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ESTIMATION OF MATUSITA OVERLAPPING COEFFICIENT ρ

FOR PAIR NORMAL DISTRIBUTIONS

OMAR M. EIDOUS (1) AND SALAM K. DARADKEH (2)

Abstract. The Matusita overlapping coefficient ρ is defined as agreement or sim-

ilarity between two or more distributions. The parametric normal distribution is

one of the most important statistical distributions. Under the assumption that the

data at hand follow two independent normal distributions, this paper suggests a

new technique to estimate the Matusita coefficient ρ. In contrast to the studies in

the literature, the suggested technique requires no assumptions on the location and

scale parameters of the normal distributions. The finite properties of the resulting

estimators are investigated and compared with the nonparametric kernel estimators

and with some existing estimators via simulation techniques. The results show that

the performance of the proposed estimators is better than the kernel estimators for

all considered cases.

1. Introduction

There are three overlapping coefficients, namely; Matusita (1955) coefficient ρ,

Morisita (1959) coefficient λ and Weitzman (1970) coefficient ∆. These coefficients

represent the similarity or agreement between two or more probability distributions or

populations represented by their distributions. This paper interests with the Matusita

ρ, which is given by,

ρ =

∫ √
f1 (x) f2 (x)dx

where f1 (x) and f2 (x) are two continuous probability density functions (pdfs) (see

Mulekar and Mishra, 1994 and 2000). The values of this measure should be ranging

from 0 to 1. Zero value indicates no common area between population densities,
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while one indicates the perfect agreement between population densities. Note that

this measure can be applied directly on discrete distributions by replacing summation

instead of integrals. The main problem here is to estimate the parameter ρ. In gen-

eral, there are two methods used to estimate overlapping measures; the parametric

and nonparametric methods. The parametric method requires an assumption that

the form of the probability density functions should be known with unknown param-

eter Θ, where Θ may be a vector of parameters estimated by traditional methods,

like the method of moments (MM) or the maximum likelihood (ML) method. On the

other hand, the nonparametric method does not require any assumptions about the

functional form of the density function. As an example of the parametric method,

Inman and Bradly (1989) derived the ML estimator of Weitzman coefficient ∆ with

the assumption the two densities are normal with different means and equal variances

(see Figure 1). Mulekar and Mishra (1994) studied the overlapping measures of two

normal densities in the case of equal means but different variances of the two densities

(see Figure 2). Reiser and Faraggi (1999) constructed generalized confidence intervals

for the overlapping measures of two normal distributions with equal variances. To

compare the confidence intervals of the overlapping measures, Mulekar and Mishra

(2000) used some resampling techniques, namely, Jackknife, bootstrap and transfor-

mation methods under the assumption that the two densities are normal with equal

means. Parametric methods for confidence interval estimation of ∆ were studied by

Wang and Tian (2017), who also proposed methods for confidence interval estimation

of ∆ under various distributions, including normal.

Madhuri et al. (2001) and Al-Saleh and Samawi (2007) estimated the overlapping

measures of two exponential populations with different scale parameters. Al-Saidy

et al. (2005) considered the overlapping measures for two Weibull distributions hav-

ing the same shape parameter but different scale parameters. Samawi and Al-Saleh

(2008) used the ranked set sampling method to draw inferences about the overlapping

measures of two exponential distributions with different scale parameters. Moreover,

they constructed the confidence intervals for the overlapping measures using boot-

strap and Taylor series methods. Chaubey et al. (2008) addressed the point estima-

tion of the three overlapping measures when the two populations are described by
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inverse Gaussian distributions with equal means. Helu and Samawi (2011) studied

the effect of sampling procedures on the overlapping measures by comparing the sim-

ple random sample with the ranked set sampling when the original data follow the

Lomax models.

In parametric methods mentioned above and for distributions with two parame-

ters, the authors assumed that the two location parameters are equal, the two scale

parameters are equal, or the two shape parameters are equal. This assumption is

required to enable the authors to find a closed-form for the interested overlapping

parameter aim to estimate. That is, to be able to find the integrals arise in formulas

of the different overlapping measures.

If there are some doubts about the validity of the model assumption or if the model

assumption is difficult to be satisfied then the nonparametric method can be used

instead of the parametric method. Many authors have studied the nonparametric

method to make inferences about overlapping measures coefficients. For example,

see Clemons and Bradley (2000), Clemons (2001), Mizuno et al. (2005), Schmid

and Schmidt (2006), Ridout and Linkie (2008), Martens et al. (2014) and Eidous

and Al-Talafha (2020). Most of the above studies used the nonparametric kernel

method to estimate the overlapping measure ∆. Samawi et al. (2011) introduced

the nonparametric kernel method to estimate the overlapping measures ∆ in order to

perform a test about the symmetry of the underlying distribution of the data. Alodat

et al. (2021) studied the asymptotic properties and the asymptotic distribution of

the kernel estimator of the overlapping measure ρ. They used the resulting estimator

for the goodness of fit test for two independent distributions.

2. Matusita coefficient ρ for two normal distributions

A normal distribution is one of the most common continuous probability distribu-

tion for real-valued random variable. The general form of its pdf for a random variable

X is,

fX (x) =
1

σ
√
2π
e−

1

2
(x−µ

σ )
2

, −∞ < x <∞,

which is denoted by N (µ, σ2) . The normal distribution is the most important proba-

bility distribution in statistics because it fits many natural phenomena. For example,
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heights, blood pressure, measurement error, and IQ scores follow the normal distri-

bution. The two parameters µ and s represent the distribution mean and standard

deviation respectively. For the normal distribution, moving the mean simply slides

the curve left or right - it changes the center, not the spread. The standard deviation,

on the other hand, changes the shape of distribution curve and show how it is spread

around its mean. Illustrations of the two cases are shown in Figure (1) and Figure

(2) respectively.

2.1. Equal variances. The Matusita coefficient ρ between two normal distributions

with equal variances (σ2
1 = σ2

2 = σ2 say) is given by (Al-Daradkeh, 2021),

ρ = e−(µ1−µ2)
2/(8σ2)

Let X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

be two independent random samples drawn

from two normal densities N(µ1, σ
2) and N(µ2, σ

2) respectively. The maximum like-

lihood (ML) estimators of µ1, µ2 and σ
2 are X , Y and S2 =

∑n1

i=1
(Xi−X)

2
+

∑n2

i=1
(Yi−Y )

2

n1+n2

respectively. Therefore, the ML estimator of ρ is (Al-Daradkeh, 2021),

ρ̂1 = e−(X−Y )
2

/(8S2).

2.2. Equal means. The Matusita coefficient ρ between two normal distributions

with equal means (µ1 = µ2 = µ say) is,

ρ =

√
2C

1 + C2

where C = σ1/σ2 (see Mulekar and Mishra, 1994). Suppose that X1, X2, . . . , Xn1

and Y1, Y2, . . . , Yn2
are two independent random samples drawn from two normal

densities N (µ, σ2
1) and N (µ, σ2

2) respectively. Mulekar and Mishra (1994) gave the

following estimators for µ, σ2
1 and σ2

2,

σ̂2
1 =

∑n1

i=1 (Xi − µ̂)2

n1

σ̂2
2 =

∑n2

i=1 (Yi − µ̂)2

n2

and

µ̂ =

∑n1

i=1Xi+
∑n2

i=1 Yi
n1 + n2

.
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respectively. They gave the following estimator for ρ,

ρ̂2 =

√
2Ĉ

1 + Ĉ2

where Ĉ = σ̂1/σ̂2.

The general case that does not assume equality between location parameters and

equality between scale parameters has not been addressed or studied in the literature.

This paper addresses this case and proposes a new technique for estimating ρ without

using any assumptions about the pair normal distribution parameters.

3. Proposed method to estimate ρ

Let X1, X2, . . . , Xn1
and Y1, Y 2, . . . , Yn2

be two independent random samples,

which are taken from two normal distributions N(µ1, σ
2
1) and N(µ2, σ

2
2) respectively.

It is direct method to derive the ML estimators of µ1, µ2, σ
2
1 and σ2

2, which are

respectively given by

µ̂1 =

∑n1

i=1Xi

n1
= X

µ̂2 =

∑n2

i=1 Yi
n2

= Y

σ̂2
1 =

n1∑

i=1

(
Xi −X

)2
/n1

and

σ̂2
2 =

n2∑

i=1

(
Yi − Y

)2
/n2 .

Therefore, the ML estimators of f1 (x) = N(µ1, σ
2
1) and f2 (y) = N(µ2, σ

2
2) are

f̂1 (x) = N(µ̂1, σ̂
2
1) and f̂2 (y) = N(µ̂2, σ̂

2
2), respectively.

To estimate ρ, we suggest to express ρ as expected value (mean) of some functions

as follows.

Let ψ1 (x) be a continuous function of x and ψ2 (y) is another continuous function of

y, then E(ψ1 (X))1/2 =
∫
(ψ1 (x))

1/2f1 (x) dx and E(ψ2 (Y ))
1/2 =

∫
(ψ2 (y))

1/2f2 (y) dy.

Now, by taking ψ1 (x) = f2 (x) /f1 (x) and ψ2 (y) = f1 (y) /f2 (y) then we obtain,

E

(
f2 (X)

f1 (X)

) 1

2

=

∫
∞

−∞

(
f2 (x)

f1 (x)

) 1

2

f1 (x) dx

=

∫
∞

−∞

√
f1 (x) f2 (x)dx
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= ρ

and

E

(
f1 (Y )

f2 (Y )

) 1

2

=

∫
∞

−∞

(
f1 (y)

f2 (y)

) 1

2

f2 (y) dy

=

∫
∞

−∞

√
f1 (y) f2 (y)dy

=

∫
∞

−∞

√
f1 (x) f2 (x)dx

= ρ

Based on the last two expressions of ρ, we can also write ρ as the average of both

expressions as follows,

ρ =
1

2

[
E

(
f2 (X)

f1 (X)

) 1

2

+ E

(
f1 (Y )

f2 (Y )

) 1

2

]
.

Now, by using the last three formulas of ρ and based on the two independent random

samples X1, X2, . . . , Xn1
and Y1, Y 2, . . . , Yn2

, (where the first sample is taken from

N (µ1, σ
2
1) and the second one is taken from N (µ2, σ

2
2)), we suggest to estimate ρ as

follows, Since E(f2 (X) /f1 (X))
1

2 is the mean of (f2 (X) /f1 (X))
1

2 , we can estimate

it based on the first sample by the mean of
(
f̂2 (Xi) /f̂1 (Xi)

)1/2
, i = 1, 2, . . . , n1.

That is,

ρ̂ =
1

n1

n1∑

i=1

(
f̂2 (Xi)

f̂1 (Xi)

)1/2

,

Similarly, E(f1 (Y ) /f2 (Y ))
1

2 can be estimated based on the second sample by the

mean of(
f̂1 (Yi) /f̂2 (Yi)

)1/2
, i = 1, 2, . . . , n2.

That is,

ρ̂ = 1
n2

∑n2

i=1

(
f̂1(Yi)

f̂2(Yi)

)1/2
and finally, ρ = 1

2

[
E
(

f2(X)
f1(X)

) 1

2

+ E
(

f1(Y )
f2(Y )

) 1

2

]
is estimated

by,

ρ̂P = 1
2

[
1
n1

∑n1

i=1

(
f̂2(Xi)

f̂1(Xi)

)1/2
+ 1

n2

∑n2

i=1

(
f̂1(Yi)

f̂2(Yi)

)1/2]
.where the symbol P in ρ̂P stands

for “Proposed”. A preliminary simulation study showed that the last estimator of ρ

is more stable than the other two estimators. Therefore, the performance of the last

estimator is investigated in our simulation study in the next section.
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4. Simulation Study and Results

In this section, a simulation study was conducted to investigate the performances of

the proposed estimator ρ̂P of ρ. For sake of comparison, the two estimators ρ̂1 and ρ̂2,

which are stated in Section 2 are also considered. The estimator ρ̂1 was derived under

the assumption that the means of the pair normal distributions are equal, while the

estimator ρ̂2 was developed under the assumption that their variances are equals. In

addition, the nonparametric kernel estimator ρ̂k (see Eidous and Al-Talafha, 2020) is

also included in this study. The kernel estimator ρ̂k requires no assumptions about

the distributions parameters or even the functional form of the distribution itself (see

Eidous and Al-Talafha, 2020). To study the performances of the above estimators,

the two independent samples x1, x2, . . . , xn1
and y1, y2, . . . , yn2

were simulated

from two independent normal distributions with specific values of the corresponding

parameters. Based on the parameters selection, 9 pairs of normal distributions were

simulated, 3 of them were taken to deal with the case of equal means. 3 pairs were

taken for the case of equal variances. The remaining 3 pairs deal with the case

of unequal means as well as the unequal variances. The values of the corresponding

parameters were chosen arbitrary but to allow the overlapping measure to vary below

0.5, around 0.5 and above 0.5. The pairs of two normal distributions and the values

of the selected parameters that used in this simulation study were presented in Table

1. To study the different estimators and their behavior for different sample sizes,

we chose (n1, n2) = (10,10),(20,30),(30,30) and (100,200). For each sample size, R

= 1000 samples were generated and the empirical measures, Relative Bias (RB) and

Relative Mean Square Error (RMSE) were computed for each estimator. If η̂ is the

estimator of η then,

RB =
Ê (η̂)− η

η
,

and

RMSE =

√
M̂SE(η̂)

η
,

where

Ê (η̂) =

∑R
j=1 η̂(j)

R
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and

M̂SE (η̂) =
R∑

j=1

(
η̂(j) − Ê (η̂)

)2
/R.

All simulation results are calculated by using Mathematica, Version 7.

Based on the simulation results, which presented in Table 2, Table 3 and Table 4, we

can conclude the following:

(1) It is clear that the |RBs| and RMSEs of the different estimators decrease as

the sample sizes increases. This is a good sign to conclude that the different

considered estimators are consistent estimators for ρ.

(2) The |RBs| values associated the estimators ρ̂k and ρ̂P are negative in all

considered cases, which indicates that the two estimators are underestimate

the exact values of ρ.

(3) As expected, the proposed estimator ρ̂P performs better than the kernel esti-

mator ρ̂k in all considered cases and for all values of the samples size. This is

clear when we examine the corresponding values of RMSE for each estima-

tor. It is worthwhile to mention here that the proposed estimator was derived

under the pair normal distributions, while the kernel estimator was developed

as a general nonparametric method without using any functional form for the

data at hand (See Eidoos and Al-Talafha, 2020).

(4) The performances of the two estimators ρ̂1 and ρ̂2 are better than the other

estimators. However, the drawback of these two estimators is that we can use

each of them only if the corresponding required assumption is valid. The equal

means assumption is required for ρ̂1 and the assumption of equal variances is

required for ρ̂2.

(5) The RMSE values associated with the different estimators increase as the

exact value of ρ decreases. However, it is not necessarily correct to say that

the mean square error (MSE) of these estimators increases with decreasing

ρ, because the RMSE formula is the square root of MSE but divided by the

exact value of ρ.
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5. Discussion

The objective of this paper was to develop a new technique to estimate the Matusita

coefficient (measure) ρ under pair normal distributions. The advantage of the new

technique over existing methods is that it does not require any assumptions about

the parameters of the distributions. In addition, the proposed technique in this paper

can be used under different parametric distributions such as Weibull, beta, Lomax,

etc. The numerical results showed the good performance of the resulting estimator

based on the new proposed technique.

Figure 1. Two normal distributions with different means and equal variances.

Figure 2. Two normal distributions with different variances and equal means.

Table 1. The 9 simulated pair normal distributions

fX (y) fY (x)

Equal means N (0, 1) N (0, 1.5)

N (0, 1) N (0, 2.5)

N (0, 1) N (0, 10)

Equal variances N (0, 1) N (−0.5, 1)

N (0, 1) N (1.5, 1)

N (0, 1) N (3, 1)

Different means N (0, 1) N (−0.2, 1.1)

N (0, 1) N (2.5, 4)

and different variances N (0, 1) N (5, 2)
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Table 2. The RB and RMSE of the estimators ρ̂k, ρ̂l, ρ̂p when the

data are simulated from pair normal distributions with equal means

(µ1 = µ2 = 0).

Exact ρ = 0.9607
(
σ
2
1 , σ

2
2

)
(n1, n2) ρ̂k ρ̂1 ρ̂p

( 1,1.5 ) (10,10) RB -0.1197 -0.0132 -0.0292

RMSE 0.1616 0.0573 0.0788

(20,30) RB -0.0648 -0.0075 -0.0143

RMSE 0.0873 0.0404 0.0496

(30,30) RB -0.0525 -0.0063 -0.0114

RMSE 0.0715 0.0369 0.0438

(100,200) RB -0.0192 -0.0014 -0.0027

RMSE 0.0270 0.0156 0.0168

Exact ρ = 0.8304

(1, 2.5) (10,10) RB -0.1192 0.0198 -0.0307

RMSE 0.2041 0.1103 0.1472

(20,30) RB -0.0682 0.0045 -0.0176

RMSE 0.1163 0.0723 0.0892

(30,30) RB -0.0572 0.0055 -0.0130

RMSE 0.1023 0.0669 0.0836

(100,200) RB -0.0247 0.0019 -0.0023

RMSE 0.0440 0.0314 0.0370

Exact ρ = 0.4449

(1, 10) (10,10) RB -0.1275 0.2964 -0.0446

RMSE 0.3698 0.4093 0.3353

(20,30) RB -0.0551 0.1747 0.0015

RMSE 0.2089 0.2659 0.1986

(30,30) RB -0.0585 0.1422 -0.0113

RMSE 0.2047 0.2182 0.1930

(100,200) RB -0.0316 0.0467 -0.0038

RMSE 0.0863 0.0859 0.0846
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Table 3. The RB and RMSE of the estimators ρ̂k, ρ̂l and ρ̂p when the

data are simulated from pair normal distributions with equal variances

(σ2
1 = σ2

2 = 1

Exact ρ = 0.9692

(µ1, µ2) (n1, n2) ρ̂k ρ̂2 ρ̂p

(0 ,-

0.5)

(10,10) RB -0.1373 0.0307 -0.0679

RMSE 0.1801 0.0826 0.1153

(20,30) RB -0.0653 -0.0114 -0.0250

RMSE 0.0863 0.0444 0.0540

(30,30) RB -0.0573 -0.0107 -0.0217

RMSE 0.0736 0.0372 0.0448

(100,200) RB -0.0173 -0.0014 -0.0037

RMSE 0.0247 0.0157 0.0167

Exact ρ = 0.7548

(0, 1.5) (10,10) RB -0.1660 -0.0319 -0.09260

RMSE 0.2801 0.1984 0.2305

(20,30) RB -0.0799 -0.0046 -0.0306

RMSE 0.1586 0.1236 0.1346

(30,30) RB -0.0821 -0.0147 -0.0351

RMSE 0.1509 0.1163 0.1262

(100,200) RB -0.0289 -0.0024 -0.0072

RMSE 0.0614 0.0493 0.0524

Exact ρ = 0.3246

(0, 3) (10,10) RB -0.2699 -0.0062 -0.1819

RMSE 0.5648 0.4728 0.5159

(20,30) RB -0.1820 -0.0028 -0.0948

RMSE 0.3875 0.3084 0.3511

(30,30) RB -0.1694 -0.0042 -0.0784

RMSE 0.3499 0.2777 0.3193

(100,200) RB -0.0896 -0.0028 -0.0165

RMSE 0.1776 0.1276 0.1728
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Table 4. The RB and RMSE of the estimators ρ̂k and ρ̂pwhen the data

are simulated from pair normal distributions with different location and

different scale parameters.

Exact ρ = 0.9932

(µ1, σ
2
1) (µ2, σ

2
2) (n1, n2) ρ̂k ρ̂p

(0 , 1) (-0.2 , 1.1) (10,10) RB -0.1320 -0.0618

RMSE 0.1639 0.0923

(20,30) RB -0.0636 -0.0245

RMSE 0.0778 0.0401

(30,30) RB -0.0520 -0.0185

RMSE 0.0609 0.0299

(100,200) RB -0.0172 -0.0039

RMSE 0.0206 0.0093

Exact ρ = 0.6257

(0 , 1) (2.5 , 4) (10,10) RB −0.119 −0.0631

RMSE 0.2692 0.2409

(20,30) RB −0.0813 −0.0376

RMSE 0.1654 0.1452

(30,30) RB −0.0639 −0.0263

RMSE 0.1531 0.1361

(100,200) RB −0.0293 −0.0068

RMSE 0.0624 0.0568

Exact ρ = 0.2562

(0 , 1) (5 , 2) (10,10) RB −0.2552 −0.2062

RMSE 0.615 0.606

(20,30) RB −0.1864 −0.1051

RMSE 0.4177 0.3978

(30,30) RB −0.1616 −0.0851

RMSE 0.3886 0.3755

(100,200) RB −0.0775 −0.0174

RMSE 0.1873 0.1757
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