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STABLE AND UNSTABLE MANIFOLDS OF THE
TWO-DIMENSIONAL PIECEWISE-LINEAR NORMAL FORM
MAPS.

ABDELLAH MENASRI

ABSTRACT. The stable and unstable sets or stable and unstable manifolds give a
formal mathematical definition to the general notions embodied in the idea of an
attractor. In this paper, we will determine the stable and unstable manifolds of
the normal form of two-dimensional piecewise-linear maps in the neighborhood of a
fixed point at the border using stable manifold theorem, this is an important result

about the structure of the set of orbits approaching to a hyperbolic fixed point.

1. INTRODUCTION

Stable and unstable manifolds are most easily introduced in the context of a saddle
fixed point of a two dimensional maps. They are the natural extensions of the linear
eigenvectors of the stability analysis of the fixed point into the nonlinear regime.
Many papers have been published in this field, for example, in [6] they studied the
stable and unstable manifolds of unstable periodic orbits as well as the Hamiltonian
chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid
flow and describe the complex structure formed in a chaotic layer that separates a
vortex region of the shear flow. In [16] a numerical procedure is described to compute
the successive images of a curve under an R" diffeomorphism. Given a tolerance ¢,
they showed how to rigorously guarantee that each point of the calculated curve is
not more than a distance € from the ”true” image curve. they applied the method to
compute one-dimensional stable and unstable manifolds of Hénon’s and Ikeda’s maps,
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as well as a Poincaré map for the forced-damped pendulum. In [1] two precise and fast
algorithms have been developed for the computation of stable and unstable manifolds
of hyperbolic trajectories of two-dimensional, aperiodically time-dependent vector
fields. These methods are then applied to the computation of stable and unstable
manifolds of hyperbolic trajectories of several temporally aperiodic variables variants
of Duffing’s equation.

The piecewise-linear non-reversible on both sides[8] or on one side [9] has been
studied in a number of papers in the literature, for example, in [9] an important
theorem gives the conditions of the existence of a robust chaotic attractor for the
normal form of non-reversible maps on one side.

In this paper, we will determine the stable and unstable manifolds of the normal
form of the two-dimensional piecewise-linear maps in the neighborhood of a fixed
point on the border. We will use the idea in [9] to give a new theorem of the exisitence
of a robust chaotic attractor for two-dimensional piecewise-linear maps reversible on
both sides.

The normal form of the two-dimensional piecewise-linear maps at the neighborhood

of a fixed point on the border [12, 15] is given by the form:

7L 1 T 1
+ 1 , <0
—or 0 Yy 0
(1.1) ful@,y) =
TR 1 T 1
+ u , x>0
—(SR 0 Yy 0

\

Where p is a bifurcation parameter and 7, 7g, 01, g are the traces and determi-

nants for the two matrices (1.2), (1.3).

TI, 1
(1.2) Jp =
—5, 0
1
(1.3) =
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evaluated to fixed points. System (1.1) has two fixed points PL(l_Ti‘ vt 1_¢L63‘6L)
and PR(I_TI’: el 1—¢Jii 5R) in two subregions,

(1.4) Ry :={(z,y) eR*: 2 <0,y € R}

(1.5) Rp:={(z,y) eR*:2 >0,y € R}

Therefore, P, and Pg exist for > 0 respectively. The two

S W A
1—71+d0;, — ’ 1—7TRr+d6R
eigenvalues of Jacobian matrices (1.2), (1.3) in (1.4), (1.5) respectively are A\ipor =
: (TL + /72 — 4<5L) , MR2R = 3 (TR + /T3 — 453> . We will study the case where
the map (1.1) is reversible on both sides, i.e., d; and dr are nonzero. Hence, the

inverse of map (1.1) is defined by the form (1.6),

0 —5 T 0
r - 7$<0
1 Y 1
(1.6) fit ) = g
R — , x>0
\ 1 g—g Y 1

(

Wi(Pr) == {(z,y) € Rp: f"(2,y) = Pr,n— o0 }

. WilPr) = {(2.9) € Ba: J"(z,1) ~ Pr, n > o0)
Wi(Pr) = {(z,y) € Ry : f(z,y) = P, n — oo}

\ Wi(Pr) :=={(z,y) € Rg: f"(2,y) = Pr, n — oo}

2. THE STABLE AND UNSTABLE MANIFOLDS FOR THE SYSTEM (1.1)

To determine the stable and unstable manifolds [16] for system (1.1), we must first
mention the case of the stability and instability of the fixed points P;, and Pg. The
stability of each of them is determined by eigenvalues A1z 21, AMir2r and to or, r. We
will consider the case where the system (1.1) is dessipative, i.e., [0z] < 1 and |[0g| < 1.

We have the following cases:

7_2
Case.1: For 0 p < 5%, the eigenvalues A1 21, AMig2r are real.
1.: if2\/5L7R <TrLRrR < (1+5L,R) then, 0< )\1L,2L < 1and then, 0< )\1R72R < 1.

The fixed points are a regular attractor.
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2 i —(1+0Lr) <TLgr < —2\/@ then, A;zor < 0 and then, A\jpop < 0. The
fixed points are a flip attractor.

3.uif 7 g > (1 + 0pg) then, A\ip1r > 1 and then, 0 < Agpar < 1. The fixed
points are a regular saddle.

4.:if 7, g < —(1 4 6L.g) then, Aopor < —1 and then, —1 < A\jp1r < 0. The
fixed points are a flip saddle.

Case.2: For 01, p < 0, the eigenvalues are always real and spiralling orbits can-
not exist, thus there can be only two types of fixed points.

1.0 if —(140Lr) <7or < (14 0Lr) then 0 < Ajpop < 1and —1 < A\jgar <0,
or =1 < Aipor < 0and 0 < A\jgor < 1 which means that the fixed points are
a flip attractor.

2. if 7 g > (1 4+ 0p,r) then, Aip1p > 1 and then, —1 < Ay 25 < 0, the fixed
points are a flip saddle.

3.0 if 7 r < —(146p.r) then, Aopar < —1 and then, 0 < A1z < 1, the fixed
points are again a flip saddle.

Case.3: For 0, p > %, the eigenvalues A1z 21, Airor are complex, the fixed
points are spirally attracting.

1.: if 7, g > 0, the fixed points are a clockwise spiral.

2.: if 77 g < 0, the fixed points are a spiralling motion is counter-clockwise. We
note that if, eigenvalues are real, invariant manifolds of the fixed points exist

and play an important role in deciding the system dynamics [12].

Lemma 2.1. the system (1.1) is stable, if it is stable on the two subregions Ry and

Rpg, and unstable, if it is unstable in one of the two regions Ry, Rg.

We can write the system (1.1) in the form (2.1),

TLLn + Yy +
L Y 1% 2, <0
Tn _6an
(2.1) =
Yn+1 TRIn + Yn + %
, T, >0
_5Rxn

\

Accordingly, we consider the system equations (2.2) on subregion Rp:
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(2.9) Tpt1 = TLEn + Yn + 1, Tn <0
Yn+1 = _5an
After, substituting the second equation into the first equation, we obtain the equa-

tion (2.3):

(2.3) Tpyo — TpTps1 + 02, — =0, z, <0
So the system (2.2) is equivalent to the system (1.1) on the subregion Ry:

Tpao — TrTps1 + 012, — =0, z, <0
(2.4) +2 LTn+1 L H

Yn+1 = _5LIn

Remark 1. With the same method we can show that, the system (2.5) equivalent to
the system (1.1) on the subregion Rpg,

Tpao — TRTpe1 + 0T, — =0, x, >0
(2.5) +2 RTn+1 R H

Yn+1 = _6Rxn
To find stable manifolds of system (1.1) on subregion Ry, we must first search all
(%1, Yn)nen, which converge and verify two equation of system (2.2). We can easily
demonstrate that the solution of system (2.2) is:

= n n Kk
Tn = q171p, + a2Tap, + 1—71+67 Tn < 0

_ n—1 n—1 Spp
Yn = —O0Liry, —O0LG2ry — To4ss

(26) » TL 7& T+ 5L

where ¢1, g2 are constants and ryy, o7, are roots of quadratic equation (2.7),

(27) T%—TLT—F(SL:O

Therefore the stability and unstability of system (2.2) on the subregion R;, depends
on r1,.We note that, if i1, 7o, are complex, the system solution of (2.2) will be in the

form (2.8),

2.9 x, = qr*(cos(nf) + sin(nd)) + ﬁ> Ty < (1 A1 40,
Yn = —0rqr™ (cos((n — 1)6) + sin((n — 1)0)) — 1—r§i6L

where ¢ = |r| and 6 = arg(ry). We have the following cases:
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7_2
Case.1: op < .

The equation (2.7) has two real solutions,

1
(2.9) TiL, 2L = ML2L = 5 (TL + /7 — 45L)

Hence, we have

IAiL| = % T + \/7'3—74&’ < 1,if 7, —1 < 0 < min(—(7 + 1),%),71 < =2,
TL—1<5L<%—2§TL<2.

|Aor| = %‘TL—\/T§—45L) < 1,if -1, — 1 < 6 < min(1p — 1,%), L > 2,
—TL—1<5L<%—2§TL§2.

Remark 2. We have the same cases on the subregion Rg. Therefore stable manifolds
7_2
of the system (1.1) in the two subregion Ry, Rp exist when, 0 < dpp < 5%, -2 <

Tr.r < 2. And their form is given by:

e For >0

1. WE(PL):{(ZL',:I/) GRL:yZOa _MSxSO}a W}SB(PR):

: {(z,y) € Rp:y =0, 0 <z < p}, As shown in Figure (1).

2. Wi(Pp) = {(x,y) €ERL:y= /\61_LL:C’ —p<z< 0}, W5 (Pr) =

1

: {(x,y) €ERp:y= —%x,o <z < ,u} , as shown in Figure (2).

0.8
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-0.8

FIGURE 1. The stable manifold in the two region R; and Rpg for

2
10>0,0<8,p< LR —2< 75 <2,
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F1GURE 2. The stable manifold in the two region Ry and Rg for u < 0.

2
0< 5L,R < TL4’R,—2 < TL.R < 2.

e For <0
Wi(Pr) ={(z,y) € Ry 1y =0, p <z <0}, Wi(Pg) =
{(x,y) €ERp:y= /\61—”;23:, D<z< ,u}, as shown in Figure (3).
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F1GURE 3. The stable manifold in the two region R, and Rg for u < 0,

2
O<5L7R<T€T'R,—2§’TL7R<2.

o [\iz| = %

T4/ —45L’ > 1 if
1.: 0, < %, TL > 2.
2.: §p < min(ry — 1, %), L < 2.
3 —(rp+1)<dp < %,TL < -2
o Ao =1 )TL - \/75—74&) > 1, if
>

1.: 71, < —2, 5L < %
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2.: 0 < min(—(7p + 1), %), TL > —2.

2
3.: TL—1<5L<%,TL22.

Remark 3. We have the same cases on the subregion Rr. Hence, the unstable man-
ifolds of the system (1.1) in the two subregions Ry, Rg ezist in previous cases, and

their form is given by:

e For u <0

2 WHPL) ={(z,y) € R, :y =0, p <2 <0}. as shown in Figure (4).
2.: Wi(Pp) ={(v,y) € Ry 1y =0, p <2 <0}, Wi(Pg) =
: {(z,y) € Rp:y =0, 0 <z < —2u}, as shown in Figure (5).
3 WHPL) ={(x,y) € R, :y =0, u<x <0}, Wi(Pr) =
: Wi (PL) ={(z,y) € Ry 1y =0, 3u <z <0}, Wi(Pg) =

{(
5.: WHPL) ={(z,y) € R, :y =0, 3u <z <0}, Wi(Pr) =

{

e For >0

z,y) € Rp:y= /i—RRx, 0<z< —Q;L} , as shown in Figure (6).

=

,Y) € Rp:y =0, 0 <x < —2u}, as shown in Figure (7).

8

z,y) € Ry = /\%x, 0<z< —2,u} , as shown in Figures (8), (9).

—

1.: Wﬁ(PR):{(x,y)GRR'yzo 0<z<utU

{(m,y) €Rr:y= /\23 T+ /\‘SR ,n<x< 4,u} , as shown in Figure (10).
2.: WE(Pg) ={(z,y) € Rp:y=0, 0 <z < p},asshown in Figure (11).
3 WHPL) ={(z,y) € R :y=u, —2pu<x <0}, WE(Pg) =
: {(z,y) € Rp:y=0, 0 <z < pu}, as shown in Figure (12).

4 WE(Pa) = {(1,9) € Ru -y =0, 0 <z < p} U
{(z,y) €Rp:y= /\52’;:5 + /fz—RR, p<x< 4u} , as shown in Figure (13).
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FI1GURE 4. The unstable manifolds for the system for p < 0, 7, +1 <

2 2
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FIGURE 5. The unstable manifolds for the system for pw<0,7m—1<
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FIGURE 7. The unstable manifolds for the system for pw < 0,0 <
%,TL>2and7'R<—2, 5R<§.
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FI1GURE 8. The unstable manifolds for the system for p < 0,7, — 1 <
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FIGURE 13. The unstable manifolds for the system for i > 0, —7;,—1 <

) 2
5L<%aTLS—QandTR>2a5R_1<5R<%'

Case.2: 77 — 44, < 0.

The equation (2.7) has two complex conjugate solutions,

1 ./
(2.10) 1L, 2L = ML2L = B} (TL + iy /40L — TE) :

Hence

2

AL an] = = <1,if%<5L<1,—2<TL<2.

2

1 /
TL:l:’i 45L—Tg

Remark 4. We have the same cases in the subregion Rg. Therefore, the stable man-
ifolds of system (1.1) in the two subregion Rg, Ry is define by the form:

o For p> 0, Wi(Py) = {(.4) € Ry y =, —p < <0}, Wy(Py) =

: {(z,y) € Rp:y =0, 0 <z < p}. as shown in Figure (14).

o For p <0, Wi(Pr) ={(z,y) € R, :y =0, p < <0}, Wi(Pg) =

: {(x,y) € Rp:y=uz, 0 <z < —pu}.as shown in Figure (15).
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FIGURE 14. The unstable manifolds for the system for p < 0,6, <

2 2
min(TL—l,%),TL <2andp>2,7, —1<dp< %R.
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FIGURE 15. The stable manifolds for the system (1) for ¢ > 0, F <

0 <1,—2< 71 <2.

7L, or| = % )TL + 14/461 — TE‘ > 1,if o; > max(%, 1). The unstable manifolds for
the system (1.1) is defined by:

o For ji> 0, Wi(P) = {(x,y) € Rp y =, —p <o <0}, Wh(Pr) =
: {(z,y) € Rp:y =0, 0 <z < p}. as shown in Figure (16).
o For <0, Wi(Pp) ={(z,y) € R, :y =0, p<x <0}, WE(Pg) =

: {(z,y) € Rp:y==x, 0 <z < —p}. as shown in Figure (17).
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FIGURE 16. The stable manifolds for the system (1) for p > 0, % <

0 <1,—2< 71 <2.
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FIGURE 17. The unstable manifolds fornsthe1syst'5em (1) for p < 0,601 >

max(%,l).

2.1. The chaotic manifolds of the system (1.1). Now, we examine the previous
cases where the system (1.1) has manifolds with chaotic behaviour [12], [14] , [15]. We
note that, if

(211) 7, > 140, and 7 < 1+ g,

then, there is no fixed point for p < 0, and there are two fixed points, one each in

Ry and Rpg, for p > 0, and if

(212) TL<1—|—5L, aHdTR>1+5R,

then, there is no fixed point for © > 0, and there are two fixed points, one each in Ry

and Rpg, for u < 0. The two fixed points are born on the border to ;x = 0. Therefore,
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we have a border-collision pair of bifurcations as p is reduced to zero. The system
(1.1) is dissipative on both subregion Ry and Rg, i.e., 0 < dp < 1, and 0 < dg < 1.
Therefore, we will study the chaotic situation of the system (1.1) under the variation
of u, and 0 < 0, < 1, 0 < dg < 1. We assume that the border-collision bifurcation
from fixed points Py, Pg is exhibited by map (1.1) under the variation of u [8],[9].
We consider the point A = [u, 0] situated on the x-axis.

e For u > 0, the point A belongs to the subregion Rgr. The image of A by
map (1.1) is the point B = [(7g + 1), —0ru| and the image of B is the point
C = [(rptr+ 7 —0r+ V), —6r(Tr + 1)i] . So we can define each point of
two subregions R; and Rp onto a portion of the segment BO that situated
in the subregion R;. The origin O is moving to the point A, and by continuity,
the image of BO by map (1.1) is the segment AC, if

(2.13) 7L <

AC does not cross the y-axis. Then, the point A is moving to point B. And,
If the following holds

1
(214) TL(TR+1)—5L(1+5—)—5R<O
R
1
(215) TL(TR+1)—5L(1+5—)—5R+1>0,
R

the point C' is moving into the inside of the segment BA. Hence, the point B is
a pre-image of C, so the piecewise-linear continuous invariant segment BAC' is an
invariant set that must contain all the long-term dynamics, which gives an attractor

in the subregion Ry, as shown in the Figures (21).

e For ;1 < 0, the point A belongs to the subregion Ry. The image of A by the
map (1.1) is the point B = [(71 + 1)u, —0rp] and the image of B is the point
C = [(trT +Tr — 01 + 1), =p(7r + 1)p] . Also, we can define each point
of the two subregions R; and Ry onto a portion of the segment BO wich

situated in the subregion Rp this time. The origin O is mapped to the point
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A, and by continuity, the image of BO by map (1.1) is the segment AC, If
o —1
14+ 7,

(2.16) TR >

AC' does not cross the y-axis. Then, point A is mapped to point B. And If
the following holds

1
(217) TR(TL + 1) — (53(1 + 5—) — 05 <0
L
1
(218) TR(TL+1)—5R(1+5—)—5L+1>O
L

The point C' is mapped into the inside of the segment BA. Therefore, the point B
is a pre-image of C, so the piecewise-linear continuous invariant segment BAC' is an
invariant set that must contain all the long-term dynamics, which gives an attractor
in the subregion Rg as shown in the Figures (19). We observe a switching between
Ry and Rpg, so a period of two points must be, one on BO and one on AC. Within

two points can be either stable or unstable according to the quantity (7,7 — d1) or
(’TLTR — 5R), lf

(219) |TLTR—5L| > 1

The period of two points in the region Ry, (global attractor of the system) is unstable.
Therefore, more interesting scenario can be observed. We can easily show that there

is no other stable periodic points in this set. Hence, this attractor is chaotic and

robust [9]. But, if
(220) |7_L7_R_5R| >1
We have the same situation in the region Rpg.

Theorem 2.1. If we assume that the border-collision bifurcation from the fixed points

Pp, and Pr are exhibited by map (1.1) with the variation of p by the followings:

e For p > 0, if the conditions (2.13), (2.14) and (2.15) are satisfied then, there
exists an attractor in the subregion R that lies the piecewise-linear continuous
invariant segment ABC, where A = [u,0], B = [(tg + 1)u, —dgu| and C =
[(tp7r + 70 —0r + V), —0r(TR + )] .
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e For 1 < 0, if the the conditions (2.16), (2.17) and (2.18) are satisfied then,
there exists an attractor in the subregion Ry that lies the piecewise-linear
continuous invariant segment ABC, where A = [u1,0], B = [(7p + 1), —0Lu]
and C' = [(7p7r +Tr — 0 + 1), —Op(7r + 1)p] .

e In the two previous cases, if the conditions (2.19), (2.20) are also satisfied

respectively, then this attractor is chaotic and robust.

2.2. The numerical simulation. The numerical simulation [1] shows that, if the
theorem (2.1) conditions are satisfied then, for the all initial conditions and with
variation of p, if =1 < 7, < 0,0 <7 r < 1,0 < dLp < 1, the system (1.1) has
a unique chaotic attractor, this one can not be destroyed by small changes in the
parameters. Since, a small changes in the parameters can only cause small change in

the Lyapunov exponents [12], where the chaotic attractor is stable and robust.

o For pt < 0,if =1 <7, r < 1,0 < drg < 1, this attractor appears in the

subregion Ry with the stable manifold on the subregion R, as shown in the

Figures (18), (19).

44 45 X 7 -
otic attractor of the system (1) for 71, =

—1, TR = 08, 5L = 01, 5R = 1, n = —2.
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FIGURE 19. The robust chaotic attractor of the system (1) for 7, =
—1, TR — 08, 5L = 01, 5R = 1, n = —2.

o For pn > 0,if -1 <7, r <1,0 < g <1, the same chaotic attractor appears
in the subregion R, with the stable manifold in subregion R as shown in

the Figures (20), (21).

7.
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0.43 0435 0.44 0445 045 0455 046 0465 047 0475

FIGURE 20. The robust chaotic attractor of the system (1) of 7, =
08, 7 =—1,0,=0.1,0p = 0.2, p = 2.

2 L L L L L L
-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

FIGURE 21. The robust chaotic attractor of the system (1) of 7, =
08, 7R =—1,0,=0.1,0 =02, u=2.
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CONCLUSION

In this paper, we have given the possible cases of stable and unstable manifolds for a

two-dimensional piecewise-linear normal form maps, we also presented a new theorem

which allows us to know the existence of chaotic attractors for a two-dimensional

piecewise-linear normal form maps, it gives us an important idea about the evolution

and the nature of the attractors of two-dimensional piecewise-linear maps.
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