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BERNSTEIN TYPE INEQUALITIES FOR COMPOSITE

POLYNOMIALS

BASHIR AHMAD ZARGAR (1) AND SHABIR AHMAD MALIK(2)

Abstract. Establishing the lower and upper bound estimates for the maximum

modulus of the derivative of composition of polynomials p(q(z)), where q(z) is a

polynomial of degreem is an intriguing problem in geometric theory of polynomials.

In this paper, the maximum modulus for composite polynomials of Bernstein type

is taken up with constraints such as the given polynomial does not vanish in the

disc |z| < k, where k ≥ 1 which in particular yields some known inequalities of this

type as special cases. In addition, the case when all the zeros of the underlying

polynomial lie in |z| ≤ k, where k ≤ 1 is also considered.

1. Introduction

Let ‖f‖ denote the supremum norm of a function f on |z| = 1. The Bernstein

inequality asserts that

‖p′‖ ≤ n|z|n−1‖p‖(1.1)

holds for every polynomial p(z) =
n
∑

v=0

avz
v of degree n with complex coefficients.

Various analogues of inequality are known in which the underlying intervals, the

maximum norms, and the family of functions are replaced by more general sets,

norms and families of functions such as hyperholomorphic functions respectively.

The inequality

|p′(z)| ≥ n|z|n−1 min
|z|=1

|p(z)|(1.2)
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holds for every polynomial p of degree at most n which has all zeros in |z| ≤ 1. This

inequality is ascribed to Aziz and Dawood [1]. Bernstein-type inequalities are known

on various regions of the complex plane and n-dimensional Euclidean space such as

Quaternions (see [5]), for various norms such as weighted Lp norms, and for many

classes of functions such as polynomials with various constraints. Just to mention,

Bernstein-type inequalities have their own intrinsic interest.

Both the inequalities (1.1) and (1.2) are sharp and equality holds when p(z) = αzn,

for any complex number α, which has all its zeros at the origin, one would expect

a relationship between the bound n and the distance of the zeros of the polynomial

from the origin. This fact was observed as a refinement of Bernstein’s inequality,

conjectured by Erdös and later proved by Lax [7], and states that:

If p(z) is a polynomial of degree n with complex coefficients having no zeros in |z| < 1,

then

‖p′‖ ≤
n

2
‖p‖.(1.3)

This inequality is sharp and equality holds if p has all zeros on |z| = 1.

For polynomials of a complex variable, we also have the following more general

result, due to Malik [8], which is one of the most known polynomial inequality after

Bernstein inequality and will be useful in proving some of our results.

Theorem 1.1. [8] If p(z) is a polynomial of degree n having no zeros in |z| < k,

where k ≥ 1 then

‖p′‖ ≤
n

1 + k
‖p‖.(1.4)

In the context of bounds for the maximum modulus of p′(z) taken over unit circle,

our interest is centered upon the study of making these bounds notably sharper, with

or without various constraints over polynomials.

The inequality

‖p′‖ ≤
n

1 + k
{‖p‖ − min

|z|=k
|p(z)|}(1.5)
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is due to Govil [6] and it holds for all polynomials p of degree at most n with complex

coefficients having no zeros in |z| < k, where k ≥ 1. In this inequality the bound in

comparison to the bound in (1.4) gets reduced by min
|z|=k

|p(z)|, which is a significant

improvement.

Both the inequalities (1.4) and (1.5) are best possible and equality holds when p(z) =

(z + k)n.

Let χn represents the class of all polynomials p(z) of degree at most n. Now consider

a more general class of polynomials f ◦ g ∈ χmn defined as (f ◦ g)(z) = f(g(z)),

where g(z) is a polynomial of degree m. Dewan et al. [4] extended Theorem 1.1 and

inequality (1.5) to the general class of polynomials f ◦ g ∈ χmn and proved that the

inequalities

max
|z|=1

|p′(q(z))| ≤
n

(1 + k)m′
|z|mn−m‖p ◦ q‖(1.6)

and

max
|z|=1

|p′(q(z))| ≤
n

(1 + k)m′
|z|mn−m

{

‖p ◦ q‖ − min
|z|=k

|p(q(z))|

}

(1.7)

holds for all polynomials p ◦ q ∈ χmn, such that p(q(z)) 6= 0 in |z| < k, where k ≥ 1

and q(z) 6= 0 in |z| ≥ 1 with min
|z|=1

|q(z)| = m′. Both the inequalities (1.6) and (1.7)

are best possible and equality holds when p(q(z)) = (zm + k)n, here p(z) = (z + k)n

and q(z) = zm.

2. Auxiliary Results

For the proofs of our theorems we require the following lemmas.

Lemma 2.1. Let p ◦ q ∈ χmn. If S(z) = p(q(z)) = cmnz
mn +

mn−µ
∑

v=0

cvz
v, 1 ≤ µ ≤ n

such that S(z) 6= 0 in |z| < k, where k ≥ 1, then for |z| = 1

kµ|S ′(z)| ≤ |R′(z)|,

where R(z) = zmnS(1
z
) = zmnp(q(1

z
)).

Proof. Since S(z) 6= 0 in |z| < k, hence from Laguerre’s Theorem [3] we have

αS ′(z) 6= zS ′(z)−mnS(z)(2.1)



1130 BASHIR AHMAD ZARGAR AND SHABIR AHMAD MALIK

for |α| < k, |z| < k. Now choose the argα in (2.1) appropriately, then we get for any

fixed z

|α||S ′(z)| 6= |zS ′(z)−mnS(z)|.

This gives for |α| < k and |z| < k

|α||S ′(z)| < |zS ′(z)−mnS(z)|(2.2)

because otherwise the inequality is violated for sufficiently small values of |α|. Letting

|α| → k in (2.2) we have

k|S ′(kz)| ≤ |kzS ′(kz)−mnS(kz)|(2.3)

for |z| ≤ 1. Since c1 = c2 = ... = cµ−1 = 0, from (2.3) we get

kµ

∣

∣

∣

∣

∣

mn
∑

v=µ

vcv(kz)
v−1

∣

∣

∣

∣

∣

≤ |kzS ′(kz)−mnS(kz)|(2.4)

for |z| ≤ 1. In fact (2.4) also holds for |z| = 1, replace z by z/k in (3.4) we obtain

for |z| = 1

kµ

∣

∣

∣

∣

∣

mn
∑

v=µ

vcv(z)
v−1

∣

∣

∣

∣

∣

≤ |zS ′(z)−mnS(z)|.

It can be easily verified for |z| = 1 that

|R′(z)| = |zS ′(z)−mnS(z)|.

Consequently kµ|S ′(z)| ≤ |R′(z)| for |z| = 1. This completes the proof of Lemma

2.1. �

Lemma 2.2. Let p ◦ q ∈ χmn. If S(z) = p(q(z)) = c0+
mn
∑

v=µ

cvz
v, 1 ≤ µ ≤ n such that

S(z) = 0 in |z| ≤ k, where k ≤ 1, then for |z| = 1

kµ|S ′(z)| ≥ |R′(z)|,

where R(z) = zmnS(1
z
).

Proof. Since S(z) = 0 in |z| ≤ k therefore all the zeros of the polynomial R(z) =

zmnS(1/z̄) lie in |z| ≥ 1
k
. Applying Lemma 2.1 to the polynomial R(z), we have

1

kµ
|R′(z)| ≤ |S ′(z)|.
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Consequently,

kµ|S ′(z)| ≥ |R′(z)|.

This completes the proof of Lemma 2.2. �

3. Main Results

The research on mathematical objects associated with polynomial inequalities has

been active over a period; there are many research papers published in a variety of

journals each year and different approaches have been taken for different purposes.

The present article is concerned with Bernstein type inequalities for composite poly-

nomial with restricted zeros. We also consider a class of polynomials f ◦ g ∈ χmn

having d-fold zeros at origin.

Theorem 3.1. For all p ◦ q ∈ χmn, such that p(q(z)) 6= 0 in |z| < k, where k ≥ 1

except with d-fold zeros at origin and q(z) 6= 0 in |z| ≥ 1 with min
|z|=1

|q(z)| = A, then

max
|z|=1

|p′(q(z))| ≤

[

n

A(1 + k)
+

kd

Am(1 + k)

]

‖p ◦ q‖.(3.1)

Proof. Let p(q(z)) = zdh(z), where h(z) is a polynomial of degree mn− d which has

all its zeros in |z| ≥ k ≥ 1. Thus, by making use of Theorem 1.1 we have

|h′(z)| ≤
mn− d

1 + k
max
|z|=1

|h(z))|.(3.2)

Since p(q(z)) = zdh(z), therefore

p′(q(z)) = dzd−1h(z) + zdh′(z).

From this we get for |z| = 1

|p′(q(z))||q′(z)| = |dh(z) + zh′(z)|

≤ d|h(z)|+ |h′(z)|

= d|p(q(z))|+ |h′(z)|.

This gives in conjunction with (3.2)

|p′(q(z))||q′(z)| ≤

[

d+
mn− d

1 + k

]

|p(q(z))|.
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Since all the zeros of q(z) lie in |z| < 1, on using inequality (1.2) to the polynomial

q(z) with min
|z|=1

|q(z))| = A, we have

Am|p′(q(z))| ≤ |p′(q(z))||q′(z)| ≤

[

mn+ kd

1 + k

]

|p(q(z))|.

The above is equivalent to

max
|z|=1

|p′(q(z))| ≤

[

n

A(1 + k)
+

kd

Am(1 + k)

]

‖p ◦ q‖.

This completes the proof of Theorem 3.1. �

Remark 1. If we choose d = 0 in Theorem 3.1, we obtain inequality (1.6) as a

special case.

Remark 2. If we set d = 0 and q(z) = z then q(z) = 0 in |z| < 1 with min
|z|=1

|q(z)| =

A = 1. Therefore from Theorem 3.1, we have Theorem 1.1 as a special case.

Further we establish the refinement of Theorem 3.1 under the same hypothesis

which in particular, yields inequality (1.7) as a special case. More specifically, we

prove

Theorem 3.2. If for every p◦ q ∈ χmn, such that p(q(z)) 6= 0 in |z| < k, where k ≥ 1

except with d-fold zeros at origin and q(z) 6= 0 in |z| ≥ 1 with min
|z|=1

|q(z)| = A, then

max
|z|=1

|p′(q(z))| ≤
1

Am(1 + k)

{

(mn+ kd)‖p ◦ q‖ − (mn− d) min
|z|=k

|p(q(z))|

}

.(3.3)

Proof. Using the analysis similar to used in the proof of Theorem 3.1 and applying

inequality (1.5) to the polynomial h(z) we have

|h′(z)| ≤
mn− d

1 + k

{

max
|z|=1

|h(z))| − min
|z|=k

|h(z))|

}

.(3.4)

Now it follows for |z| = 1 that

|p′(q(z))||q′(z)| = |dh(z) + zh′(z)|

≤ d|h(z)|+ |h′(z)|

= d|p(q(z))|+ |h′(z)|.
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This gives with the help of (3.4)

|p′(q(z))||q′(z)| ≤
1

(1 + k)

{

(mn + kd)‖p ◦ q‖ − (mn− d) min
|z|=k

|p(q(z))|

}

.

Since all the zeros of q(z) lie in |z| < 1, on using inequality (1.2) to the polynomial

q(z) with min
|z|=1

|q(z))| = A, we have

Am|p′(q(z))| ≤ |p′(q(z))||q′(z)| ≤
1

(1 + k)

{

(mn + kd)‖p ◦ q‖ − (mn− d) min
|z|=k

|p(q(z))|

}

.

The above is equivalent to (3.3) and this completes the proof of Theorem 3.2. �

Remark 3. In particular Theorem 3.2 gives inequality (1.7) for d = 0.

Remark 4. Consider the case when d = 0 and q(z) = z, this implies that min
|z|=1

|q(z)| =

A = 1 and we see that all the zeros of q(z) lie in |z| < 1. In this connection, Theorem

3.2 in particular gives inequality (1.5).

In the sequel, the validity of the analogous results has been established well for the

case when all the zeros of p(z) lie in |z| ≤ k, where k ≤ 1. In the connection, the first

and foremost result is ascribed to Malik [8, corollary] and it plays a very significant

role in the theory of Geometry of polynomials. Consequently, we prove the following

result for composite polynomials under the assumption that all its zeros lie in |z| ≤ k,

where k ≤ 1.

Theorem 3.3. If for every p ◦ q ∈ χmn, such that p(q(z)) = cmnz
mn +

mn−µ
∑

v=0

cvz
v,

1 ≤ µ ≤ n, p(q(z)) = 0 in |z| ≤ k, where k ≤ 1 and q(z) is a polynomial of degree m

with max
|z|=1

|q(z)| = M , then

max
|z|=1

|p′(q(z))| ≥
n

(1 + kµ)M
|z|mn−m‖p ◦ q‖.(3.5)

Proof. Let E(z) = p(q(z)). Recall that E(z) = 0 in |z| ≤ k, k ≤ 1. Consider the

polynomial L(z) = zmnE(1
z
). From this it follows for |z| = 1 that

|L(z)| = |E(z)|.

Also E(z) = zmnL(1
z
), which gives us for |z| = 1,

|E ′(z)| = |mnL(z)− zL′(z)|.
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Clearly

mnL(z) = mnL(z) − zL′(z) + zL′(z)

|mnL(z)| = |mnL(z)− zL′(z) + zL′(z)|

|mnL(z)| ≤ |mnL(z) − zL′(z)|+ |zL′(z)|

that is,

mn|E(z)| ≤ |E ′(z)| + |zL′(z)|.

Since all the zeros of L(z) lie in |z| ≥ 1
k
therefore in accordance with Lemma 2.2 we

have for |z| = 1

mn|z|mn−1|E(z)| ≤ (1 + kµ)|E ′(z)|

|E ′(z)| ≥
mn

1 + kµ
|z|mn−1|E(z)|

that is,

|p′(q(z))||q′(z)| ≥
mn

1 + kµ
|z|mn−1|p(q(z))|.

Since q(z) is a polynomial of degreem with max
|z|=1

|q(z)| = M , hence by using inequality

(1.1) we get

mM |z|m−1|p′(q(z))| ≥
mn

1 + kµ
|z|mn−1|p(q(z))|,

which is (3.5) and the proof of Theorem 3.3 is thus complete. �

Remark 5. In relation to q(z), note that if we choose q(z) = z then clearly M = 1.

Therefore we have from Theorem 3.3 that, if p(z) = cnz
n +

n−µ
∑

v=0

cvz
v has all its zeros

in |z| ≤ k, where k ≤ 1 then for |z| = 1

‖p′‖ ≥
n

1 + kµ
‖p‖.

This result is due to Chan and Malik [2].
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