a dense set of periodic points in X ⊕ {0} and hence,

(St ⊕ I|X⊕{0})t≥0 is chaotic.

�

3. Some Critaria for Sub-chaoticity of C0-Semigroups

In this section, we find some adequate conditions for sub-chaoticity of the C0-

semigroups. The idea of the first theorem is given from such a condition for hyper-

cyclicity of operators in [16].

Theorem 3.1. Let (At)t≥0 and (Tt)t≥0 be C0-semigroups on a Banach space X . Let

E be an operator on X with a closed range M and let M be invariant under (Tt)t≥0.

If AtE = ETt for any t > 0 and (Tt)t≥0 is a chaotic C0-semigroup, then (At)t≥0 is

sub-chaotic with the space of chaoticity M .

Proof. First, we show that M is an invariant subspace for (At)t≥0. Let t > 0 and let

y ∈ M . Thus, there is x ∈ X such that Ex = y and so,

At(y) = At(Ex) = ETt(x) ∈ M.

This means At(M) ⊆ M for any t > 0. By hypothesis, (Tt)t≥0 is chaotic. It follows

that per((Tt)t≥0) is dense in X . Let x ∈ per((Tt)t≥0). Then Tt0(x) = x for some

t0 > 0. Hence,

At0Ex = ETt0(x) = E(x).
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This means that if x ∈ per((Tt)t≥0), then E(x) ∈ per((At)t≥0) and so,

E(per((Tt)t≥0)) ⊆ per((At)t≥0).

Because per((Tt)t≥0) is denseX so E(per((Tt)t≥0)) is dense inM and hence, per((At)t≥0)∩

M is dense in M . This means the set of periodic points of (At)t≥0 forms a dense set

in M .

On the other hand, (Tt)t≥0 is chaotic and hence it is hypercyclic. Let x be a

hypercyclic vector for (Tt)t≥0. So,

orb((At)t≥0, Ex) = {At(Ex) : t ≥ 0} = {E(Ttx) : t ≥ 0}.

Hence,

M ⊇ orb((At)t≥0, Ex) = {At(Ex) : t ≥ 0} = E(orb((Tt)t≥0, x) = M.

Thus,

orb((At)t≥0, Ex) = M.

Now, since Ex ∈ M and At(M) ⊆ M , we conclude that (At|M)t≥0 is hypercyclic.

Therefore, (At|M)t≥0 is chaotic and so (At)t≥0 is sub-chaotic with the space of chaotic-

ity M .

�

By using the idea of hypercyclicity criterion for operators [14, Theorem 2], we

present the following condition for semigroups.

Theorem 3.2. Let (Tt)t≥0 be a C0-semigroup. Let M be a closed subspace of X

that is invariant under (Tt)t≥0. If

(i) Z = {x ∈ M : Ttx → 0} is dense in M ,

(ii) Y = {y ∈ M : ∃(ut) in M,ut → 0 and Ttut → y} is dense in M ,

(iii) Per((Tt)t≥0) ∩M forms a dense subset in M ,

then (Tt)t≥0 is sub-chaotic for the space of chaoticity M .

Proof. First, we show that (Tt|M)t≥0 is topologically transitive. For proving this, take

U, V ⊆ M are relatively open sets. By (i), we can conclude that there exist x0 ∈ Z
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and y0 ∈ Y such that

x0 ∈ U ∩ Z and y0 ∈ V ∩ Y.(3.1)

Hence, Ttx0 → 0 and there is (ut) ⊆ M such that ut → 0 and Ttut → y0 and so,

x0 + ut → x0 and Tt(x0 + ut) = Tt(x0) + Tt(ut) → y0.(3.2)

By (3.1) and (3.2) there is sufficiently large t0 such that for any t ≥ t0,

x0 + ut ∈ U and Tt(x0 + ut) ∈ V.

Because x0 + ut ∈ M and Tt(M) ⊆ M for any t ≥ t0 so (Tt|M)t≥0 is topologically

transitive. By hypothesis, (Tt)t≥0 has a dense set of periodic points in M , so has

(Tt|M)t≥0. This implies (Tt|M)t≥0 is chaotic. Consequently, (Tt|M)t≥0 is sub-chaotic

for the space of chaoticity M .

�

The idea of the following conditions is from [11] for the chaoticity of semigroups.

Theorem 3.3. Let (Tt)t≥0 be a C0-semigroup on X . Let M be a closed and non-

trivial subspace of X that is invariant under (Tt)t≥0. If

(i) for any x, y ∈ M and for any ε > 0, there exist w ∈ M and t > 0 such that

||x− w|| < ε and ||y − Tt(w)|| < ε,

(ii) per((Tt)t≥0) ∩M forms a dense subset of M ,

then (Tt)t≥0 is sub-chaotic for the space of chaoticity M .

Proof. We claim that (Tt|M)t≥0 is topologically transitive. Let U and V be a pair of

relatively open sets in M . Suppose that x ∈ U and y ∈ V . Thus, there is ε > 0 such

that B(x, ε) ∩ M ⊆ U and B(y, ε) ∩ M ⊆ V . By hypothesis, there is w ∈ M and

there is t0 > 0 such that

||x− w|| < ε and ||y − Tt0(w)|| < ε.

Therefore, w ∈ U and Tt0(w) ∈ V . Hence, there is t0 > 0 such that Tt0(U) ∩ V 6= φ.

Since w ∈ M and Tt0(M) ⊆ M , one can conclude that Tt0 |M(U) ∩ V 6= φ. Hence,

(Tt|M)t≥0 is topologically transitive. By hypothesis, (Tt)t≥0 has a dense set of periodic
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points in M . Thus, (Tt|M)t≥0 is chaotic and hence (Tt)t≥0 is sub-chaotic for the space

of chaoticity M .

�

Corollary 3.1. Let (Tt)t≥0 be a C0-semigroup on X . Let M be a closed and non-

trivial subspace of X . If

(i) Tt(M) ⊆ M for any t > 0,

(ii) for any ε > 0, there is a subset D ⊆ M so that D = M and for any x ∈ D,

there is a subset Dx ⊆ M so that Dx = M and for any y ∈ Dx, there is v ∈ M

and t > 0 such that

||y − v|| < ε and ||x− Tt(v)|| < ε,

(iii) per((Tt)t≥0) ∩M forms a dense subset of M ,

then (Tt)t≥0 is sub-chaotic for the space of chaoticity M .

Proof. We show that the conditions of Theorem 3.3 hold. We first prove that part (i)

of Theorem 3.3 can be concluded from part (ii) of this corollary. For this, let x ∈ M

and let y ∈ M . Suppose that ε > 0. By (ii), we have a dense subset D of M . By

density of D, we can gain z ∈ D such that

||y − z|| <
ε

2
.(3.3)

It follows from (ii) that there is a dense subset Dz of M . By density of Dz, we can

find w ∈ Dz such that

||x− w|| <
ε

2
.(3.4)

Also, by (ii), for this w we can find v ∈ M and t > 0 such that

||w − v|| <
ε

2
and ||z − Tt(v)|| <

ε

2
.(3.5)

Therefore, by (3.4) and (3.5), ||x− v|| < ε and by (3.3) and (3.5),

||y − Ttv|| ≤ ||y − z||+ ||z − Tt(v)|| < ε,

which is part (i) of Theorem 3.3. Note that M is invariant under (Tt)t≥0, by the

assumption in part (i) and part (iii) of this corollary is the same as part (ii) of

Theorem 3.3. So, Theorem 3.3 implies the result.
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