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QUASI BI-SLANT SUBMANIFOLDS OF NEARLY KAEHLER

MANIFOLDS

RAJENDRA PRASAD(1) AND SHWETA SINGH(2)

Abstract. We introduce the notion of quasi bi-slant submanifolds of nearly Kaehler

manifolds and study some of thier properties. The necessary and sufficient condi-

tions for the integrability of distributions, involved in the definition of quasi bi-slant

submanifolds of nearly Kaehler manifolds, are obtained. We also investigate the nec-

essary and sufficient conditions for quasi bi-slant submanifolds of nearly Kaehler

manifolds to be totally geodesic, and we study the geometry of foliations. Finally,

we construct some non-trivial examples of quasi bi-slant manifolds of nearly Kaehler

manifolds.

1. Introduction

The theory of submanifolds has several important applications in Mathematics,

Physics and Mechanics. In the last two decades, the applications of Kaehler manifolds

are widely recognized (especially in Physics, for the target spaces of non-linear σ-

models with super-symmetry [10].

Bejancu [2] introduced the notion of CR-submanifolds of Kaehler manifolds, which

is the generalization of holomorphic submanifolds and totally real submanifolds. An-

other generalization of holomorphic and totally submanifolds of Kaehler manifolds

were given by Chen [7], named as slant submanifolds. The properties of slant sub-

manifolds of an almost Hermitian manifolds have been studied by many authors for

instance [1, 8, 9]. A natural generalization of CR-submanifolds, slant submanifolds,
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holomorphic submanifolds and totally real submanifolds of almost Hermitian mani-

folds was defined by N. Papaghiuc [19], which is known as semi-slant submanifolds. A.

Lotta [17, 18] defined and studied slant submanifolds in contact geometry. Cabrerizo

et al. [4, 5] have studied slant and semi-slant submanifolds in contact geometry, re-

spectively. In [6], Carriazo studied the properties of bi-slant submanifolds within the

context of contact geometry. Several geometers have established many remarkable

results of bi-slant submanifolds in the context of different structures for instance,

[16, 20, 21, 22, 23, 25]. A nearly Kaehler structure on a complex manifold provides

an interesting study with differential geometric point of view see [11, 13, 14]. Con-

sequently, the study of submanifolds of a nearly Kaehler manifold vis-á-vis that of a

Kaehler manifold assumes significance in general.

In 1981, Chen [8] defined the canonical de Rham cohomology class for closed CR-

submanifolds in a Kaehler manifold, and it has been further studied by Deshmukh [12]

within the framework of nearly Kaehler manifolds in 1982. In 2014, Sahin [24] studied

the de Rham Cohomology class of hemi-slant submanifolds of Kaehler manifolds.

Motivated from above interesting and significant studies, we define quasi bi-slant

submanifolds of nearly Kaehler manifolds. We organize our work as follows: In the

second section, we mention the basic definitions and some known results of complex

structures. In Section 3, we define quasi bi-slant submanifolds of nearly Kaehler

manifolds. The necessary and sufficient conditions for quasi bi-slant submanifolds of

Kaehler manifolds to be integrable are given in Section 4. The fifth section deals with

the study of geometry of leaves of distributions, which are involved in the definition

of quasi bi-slant submanifolds, and give the necessary and sufficient conditions for

such submanifolds to be totally geodesic. In the last section, we provide non-trivial

examples of quasi bi-slant submanifolds of Kaehler manifolds.

2. Preliminaries

LetM be an even dimensional differentiable manifold and J denotes a (1, 1) tensor

field on M , such that

J2 = −I,
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where I is the identity operator. Then J is called an almost complex structure on

M . The manifoldM with an almost complex structure J is called an almost complex

manifold [26].

Let g be a Riemannian metric on M , such that

(2.1) g(JX, JY ) = g(X, Y ), ∀ X, Y ∈ Γ(TM),

where Γ(TM) represents the Lie algebra of vector fields in M . Then g is called

an almost Hermitian metric on M and the manifold M equipped with Hermitian

metric g is called an almost Hermitian manifold. Additionally, if the almost complex

structure J satisfies

(2.2) (∇XJ)Y + (∇Y J)X = 0

for every X, Y ∈ Γ(TM), where ∇ is the Levi-Civita connection on M , then M is

said to be a nearly Kaehler manifold. Putting X for Y in (2.2), we find

(2.3) (∇XJ)X = 0.

Throughout this paper A and h denote the shape operator and second fundamental

form of submanifold L into M , respectively.

If ∇ is the induced Riemannian connection on L, then the Gauss and Weingarten

formulae of L into M are given by

(2.4) ∇XY = ∇XY + h(X, Y )

and

(2.5) ∇XV = −AVX +∇⊥

XV

for all vector X, Y ∈ Γ(TL) and V ∈ Γ(T⊥L), where ∇⊥ denotes the connection

on the normal bundle (T⊥L) of L. The shape operator and the second fundamental

form are related by

g(AVX, Y ) = g(h(X, Y ), V ).

The mean curvature vector is defined by

H =
1

n
trace(h) =

1

n

n
∑

i=1

h(ei, ei),
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where n denotes the dimension of submanifold L and {e1, e2, e3, . . . , en} is the local

orthonormal basis of tangent space at each point of L.

A submanifold L of a nearly Kaehler manifold M is said to be totally umbilical if

h(X, Y ) = g(X, Y )H,

where H is the mean curvature vector. If h(X, Y ) = 0 for every X, Y ∈ Γ(TL), then

L is said to be a minimal submanifold.

For any X ∈ Γ(TL), we can write

(2.6) JX = lX +mX,

where lX and mX are the tangential and normal components of JX on L, respec-

tively. Similarly for any V ∈ Γ(TL), we have

(2.7) JV = BV + CV,

where BV and CV are the tangential and normal components of JV on L, respec-

tively.

The covariant derivative of complex structure J is defined as

(2.8) (∇XJ)Y = ∇XJY − J∇XY.

Now, for X, Y ∈ Γ(TL),

(2.9) (∇XJ)Y = PXY +QXY,

where PXY and QXY denote the tangential and normal parts of (∇XJ)Y , respec-

tively.

From (2.4), (2.5), (2.6) and (2.7), we get

PXY = (∇X l)Y − AmY − Bh(X, Y )

and

QXY = (∇Xm)Y + h(X, lY )− Ch(X, Y ).

Similarly, for any V ∈ T⊥M , PXV and QXV denote, respectively, the tangential and

normal parts of (∇XJ)V , and

PXV = (∇XB)V + lAVX − ACVX,
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QXV = (∇XC)V + h(BV,X) +mAVX.

Notice that on a Riemannian submanifold L of a nearly Kaehler manifold M , from

equations (2.3) and (2.9), we have

PXY +PYX = 0,

QXY +QYX = 0.

The covariant derivative of projection morphisms in (2.6) and (2.7) are defined as:

(∇X l)Y = ∇X lY − l∇XY,

(∇Xm)Y = ∇⊥

XmY −m∇XY,

(∇XB)V = ∇XBV − B∇⊥

XV,

(∇XC)V = ∇⊥

XCV − C∇⊥

XV

for any X, Y ∈ Γ(TL) and V ∈ Γ(T⊥L).

Now we recall the following definitions, assuming that L is a submanifold of Her-

mitian manifold M .

Definition 2.1. Let L be a Riemannian manifold isometrically immersed in an al-

most Hermitian manifold M . A submanifold L is said to be invariant (holomorphic

or complex) [3] if J(TxL) ⊆ TxL, for every point x ∈ L.

Definition 2.2. A submanifold L is said to be anti-invariant (totally real) [15] if

J(TxL) ⊆ T⊥

x L, for every point x ∈ L.

Definition 2.3. A submanifold L is said to be slant [4], if for each non-zero vector

X tangent to L at x ∈ L, the angle θ(X) between JX and TxL is constant, i.e., it

does not depend on the choice of the point x ∈ L and X ∈ TxL. In this case, θ is

called the slant angle of the submanifold. The slant submanifold L is called proper

slant submanifold if neither θ = 0 nor θ = π
2
.

We note that for a slant submanifold L if θ = 0, then it is an invariant submanifold

and if θ = π
2
, then it is an anti-invariant submanifold. This means that the slant

submanifold is a generalization of invariant and anti-invariant submanifolds.
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Definition 2.4. A submanifold L is said to be semi-invariant ([2], [19]), if there exist

two orthogonal complementary distributions D and D⊥ on L such that

TL = D⊕D⊥,

where D is invariant and D⊥ is anti-invariant.

Definition 2.5. A submanifold L is said to be semi-slant [19], if there exist two

orthogonal complementary distributions D and Dθ on L such that

TL = D ⊕Dθ,

where D is invariant and Dθ is slant with slant angle θ. In this case, the angle θ is

called semi-slant angle.

Definition 2.6. A submanifold L is said to be hemi slant [16], if there exist two

orthogonal complementary distributions Dθ and D⊥ on L such that

TL = Dθ ⊕D⊥,

where Dθ is slant with slant angle θ and D⊥ is anti-invariant. In this case, the angle

θ is called hemi-slant angle.

Definition 2.7. A submanifold L is said to be bi-slant, if there exist two orthogonal

complementary distributions Dθ1 and Dθ2 on L such that

TL = Dθ1 ⊕Dθ2 ,

where Dθ1 and Dθ2 are slants with slant angles θ1 and θ2, respectively.

3. Quasi Bi-Slant Submanifolds

In this section, we introduce quasi bi-slant submanifolds of almost Hermitian man-

ifolds and obtain the necessary and sufficient conditions for the distributions involved

in the definition of such manifolds to be integrable.

Definition 3.1. A submanifold L of an almost Hermitian manifold M is called a

quasi bi-slant submanifold if there exist the distributions D,D1 and D2 such that

(1) TL admits the orthogonal direct decomposition as

TL = D ⊕D1 ⊕D2,
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(2) J(D) = D, i.e., D is invariant,

(3) J(D1)⊥D2,

(4) For any non-zero vector field X ∈ (D1)p, p ∈ L, the angle θ1 between JX and

(D1)p is constant and independent of the choice of point p and X in (D1)p,

(5) For any non-zero vector field Z ∈ (D2)q, q ∈ L, the angle θ2 between JZ and

(D2)q is constant and independent of the choice of point q and Z in (D2)q.

Here the angles θ1 and θ2 are called slant angles of L.

We easily observe that

(a) If dimD 6= 0, dimD1 = 0 and dimD2 = 0, then L is an invariant submanifold.

(b) If dimD 6= 0, dimD1 6= 0, 0 < θ1 <
π
2
and dimD2 = 0, then L is a proper

semi-slant submanifold.

(c) If dimD = 0, dimD1 6= 0, 0 < θ1 < π
2
and dimD2 = 0, then L is a slant

submanifold with slant angle θ1.

(d) If dimD = 0, dimD1 = 0, dimD2 6= 0 and 0 < θ2 < π
2
, then L is a slant

submanifold with slant angle θ2.

(e) If dimD = 0, dimD1 6= 0, θ1 = π
2
and dimD2 = 0, then L is an anti-invariant

submanifold.

(f) If dimD 6= 0, dimD1 6= 0, θ1 = π
2
and dimD2 = 0, then L is a semi-invariant

submanifold.

(g) If dimD = 0, dimD1 6= 0, 0 < θ1 <
π
2
and dimD2 6= 0 with θ2 = π

2
, then L is a

hemi-slant submanifold.

(h) If dimD = 0, dimD1 6= 0, 0 < θ1 <
π
2
, dimD2 6= 0 and 0 < θ2 <

π
2
, then L is a

bi-slant submanifold.

(i) If dimD 6= 0, dimD1 6= 0, 0 < θ1 <
π
2
, dimD2 6= 0 and θ2 =

π
2
, then L is a quasi

hemi-slant submanifold.

(j) If dimD 6= 0 and 0 < θ1 = θ2 <
π
2
, then L is a proper semi-slant submanifold.

(k) If dimD 6= 0, dimD1 6= 0, 0 < θ1 <
π
2
and dimD2 6= 0, 0 < θ2 <

π
2
, then L is a

proper quasi bi-slant submanifold.

This means that the notion of quasi bi-slant submanifold is a natural generalization

of invariant, anti-invariant, slant, hemi-slant and semi-slant submanifolds.
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Let L be a quasi bi-slant submanifold of an almost Hermitian manifold M . We

denote the projections of X ∈ Γ(TL) on the distributions D,D1 and D2 by P , Q and

R, respectively. Then for any X ∈ Γ(TL), we can write

(3.1) X = PX +QX +RX.

Now, we put

(3.2) JX = lX +mX,

where lX and mX are tangential and normal components of JX on L, respectively.

In view of (3.1) and (3.2), we infer

JX = JPX + JQX + JRX = lPX +mPX + lQX +mQX + lRX +mRX,

which assumes the form

(3.3) JX = lPX + lQX +mQX + lRX +mRX,

since J(D) = D and mPX = 0. This means that, for any X ∈ Γ(TL), the tangential

and normal components of JX can be expressed as

lX = lPX + lQX + lRX

and

mX = mQX +mRX.

Now, we have the following decomposition

J(TL) = D ⊕ lD1 ⊕mD1 ⊕ lD2 ⊕mD2.

Since mD1 ⊂ (T⊥L) and mD2 ⊂ (T⊥L), therefore

T⊥L = mD1 ⊕mD2 ⊕ µ,

where µ is the orthogonal complement of mD1 ⊕ mD2 in T⊥L, and it is invariant

with respect to J .

For any Z ∈ T⊥L, we put

(3.4) JZ = BZ + CZ,
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where BZ ∈ Γ(TL) and CZ ∈ (T⊥L). It is noticed that,

(a) lD ⊆ D,

(b) mD = {0},
(c) lDi ⊆ Di for i = 1, 2,

(d) B(T⊥L) = D1 ⊕D2.

Lemma 3.1. Let L be a quasi bi-slant submanifold of an almost Hermitian manifold

M . Then the endomorphism l and the projection morphisms m, B and C on the

tangent bundle of L satisfy the following identities:

(i) l2 +Bm = −I on TL,

(ii) ml + Cm = 0 on TL,

(iii) mB + C2 = −I on (T⊥L),

(iv) lB +BC = 0 on (T⊥L),

where I is the identity operator.

Lemma 3.2. Let L be a quasi bi-slant submanifold of an almost Hermitian manifold

M . Then we have

(i) l2X = −(cos2θ1)X,

(ii) g(lX, lY ) = (cos2θ1)g(X, Y ),

(iii) g(mX,mY ) = (sin2θ1)g(X, Y )

for any X, Y ∈ Γ(D1), where θ1 denotes the slant angle of D1.

Lemma 3.3. Let L be a quasi bi-slant submanifold of an almost Hermitian manifold.

Then

(i) l2Z = −(cos2θ2)Z,

(ii) g(lZ, lW ) = (cos2θ2)g(Z,W ),

(iii) g(mZ,mW ) = (sin2θ2)g(Z,W )

for any Z,W ∈ Γ(D2), where θ2 denotes the slant angle of D2.

4. Integrability Of Distributions and Decomposition Theorems

In this section, we investigate the integrability conditions for the distributions

involved in the definition of quasi bi-slant submanifolds.
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Theorem 4.1. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifold M . Then the invariant distribution D is integrable if and only if

(∇ZlW −∇W lZ, lX) = g(h(W, lZ)− h(Z, lW ), mX)− g(2PZW, lX).

Proof. For any Z,W ∈ ΓD and X = QX + RX ∈ Γ(D1 ⊕ D2), using (2.1), (2.4),

(2.6), (2.8) and (2.9), we get

g([Z,W ], X) = g(∇ZJW, JX)− g((∇ZJ)W,JX)

−g(∇WJZ, JX) + g((∇WJ)Z, JX)

= g(∇ZlW, JX)− g(PZW,JX)− g(∇W lZ, JX) + g(PWZ, JX)

= g(∇ZlW −∇W lZ, lX) + g(h(Z, lW )− h(W, lZ), mX)− g(2PZW, lX)

Let us suppose that the distribution D is invariant. Then the above equation prove

that g(∇ZlW −∇W lZ, lX) + g(h(Z, lW )− h(W, lZ), mX)− g(2PZW, lX) = 0. The

converse part is obvious. �

Theorem 4.2. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifold M . Then the slant distribution D1 is integrable if and only if

g(2PZW + AmWZ − AmZW, lX) = g(AmlWZ − AmlZW +PZ lW −PW lZ,X)

+ g(∇⊥

ZmW −∇⊥

WmZ,mRX).

Proof. For any Z,W ∈ Γ(D1) and X = PX +RX ∈ Γ(D ⊕D2), we have

g([Z,W ], X) = g(∇ZlW, JX) + g(∇ZmW, JX)− g((∇ZJ)W,JX)

− g(∇W lZ, JX)− g(∇WmZ, JX) + g((∇WJ)Z, JX)

= g(∇ZmW, JX)− g(∇ZJlW,X)− g(∇WmZ, JX) + g(∇WJlZ,X)

− g(PZW,JX) + g(PWZ, JX) + g((∇ZJ)lW,X)− g((∇WJ)lZ,X),

where equations (2.1), (2.6), (2.8) and (2.9) have been used. Now, using equations

(2.4), (2.5), (3.3) and Lemma 3.2, we have-

g([Z,W ], X) = −g(AmWZ − AmZW,JX) + cos2θ1g([Z,W ], X) + g(AmlWZ

−AmlZW,X) + g(∇⊥

ZmW −∇⊥

WmZ, JX)

− g(2PZW,JX) + g(PZlW −PW lZ,X),
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which implies

sin2θ1g([Z,W ], X) = g(AmlWZ −AmlZW,X) + g(∇⊥

ZmW −∇⊥

WmZ,mRX)

− g(AmWZ − AmZW, lX)− g(2PZW, lX)

+ g(PZ lW −PW lZ,X)

= g(AmlWZ −AmlZW +PZ lW −PW lZ,X) + g(∇⊥

ZmW

−∇⊥

WmZ,mRX)− g(2PZW + AmWZ − AmZW, lX).

Thus, the above equation implies the proof. �

From Theorem 4.2, we can state the following sufficient conditions for the slant

distribution D1 to be integrable on L.

Corollary 4.1. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifoldM . If ∇⊥

ZmW−∇⊥

WmZ ∈ mD1⊕µ, AmlWZ−AmlZW+PZ lW−PW lZ ∈ D1

and 2PZW+AmWZ−AmZW ∈ D1, for any Z,W ∈ Γ(D1), then the slant distribution

D1 is integrable.

By following the similar argument to Theorem 4.2, we conclude the following:

Corollary 4.2. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifold M . Then the slant distribution D2 is integrable if and only if

g(2PZW + AmWZ − AmZW, lX) = g(AmlWZ − AmlZW +PZ lW −PW lZ,X)

+ g(∇⊥

ZmW −∇⊥

WmZ,mQX)

for any, Z,W ∈ Γ(D2) and X ∈ Γ(D ⊕D1).

From Theorem 4.2, we have the following sufficient conditions for the slant distri-

bution D2 to be integrable.

Corollary 4.3. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler man-

ifold M . Then the slant distribution D2 is integrable, provided ∇⊥

ZmW −∇⊥

WmZ ∈
mD2⊕µ, AmlWZ −AmlZW +PZ lW −PW lZ ∈ D2 and 2PZW +AmWZ −AmZW ∈
D2, ∀ Z,W ∈ Γ(D2) and X ∈ Γ(D ⊕D1).
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5. Necessary and sufficient conditions for quasi bi-slant

submanifolds to be totally geodesics

We investigate the geometry of leaves of foliations determined by the distributions

D, D1 and D2.

Theorem 5.1. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifold M . Then the invariant distribution D defines a totally geodesic foliation on

L if and only if g(∇X lY −PXY, lZ) = −g(h(X, lY ), mZ) and g(∇X lY −PXY,BU) =

−g(h(X, lY ), CU) for any X, Y ∈ Γ(D), Z ∈ Γ(D1 ⊕D2) and U ∈ Γ(T⊥L).

Proof. In view of equations (2.1), (2.6), (2.8), (2.9) and mY = 0, we have

g(∇XY, Z) = g(∇X lY, JZ)− g((∇XJ)Y, JZ)

= g(∇XlY, lZ) + g(h(X, lY ), mZ)− g(PXY, lZ)

= g(∇XlY −PXY, lZ) + g(h(X, lY ), mZ)

for any X, Y ∈ Γ(D), Z = QZ +RZ ∈ Γ(D1 ⊕D2). Now, for any U ∈ Γ(T⊥L) and

X, Y ∈ Γ(D), we have

g(∇XY, U) = g(∇X lY, JU)− g((∇XJ)Y, JU)

= g(∇X lY, BU) + g(h(X, lY ), CU)− g(PXY,BU)

= g(∇X lY −PXY,BU) + g(h(X, lY ), CU).

The last two equations infer the required result. �

Theorem 5.2. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifold M . Then the slant distribution D1 defines a totally geodesic foliation on

M if and only if g(∇⊥

XmY,mRZ) = g(AmYX + PXY, lZ) − g(AmlYX + PX lY, Z)

and g(AmYX +PXY,BU) = g(∇⊥

XmY,CU)− g(∇⊥

XmlY −PX lY, U) for any X, Y ∈
Γ(D1), Z = PZ +RZ ∈ Γ(D ⊕D2) and U ∈ Γ(T⊥L).
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Proof. For any X, Y ∈ Γ(D1), Z = PZ +RZ ∈ Γ(D ⊕D2), we have

g(∇XY, Z) = g(∇XJY, JZ)− g((∇XJ)Y, JZ)

= g(∇X lY, JZ) + g(∇XmY, JZ)− g(PXY, JZ)

= −g(∇X l
2Y, Z)− g(∇XmlY, Z) + g((∇XJ)lY, Z)

+ g(∇XmY, lPZ + lRZ +mRZ)− g(PXY, JZ),

where equations (2.1), (2.6), (2.8) and (2.9) have been used. Again, using equations

(2.5), (3.1), Lemma 3.2 and the fact that lPZ + lRZ = lZ,mPZ = 0 in the above

equation, we find

g(∇XY, Z) = cos2θ1g(∇XY, Z) + g(AmlYX,Z)− g(AmYX, lPZ + lRZ)

+ g(∇⊥

XmY,mRZ) + g(PX lY, Z)− g(PXY, lZ),

which becomes

(i)

sin2θ1g(∇XY, Z) = g(AmlYX +PX lY, Z)

+ g(∇⊥

XmY,mRZ)− g(AmYX +PXY, lZ).

Similarly,

(ii)

sin2θ1g(∇XY, Z) = −g(∇⊥

XmlY −PX lY, U)− g(AmYX

+PXY,BU) + g(∇⊥

XmY,CU).

Thus, from (i) and (ii), we have the assertions. �

In a similar argument to Theorem 5.2, we can conclude the following:

Corollary 5.1. Let L be a proper quasi bi-slant submanifold of a nearly Kaehler

manifold M . Then the slant distribution D2 defines a totally geodesic foliation on

M if and only if g(∇⊥

XmY,mQZ) = g(AmYX + PXY, lZ) − g(AmlYX + PX lY, Z)

and g(AmYX +PXY,BU) = g(∇⊥

XmY,CU)− g(∇⊥

XmlY −PX lY, U) for any X, Y ∈
Γ(D2), Z ∈ Γ(D ⊕D1) and U ∈ Γ(T⊥L).
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6. Examples

6.1. Example. Consider a 14-dimensional differentiable manifold M = R
14 such

that

M = {(xi, yi) = (x1, x2, . . . , x7, y1, y2, . . . , y7) ∈ R
14; i = 1, 2, . . . , 7}.

We choose the vector fields

ei =
∂

∂yi
, e7+i =

∂

∂xi
, for i = 1, 2, . . . , 7.

Let g be a Hermitian metric defined by

g = (dx1)
2 + (dx2)

2 + . . .+ (dx7)
2 + (dy1)

2 + (dy2)
2 + . . .+ (dy7)

2.

Here {e1, e2, . . . , e14} forms an orthonormal basis. We define (1, 1)-tensor field J as

J

(

∂

∂xi

)

=
∂

∂yi
, J

(

∂

∂yj

)

= − ∂

∂xj
, ∀ i, j = 1, 2, . . . , 7.

By using the linearity of J and g, we can verify that

J2 = −I, g(JX, JY ) = g(X, Y ), ∀ X, Y ∈ Γ(TM).

By straight forward calculations, we can easily show that the manifold (M,J, g) is a

nearly Kaehler manifold of dimension 14.

Now, we consider a submanifold M of M defined by immersion f as follows:

f(u, v, w, r, s, t) = (u, w, 0, s, 0, 0, 0, v, rcosθ1, rsinθ1, tcosθ2, 0, 0, tsinθ2),

where θ1 and θ2 are constants. By direct computation, it is easy to check that the

tangent bundle ofM is spanned by a linearly independent set {Z1, Z2, Z3, Z4, Z5, Z6},
where

Z1 =
∂

∂x1
, Z2 =

∂

∂y1
, Z3 =

∂

∂x2
,

Z4 = cos θ1
∂

∂y2
+ sin θ1

∂

∂y3
, Z5 =

∂

∂x4
,

Z6 = cos θ2
∂

∂y4
+ sin θ2

∂

∂y7
.

Now, we define the almost complex structure J of M as:

JZ1 =
∂

∂y1
, JZ2 = − ∂

∂x1
, JZ3 =

∂

∂y2
,
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JZ4 = −
(

cos θ1
∂

∂x2
+ sin θ1

∂

∂x3

)

, JZ5 =
∂

∂y4
,

JZ6 = −
(

cos θ2
∂

∂x4
+ sin θ2

∂

∂x7

)

.

Let us define the distributions D = span{Z1, Z2}, D1 = Span{Z3, Z4}, D2 =

span{Z5, Z6}. Then it is easy to see that D is invariant, D1 and D2 are slant

distributions with slant angles θ1 and θ2, respectively. Hence, f defines a proper

6-dimensional quasi bi-slant submanifold M in M .

6.2. Example. Let M be a nearly Kaehler manifold defined in Example 6.1. Con-

sider a submanifold N of M defined by immersion ψ as follows:

ψ(u, v, w, r, s, t) =

(

u√
2
, w, 0,

√
3s, 0, 0,

u√
2
,
v√
2
, r, r, t, s, 0,

v√
2

)

.

By direct computations, it is easy to check that the tangent bundle of N is spanned

by a linearly independent set {X1, X2, X3, X4, X5, X6}, where

X1 =
1√
2

(

∂

∂x1
+

∂

∂x7

)

, X2 =
1√
2

(

∂

∂y1
+

∂

∂y7

)

,

X3 =
∂

∂x2
, X4 =

∂

∂y2
+

∂

∂y3
,

X5 =
√
3
∂

∂x4
+

∂

∂y5
, X6 =

∂

∂y4
.

Define the almost complex structure J of M as follows:

JX1 =
1√
2

(

∂

∂y1
+

∂

∂y7

)

, JX2 = − 1√
2

(

∂

∂x1
+

∂

∂x7

)

,

JX3 =
∂

∂y2
, JX4 = −

(

∂

∂x2
+

∂

∂x3

)

,

JX5 =
√
3
∂

∂y4
− ∂

∂x5
, JX6 = − ∂

∂x4
.

Let the distributions D = Span{X1, X2}, D1 = Span{X3, X4}, D2 = Span{X5, X6}.
Then it is easy to very that D is invariant, D1 and D2 are slant distributions with

slant angles π
4
and π

3
, respectively. Hence ψ defines a proper 6-dimensional quasi

bi-slant submanifold N in M .
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6.3. Example. Consider R2n with standard coordinates (x1, x2, x3, x4, . . . , x2n−1, x2n).

We can canonically choose an almost complex structure J on R
2n as follows:

J

(

a1
∂

∂x1
+ a2

∂

∂x2
+ a3

∂

∂x3
+ a4

∂

∂x4
+ . . .+ a2n−1

∂

∂x2n−1
+ a2n

∂

∂x2n

)

=

(

a1
∂

∂x2
− a2

∂

∂x1
+ a3

∂

∂x4
− a4

∂

∂x3
+ . . .+ a2n−1

∂

∂x2n
− a2n

∂

∂x2n−1

)

,

where a1, a2, a3, . . . , a2n are C∞ functions defined on R
2n.

Let M be a submanifold of R10 defined by

f(x1, x2, x3, x4, x5, x6) =(
x1 + x2√

2
,
x1 − x2√

2
, x3, x4 cos θ1, x5, x6 cos θ2, 0,

x4 sin θ1, 0, x6 sin θ2),

where θ1 and θ2 are constants.

By direct computations, it is easy to check that the tangent space at each point of

M is spanned by a linearly independent set {Z1, Z2, Z3, Z4, Z5, Z6}, where

Z1 =
1√
2

(

∂

∂x1
+

∂

∂x2

)

, Z2 =
1√
2

(

∂

∂x1
− ∂

∂x2

)

,

Z3 =
∂

∂x3
, Z4 = cos θ1

∂

∂x4
+ sin θ1

∂

∂x8
,

Z5 =
∂

∂x5
, Z6 = cos θ2

∂

∂x6
+ sin θ2

∂

∂x10
.

Let g be a Hermitian metric on R
10 such that

g

(

∂

∂xi
,
∂

∂xi

)

= 1; for 1 ≤ i ≤ 10,

and

g

(

∂

∂xi
,
∂

∂xj

)

= 0 , i 6= j for 1 ≤ i, j ≤ 10.

Then, using the canonical Hermitian structure of R10, we have

JZ1 =
1√
2

(

∂

∂x2
− ∂

∂x1

)

, JZ2 =
1√
2

(

∂

∂x1
+

∂

∂x2

)

,

JZ3 =
∂

∂x4
, JZ4 = − cos θ1

∂

∂x3
− sin θ1

∂

∂x7
,

JZ5 =
∂

∂x6
, Z6 = − cos θ2

∂

∂x5
− sin θ2

∂

∂x9
.

Let D = Span{Z1, Z2}, D1 = Span{Z3, Z4} and D2 = Span{Z5, Z6}. Then it is easy

to see that D is invariant and D1, D2 are slant distributions with slant angles θ1 and

θ2, respectively.
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