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PROPER HELIX OF ORDER 6 AND LC HELIX IN

PSEUDO-EUCLIDEAN SPACE E8
4

BUDDHADEV PAL(1) AND SANTOSH KUMAR (2)

Abstract. In this paper, we used the result that complex hyperbolic spaces

CH2(− 4c
3 ) with holomorphic sectional curvature −4c

3 are isometrically embedded

in E8
4 . By considering a circle in CH2(− 4c

3 ), we prove that the image of the circle

by isometric embedding is a proper helix of order 6 in E8
4 . Moreover, we define

a generalized LC helix on a submanifold of E8
4 . Also, we show that the image

of a circle by isometric embedding from complex hyperbolic plane CH2(− 4
3 ) to

pseudo-Euclidean space E8
4 is a generalized LC helix on some submanifold of E8

4 .

1. Introduction

A curve γ(s) parametrized by arc length parameter is said to be a circle in Kähler

manifold M , if there exist a unit vector field Y orthonormal to tangent vector field

X along γ(s) and satisfies the relations

∇XX = κY, ∇XY = −κX,

where κ is some positive constant known as curvature of the circle and ∇ is Riemann-

ian connection onM . The complex torsion for circle is defined as τ = g(X, JY ), where

J is a complex structure and g is a Riemannian metric on M . A Kähler manifold M

with constant holomorphic sectional curvature c is known as a complex space form

M(c). Two circles in M(c) are congruent by holomorphic isometries to each other

if and only if they have the same curvature and complex torsion [17]. In [3, 5, 6],

the various properties of circles in complex projective space and complex hyperbolic
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space were studied. O. J. Garay and A. Romeo [11] in 1990, studied the isometric

embedding from a complex hyperbolic space to a pseudo-Euclidean space. The au-

thors used the application of isometric embedding to study the real hypersurfaces in

complex hyperbolic space [11].

A smooth curve γ(s) with frame {V1, ..., Vd}, of orthonormal fields in Riemannian

manifold Mn is said to be a curve of proper order d, if frame fields satisfies the

following Frenet formula

∇′
V1
Vi = −κi−1Vi−1 + κiVi+1, 1 ≤ i ≤ d,

where V0 = Vd+1 = 0, κ0 = 0. Also ∇′ is a Levi-Civita connection on Mn and κi are

known as the ith curvatures of γ(s). If all the ith curvatures of γ(s) are constants,

then curve is called a helix of proper order d in M . The definition for proper curve

and proper helix of order d in pseudo-Euclidean space is slightly different from the

definition of Riemannian manifold [18]. The holomorphic helices of proper order d

were considered in [15, 4]. A holomorphic helix of proper order d in Kähler manifold

is a helix of proper order d with constant torsion function. Also torsion for helix of

proper order d in Kähler manifold is defined as

τij = 〈Vi, Vj〉; 1 ≤ i, j ≤ d.

A general helix in Euclidean space is a curve whose tangent vector makes a constant

angle with some fixed direction. The necessary and sufficient conditions for a curve γ

to become a general helix in Euclidean space is that the ratio of curvature and torsion

of γ is constant. In 1802, M. A. Lancret stated this condition, the first proof for the

condition was given by B. de Saint Venant in 1845. In 1997, M. Barros [9], proved

the same condition by using a Killing vector field. A slant helix in Euclidean space is

a curve whose principal normal makes a constant angle with some fixed direction. In

2004, S. Izumiya and N. Takeuchi [12], defined the slant helix in Euclidean space. A

curve γ in E3
1 is said to be a slant helix if there exist a constant direction vector say W

whose inner product with principal normal N of the curve is constant i.e, 〈W,N〉 = c

[8]. In [7, 14], authors studied the position vector and spherical indicatrix of slant

helices.



PROPER HELIX OF ORDER 6 AND LC HELIX IN PSEUDO-EUCLIDEAN SPACE E
8
4 1079

In [13], generalized LC helix on hypersurfaces of Minkowski space En+1
1 were stud-

ied. A non null regular curve γ lying on hypersurface M of Minkowski space En+1
1 is

said to be generalized LC helix if there exist a vector field X along the curve γ such

that 〈γ′, X〉 = c(constant) and ∇γ′X = 0, where ∇ is Levi-Civita connection on hy-

persurface. Any line parallel to vector field X is said to be an axis of the generalized

LC helix. A regular curve in hypersurface of Minkowski space E4
1 be a generalized LC

helix iff ratio of curvatures (κ1 = κ, κ2 = τ) are constant i.e, κ1

κ2
= c(constant) [13].

In [16], authors studied the helices of order 6 in Euclidean sphere by using minimal

embedding from complex projective space to a 7− dimensional Euclidean sphere.

We organize our paper as follows: In section 2, we discuss some definitions and

important results that are useful to prove our main Theorems. In section 3, we study

the proper helix of order 6 in E8
4 by using isometric embedding with parallel second

fundamental form from complex hyperbolic space CH2(−4c
3
) to pseudo-Euclidean

space E8
4 . After that, we discussed the behavior of a curve into a submanifold Md

ν of

manifold E8
4 in which the curve is lying on.

2. Preliminaries and some results

Let Cn+1 be a complex vector space equipped with Hermitian metric

g̃(z, w) = −z̄1w1 +

i=n+1
∑

i=2

z̄iwi,

where z = (z1, ...zn+1) and w = (w1, ...wn+1) are vectors of C
n+1. Then the hypersur-

face anti-di Sitter space of vector space Cn+1 is defined as

H2n+1
1 = {z ∈ Cn+1; g̃(z, z) = −1}.

The tangent space at z ∈ H2n+1
1 , is given by

TzH
2n+1
1 = {(z, w);w ∈ Cn+1 andRe(g̃(z, w)) = 0}.

If Hz(TzH
2n+1
1 ) and Vz(TzH

2n+1
1 ), representing the horizontal and vertical decompo-

sition of tangent space TzH
2n+1
1 , then

Hz(TzH
2n+1
1 ) = {(z, w);w ∈ Cn+1 and g̃(z, w) = 0},

Vz(TzH
2n+1
1 ) = {(z, iνz); ν ∈ R}.
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Consider Π is a canonical projection from hypersurface anti-di Sitter space to CHn

with S1− fiber bundle. Then the tangent space at Π(z) ∈ CHn is identified as a

horizontal subspace of TzH
2n+1
1 and follows by

Tπ(z)CHn = {dΠ((z, w)); z ∈ H2n+1
1 and (z, w) ∈ Hz(TzH

2n+1
1 )}.

Let g is the restriction of Hermitian metric g̃ on Cn+1 to Hz(TzH
2n+1
1 ), then

g(u, v) =
4

c
Re(g̃(u, v)), u, v ∈ Tπ(z)CHn ≃ Hz(TzH

2n+1
1 ),

is a positive definite metric on CHn. For some positive constant c, CHn(−c) is known

as a complex hyperbolic space with constant holomorphic sectional curvature −c and

complex structure J . Where complex structure J is induced from canonical complex

structure on Cn+1.

Let ∇̄, ∇̃ and ∇ are the Riemannian connections on Cn+1, H2n+1
1 and CHn(−c)

respectively, then we get

Lemma 2.1. [2] For all horizontal vector fields X,Y on H2n+1
1 , we have

(2.1)











∇̄XY = ∇̃XY + g(X, Y )N,

∇̃XY = ∇XY − g(X, JY )JN,

where N is normal to real hypersurface H2n+1
1 ⊂ Cn+1 and g(N,N) = −1.

LC Helix in Pseudo-Euclidean space En
ν

Pseudo-Euclidean n− dimensional space En
ν with index ν is a real vector space Rn

equipped with the metric

g′(x, y) = −
i=ν
∑

i=1

xiyi +

j=n
∑

j=ν+1

xjyj,

where x = (x1, ...xn) and y = (y1, ...yn) ∈ Rn. Let γ : (a, b)−→En
ν ; a, b ∈ R be a

curve parametrized by arc length parameter s, then the curve is said to be, spacelike if

g′(γ′(s), γ′(s)) = 1, timelike if g′(γ′(s), γ′(s)) = −1 and lightlike if g′(γ′(s), γ′(s)) = 0.
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Definition 2.1. [18] A non - null curve γ(s) in a pseudo-Euclidean space parametrized

by arc length is called a proper curve of order d if there exists a frame {V1, ..., Vd} of

orthonormal fields along γ(s) and satisfy the Frenet formula

∇′
V1
Vi = −λi−2λi−1κi−1Vi−1 + κiVi+1, 1 ≤ i ≤ d,

where V0 = Vd+1 = 0, κ0 = 0 and ∇′ is Levi-Civita connection on pseudo-Euclidean

space. Now

κi =‖ ∇′
V1
Vi + λi−2λi−1κi−1Vi+1 ‖, 1 ≤ i < d,

λi−1 = g′(Vi, Vi), 1 ≤ i < d,

where κi are known as the ith curvatures of γ(s). If κi (1 ≤ i ≤ d− 1) are constants

along γ(s), then γ(s) is said to be a proper helix of order d in pseudo-Euclidean space.

Definition 2.2. [1] A curve γ in pseudo-Riemannian manifold is said to be a circle if it

satisfies the following differential equation ∇′
X∇′

XX+g′(∇′
XX,∇′

XX)g′(X,X)X =

0, where X is a tangent vector field along γ .

Next, we generalize the definition of generalized LC helix in hypersurface of En
1

[13] to any submanifold of pseudo-Euclidean space En
ν .

Definition 2.3. Let Md be a sub-manifold of En
ν , then a non null curve γ(s) lying

on Md is said to be a generalized LC helix, if there exist a vector field U such that

g′(T, U) = C (some constant) and ∇̇TU = 0. Where T is tangent vector field of γ(s)

and ∇̇ is Levi-Civita connection on Md . Any line parallel to U is said to be an axis

of γ(s).

Definition 2.4. Let γ : I ⊂ R −→ Md be a generalized LC helix, then harmonic

curvatures of γ are defined by Hj : I ⊂ R −→ R,

H1 = λ0λ1
κ1

κ2
,

Hj = (λj−1λjκjHj−2 + ∇̇V1Hj−1)
1

κj+1
, 2 ≤ j ≤ d− 2,

where H0 = 0 and κ1, κ2, . . ., κd−1 are curvature functions of γ.
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Let f : M −→ N be an isometric embedding from Riemannian manifold M into a

Riemannian manifold N . Also let ∇ and ∇̃ are Riemannian connections on M and

N respectively. Then the Gauss Weingarten formulae are given as follows

∇̃TU = ∇TU + σ(T, U),

∇̃Tη = −AηT +DTη,

where T, U are smooth sections of TM and η is a smooth section ofNM . The symbols

σ(T, U) and AηX are known as second fundamental form and shape operator on M

respectively. The connection ∇̂ of the second fundamental form σ on the space of

tangent bundle and normal bundle is defined as [10]

(∇̂Tσ)(U, V ) = DT (σ(U, V ))− σ(∇TU, V )− σ(U,∇TV ),

where T, U and V are smooth sections of tangent bundle TM . The second funda-

mental form is said to be parallel if ∇̂σ = 0. An isometric embedding from complex

hyperbolic space CHn to pseudo-Euclidean space En2+2n+1
n2+1 was defined in [11] and

provides the following remark.

Remark. The isometric embedding from CHn to En2+2n
n2 has a parallel second fun-

damental form.

For n = 2, the above remark ensure the existence of an isometric embedding from

the complex hyperbolic plane CH2 to E8
4 with parallel second fundamental form.

3. Main Results

Theorem 3.1. Every circle of curvature κ >
√

4c
3
and torsion 0 < τ < 1 in complex

hyperbolic plane of holomorphic sectional curvature −4c
3
(CH2(−4c

3
)) are proper helix

of order 6 in E8
4 by an isometric embedding i : CH2(−4c

3
) −→ E8

4 which has parallel

second fundamental .

Proof. Let i : CH2(−4c
3
) −→ E8

4 be an isometric embedding with parallel second

fundamental form. Now Gauss Weingarten formulae are

(3.1)











∇′
TU = ∇TU + σ(T, U),

∇′
Tη = −AηT +DTη,
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where T, U are smooth sections of TCH2(−4c
3
) and η is smooth section ofNCH2(−4c

3
).

Also ∇ and ∇′ are Riemannian connections on CH2(−4c
3
) and E8

4 respectively. The

scalar product of first normal space is defined as [11, 10]

(3.2)
〈σ(T, U), σ(V,W )〉 = − c

3
{2〈T, U〉〈V,W 〉+ 〈T, V 〉〈U,W 〉+ 〈T,W 〉〈U, V 〉

+ 〈T, JV 〉〈U, JW 〉+ 〈T, JW 〉〈U, JV 〉}.

As 〈Aσ(V,W )T, U〉 = 〈σ(T, U), σ(V,W )〉, therefore from equation (3.2), we obtain

(3.3) Aσ(V,W )T = − c

3
{2〈V,W 〉T+〈T, V 〉W+〈T,W 〉V +〈T, JV 〉JW+〈T, JW 〉JV }.

Consider γ be a circle of curvature κ >
√

4c
3
and torsion 0 < τ < 1 on CH2(−4c

3
).

Then by the definition of circle

(3.4) ∇TT = κU, and ∇TU = −κT,

where T is tangent vector field of γ(s) and U is some vector field orthonormal to T .

Let {T, U, V,W,X, Y, Z,N} be an orthonormal frame along i ◦ γ. Then T, U, V and

W will be smooth sections of tangent bundle TCH2(−4c
3
). Whereas the remaining

vector fields X, Y, Z and N will be sections of normal bundle. The vector fields V

and W are already calculated in [5]. The vector fields X and Y are easy to assume

from (3.1) and whether they are independent or not can be checked by using equation

(3.2). Since 〈σ(T, U), σ(U, U)〉 = 0. Therefore, Z can be calculated by taking the

combination of X and Y . Whereas the vector field N is orthogonal to the first normal

space. Thus

V =
JT + τU√

1− τ 2
, W =

JU − τT√
1− τ 2

, X =
σ(T, T )
√

4c
3

,

Y =
σ(T, U)
√

c(1−τ2)
3

, Z =
σ(U, U)− (1+τ2

2
)σ(T, T )

√

c(3−τ4−2τ2)
3

,

where T, U, V and W are spacelike vector fields whereas X, Y and Z are timelike

vector fields. Also

σ(T, JU) = a1X + a2Y + a3Z

= τσ(T, T ) + 2τ(1− τ 2)

√

c

3(3− τ 4 − 2τ 2)
Z.(3.5)
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Here a1 = 〈σ(T, JU), X〉 = τ , a2 = 〈σ(T, JU), Y 〉 = 0 and a3 = 〈σ(T, JU), Z〉 =

2τ(1−τ 2)
√

c
3(3−τ4−2τ2)

. Now, for circle γ of curvature κ >
√

4c
3
and torsion 0 < τ < 1

on CH2(−4c
3
), from (3.4) and (3.1), i ◦ γ holds the relation

∇′
TT = ∇TT + σ(T, T )

= κ1

(

1

κ1

(κU + σ(T, T ))

)

= κ1F2.(3.6)

Here κ1 =
√

3κ2−4c
3

and F2 = 1
κ1
(κU + σ(T, T )) is a spacelike unit vector field.

To calculate the κ1, we use the property that i is parallel embedding and equation

(3.2). Now, the covariant derivative of F2 with respect to T , will follow the following

equation

∇′
TF2 =

κ

κ1
∇′

TU + κ∇′
Tσ(T, T )

=
1

κ1

(

κ(∇TU + σ(T, U))−Aσ(T,T )T +DT (σ(T, T ))
)

.

As i is parallel, therefore DT (σ(T, T )) = σ(∇TT, T ) + σ(T,∇TT ). Thus above equa-

tion gives us

∇′
TF2 = −κ1T + κ2F3,(3.7)

where κ2 = 3κ
√

c(1−τ2)
3κ2−4c

and F3 = σ(T,U)
√

c(1−τ
2)

3

= Y is a timelike vector field. Now the

covariant derivative of F3 with respect to T , gives the relation

(3.8) ∇′
TF3 = κ2F2 + κ3F4,

where κ3 =
√

(6κ2−2c)2−27cκ2τ2

3(3κ2−4c)
and F4 =

√

3(3κ2−4c)
(6κ2−2c)2−27cκ2τ2

{
√

3(1− τ 2)( −3κ2

3κ2−4
+ 1

3
)U

+
√

c
3
τV + κ

√

3−τ4−2τ2

1−τ2
Z − 2

√
1− τ 2( 3cκ

3κ2−4c
+ κ

2
)X} is a spacelike unit vector field.

Similarly

(3.9) ∇′
TF4 = −κ3F3 + κ4F5,

where κ4 = 3κτ
√

c(3κ2−4c)
(6κ2−2)2−27κ2τ2

and F5 = W = JU−τT√
1−τ2

. Now

(3.10) ∇′
TF5 = κ4F4 + κ5F6,
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where κ5 =
√

κ2
4 + κ2 − 4cτ2(1−τ2)

3(3−τ4−2τ2)
and F6 = 1

κ5
(−κV − κ4F4 +

2τ
√

c(1−τ2)√
3(3−τ4−2τ2

Z). The

covariant derivative of F6 along the curve i ◦ γ, will be

(3.11) ∇′
TF6 = −κ5F5.

Equations (3.6) - (3.11), showing that {T = F1, F2, F3, F4, F5, F6} is an orthogonal

frame satisfying the condition

∇′
TFi = −λi−2λi−1κi−1Fi−1 + κiFi+1, 1 ≤ i ≤ 6,

where F0 = F7 = 0 and κ0 = 0, along the curve i ◦ γ in E8
4 . Thus, the curve i ◦ γ is

a proper curve of order 6 in E8
4 . Since curvature functions along i ◦ γ are constants.

Thus i ◦ γ is a proper helix of order 6 in E8
4 .

In frame {F1, F2, F3, F4, F5, F6}, the vector fields F3 and F4 are timelike vector fields

whereas the remaining vector fields are spacelike vector fields. �

Corollary 3.1. If i ◦ γ be a curve with κ1(s) =
2c√
κ2
2−3c

and κ2 >
√
3c in E8

4 , then

i ◦ γ is a proper helix of order 4 in E8
4 .

Proof. From equation (3.6) and (3.7), we have κ =

√

3κ2
1+4c

3
and τ =

√

c(3κ2
1+4c)−κ2

1κ
2
2

c(3κ2
1+4c

.

After substituting these values of κ, τ in κ3 and κ4 of above theorem, we get κ3 =
√

κ2
1 + κ2

2 + 5c and κ4 = 0. Thus i ◦ γ is a proper helix of order 4 in E8
4 . �

Theorem 3.2. For a circle γ(s) with 0 < κ <
√

c
13

and 1
3
< τ < 1 in complex

hyperbolic plane CH2(−4c
3
). The image i◦ γ is a proper helix of order 6 in E8

4 , where

i is an isometric embedding from CH2(−4c
3
) to E8

4 with parallel second fundamental

form.

Proof. Let γ(s) be a circle with 0 < κ <
√

c
13

and 1
3
< τ < 1 in complex hyperbolic

plane CH2(−4c
3
). If i : CH2(−4c

3
) −→ E8

4 be an isometric embedding with parallel

second fundamental form, then similar to Theorem 3.1, we define the orthonormal

frame along i ◦ γ. Now from (3.1), (3.2) and (3.4), we obtain

(3.12) ∇′
TT = κ̄1E2,

where κ̄1 =
√

4c−3κ2

3
and E2 =

1
κ̄1
(κU + σ(T, T )). Now, we have

(3.13) ∇′
TE2 = κ̄1T + κ̄2E3,
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where κ̄2 = 3κ
√

c(1−τ2)
4c−3κ2 and E3 =

σ(T,U)
√

c(1−τ
2)

3

= Y . Also

(3.14) ∇′
TE3 = −κ̄2E2 + κ̄3E4,

where κ̄3 =
√

(6κ2−2c)2−27cκ2τ2

3(4c−3κ2)
and E4 =

√

3(4c−3κ2)
(6κ2−2c)2−27cκ2τ2

{
√

3c(1− τ 2)( 3κ2

4c−3κ2 +
1
3
)U

+
√

c
3
τV + κ

√

3−τ4−2τ2

1−τ2
Z + 2

√
1− τ 2( 3cκ

4c−3κ2 − κ
2
)X}. Similarly

(3.15) ∇′
TE4 = κ̄3E3 + κ̄4E5,

where κ̄4 = 3κτ
√

c(4c−3κ2)
(6κ2−2c)2−27cκ2τ2

and E5 = W = JU−τT√
1−τ2

. Now

(3.16) ∇′
TE5 = −κ̄4E4 + κ̄5E6,

where κ̄5 =
√

κ̄2
4 − κ2 + 4cτ2(1−τ2)

3c(3−τ4−2τ2)
and E6 =

1
κ5
(−κV + κ4E4 +

2τ
√

c(1−τ2)√
3(3−τ4−2τ2

Z). The

covariant derivative of E6 along i ◦ γ, gives us

(3.17) ∇′
TE6 = κ̄5E5,

From equation (3.12) - (3.17), we get the frame {T = E1, E2, E3, E4, E5, E6} of

orthonormal fields satisfying the condition

∇′
TEi = −λi−2λi−1κi−1Ei−1 + κiEi+1, 1 ≤ i ≤ 6,

where E0 = E7 = 0 and κ0 = 0, along the curve i ◦ γ in E8
4 . Thus, the curve i ◦ γ is

a proper helix of order 6.

In frame {E1, E2, E3, E4, E5, E6}, the vector fields E2, E3 and E6 are timelike vector

fields, whereas remaining three vector fields are spacelike vector fields. �

Theorem 3.3. Any circle with torsion τ = 1 in CH2(−4c
3
) be remain a circle in E8

4 by

an isometric embedding i : CH2(−4c
3
) −→ E8

4 which has parallel second fundamental

form.

Proof. Let γ be a circle in CH2(−4c
3
) with τ = 1, then the unit tangent vector field

T of γ and the vector field U orthogonal to T , holds the relation

∇TT = κU, and ∇TU = −κT,

where κ is some positive constant function. From equation (3.1), we have

∇′
TT = κ1V2,
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were κ1 is either, κ1 =
√

3κ2−4c
3

if κ >
√

4c
3
, or κ1 =

√

4c−3κ2

3
if κ <

√

4c
3
. Thus, the

covariant derivative of V2 =
1
κ1
(κU + σ(T, T )), along i ◦ γ is

∇′
TV2 = −ǫκ1T,

where ǫ = g′(V2, V2). Also ∇′
T∇′

TT + g′(∇′
TT,∇′

TT )g
′(T, T )T = 0, hence i ◦ γ is a

circle in E8
4 . �

Theorem 3.4. A circle of curvature κ >
√

4
3
and torsion 0 < τ < 1 in complex

hyperbolic plane CH2(−4
3
) is a generalized LC helix in some submanifold of dimension

6 and index 2 (M6
2 ) of manifold E8

4 by an isometric embedding i : CH2(−4
3
) −→ E8

4

with parallel second fundamental form.

Proof. Let i : CH2(−4
3
) −→ E8

4 be an isometric embedding with parallel second

fundamental form and γ(s) is a circle with κ >
√

4
3
and 0 < τ < 1 lying on CH2(−4

3
),

then

∇TT = κU, and ∇TU = −κT,

where T is tangent vector field of γ(s) and the vector field U is orthonormal to

T . As we proved in Theorem 3.1, there exists a frame {T, F2, F3, F4, F5, F6} of

orthonormal vector fields along i ◦ γ in E8
4 . Now corresponding to this frame we

consider a submanifold of dimension 6 and index 2 (M6
2 ) of the manifold E8

4 in which

i ◦ γ is lying and these orthonormal fields are smooth sections of Ti◦γM
6
2 . Now to

prove i ◦ γ is a generalized LC helix in M6
2 , we have to find a vector field U which

is parallel along i ◦ γ and g(U, T ) = a = constant. The metric g and the Levi-Civita

connection ∇̇ on M6
2 are defined as g = g′|M6

2
and ∇̇ = ∇′|M6

2
respectively.

Let U be a vector field parallel along i ◦ γ and g(U, T ) = a, then U can be expressed

as a linear combination of orthonormal fields {T, F2, F3, F4, F5, F6} i.e,

(3.18) U = aT + u2F2 + u3F3 + u4F4 + u5F5 + u6F6,
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where ui = λi−1g(U, Fi), 2 ≤ i ≤ 6 and λi−1 = g(Fi, Fi). Now

0 = Tg(T, U) = Tg′|M6
2
(T, U) = κ1g(F2, U),

0 = Tg(F2, U) = −κ1g(T, U) + κ2g(F3, U),

0 = Tg(F3, U) = κ2g(F2, U) + κ3g(F4, U) = κ3g(F4, U),

0 = Tg(F4, U) = −κ3g(F3, U) + κ4g(F5, U),

0 = Tg(F5, U) = −κ5g(F6, U).

Substituting these values in equation (3.18), we obtain

(3.19) U = aF1 − a
κ1

κ2
F3 + a

κ1

κ2

κ3

κ4
F5.

Since, g(U, U) = a2 − (aκ1

κ2
)2 + (aκ1

κ2

κ3

κ4
)2. Therefore using data from Theorem 3.1, we

obtain

(3.20) g(U, U) = a2
(

27κ2τ 2(27κ2 − (3κ2 − 4)2 − 2(6κ2 − 2)2) + (6κ2 − 4)4

729κ4τ 2

)

.

Next we shell show that g(U, U) 6= 0. Suppose g(U, U) = 0, then

τ 2 =
(6κ2 − 4)4

27κ2(−27κ2 + (3κ2 − 4)2 + 2(6κ2 − 2)2)
.(3.21)

Since 0 < τ < 1, therefore the equation (3.21), will have a solution only if the right

hand side of the equation is also lie between zero and one, whereas

(6κ2 − 4)4 − 27κ2(−27κ2 + (3κ2 − 4)2 + 2(6κ2 − 2)2) > 0,

which implies that

(3.22)
(6κ2 − 4)4

27κ2(−27κ2 + (3κ2 − 4)2 + 2(6κ2 − 2)2)
> 1.

From (3.21) and (3.22), we can conclude that g(U, U) 6= 0. Thus U is non null vector

field and an axis of generalized LC helix i ◦ γ in M6
2 . �

Theorem 3.5. If γ(s) be a circle with 0 < κ < 1
4
√
3
and 1

3
< τ < 1 in CH2(−4

3
)), then

γ(s) is a generalized LC helix in some submanifold M6
3 of manifold E8

4 by isometric

embedding i : CH2(−4
3
) −→ E8

4 with parallel second fundamental form.
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Proof. Let i : CH2(−4
3
) −→ E8

4 be an isometric embedding with parallel second

fundamental form and γ(s) is a circle with 0 < κ < 1√
13

, 1
3

< τ < 1 lying

on CH2(−4
3
). As we proved in Theorem 3.2, we can find an orthonormal frame

{T,E2, E3, E4, E5, E6} along i ◦ γ in E8
4 . In frame {T,E2, E3, E4, E5, E6} vector

fields E2, E3 and E6 are timelike vector fields whereas the remaining vector fields are

spacelike vector fields. Now corresponding to this frame we consider a submanifold

of dimension 6 and index 3 (M6
3 ) of the manifold E8

4 in which i ◦ γ is lying and these

orthonormal fields are smooth sections of Ti◦γM
6
3 . To prove i ◦ γ be a generalized

LC helix in M6
3 , we have to find a vector field S which is parallel along i ◦ γ and

g(S, T ) = a(constant).

Let S be a vector field parallel along i ◦ γ and g(S, T ) = a, then

(3.23) S = aT + s2E2 + s3E3 + s4E4 + s5E5 + s6E6,

where si = λi−1g(S, T ), 2 ≤ i ≤ 6 and λi−1 = g(Ei, Ei). As ∇̃TS = 0 and g(S, T ) = a.

If we use these two relations to solve equation (3.23), we get

g(E2, S) = g(E4, S) = g(E6, S) = 0,

g(E3, S) = −a
κ̄1

κ̄2
and g(E5, S) = a

κ̄1

κ̄2

κ̄3

κ̄4
.

Substituting these values in equation (3.23), we obtain

(3.24) S = aT − a
κ̄1

κ̄2
E3 + a

κ̄1

κ̄2

κ̄3

κ̄4
E5.

Since g(S, S) = a2 − (a κ̄1

κ̄2
)2 + (a κ̄1

κ̄2

κ̄3

κ̄4
)2, therefore substitution of κ̄1, κ̄2, κ̄3 and κ̄4

from Theorem 3.3, provides

(3.25) g(S, S) = a2
(

27κ2τ 2(27κ2 − (3κ2 − 4)2 − 2(6κ2 − 2)2) + (6κ2 − 4)4

729κ4τ 2

)

.

Next we shell show that g(S, S) 6= 0. If g(S, S) = 0, then

τ 2 =
(6κ2 − 4)4

27κ2(−27κ2 + (3κ2 − 4)2 + 2(6κ2 − 2)2)
.(3.26)
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In our problem 1
3
< τ < 1, whereas

(6κ2 − 4)4−27κ2(−27κ2 + (3κ2 − 4)2 + 2(6κ2 − 2)2)

= 12896κ8 − 3915κ6 + 3537κ4 − 840κ2 + 16

= (3κ2 − 1)(48κ2 − 1)(3κ2 − 4)2 > 0 ∀ 0 < κ <
1

4
√
3
,

which implies that

(3.27)
(6κ2 − 4)4

27κ2(−27κ2 + (3κ2 − 4)2 + 2(6κ2 − 2)2)
> 1.

From (3.26) and (3.27), we can conclude that g(S, S) 6= 0. Thus S is non null vector

field and an axis of generalized LC helix i ◦ γ with 0 < κ < 1
4
√
3
and 1

3
< τ < 1 in

M6
2 . �

Conclusion

In this article, we use an isometric embedding, so we can conclude that there exists

both bounded and unbounded proper helix of order 6 (generalized LC helix) in E8
4 .

For example,

Let γ(s) be a circle of curvature κ and torsion τ = ±1 in CH2(−4), then from [3]

(i) For κ > 2, γ is a simple closed curve with prime period 2π√
κ2−4

.

(2) For κ ≤ 2, γ is a simple two sides unbounded open curve.

Since i is an isometric embedding, therefore from Theorem 3.1 (c = 3), we can

conclude that

(1) For κ = 3 and τ = 1, i ◦ γ is a circle of length 2π√
κ2−4

.

(2) For κ = 1 and τ = 1, i ◦ γ will be unbounded circle.

Similarly, if we consider γ(s) be a circle of curvature κ and torsion −1 < τ < 1 in

CH2(−4), then for κ ≤ κ(τ), γ(s) is a simple two sides unbounded curve [3], where

κ(τ) is a unique solution of

κ2τ 2 − 4

27
(κ2 − 1)3 = 0.

Now, using the fact that i is an isometric embedding in Theorem 3.1 (Theorem

3.2), we have
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(3) For κ ≤ 1
6

√
6

√

√

√

√

(

108+12
√
69

) 1
3
(

(

108+12
√
69
) 2

3
+12+6

(

108+12
√
69
) 1

3

)

(

108+12
√
69
) 1

3
and τ 2 = 4

27
, i◦ γ is

a unbounded proper helix in E8
4 .
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