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STABLE AND UNSTABLE MANIFOLDS OF THE
TWO-DIMENSIONAL PIECEWISE-LINEAR NORMAL FORM

MAPS.

ABDELLAH MENASRI

Abstract. The stable and unstable sets or stable and unstable manifolds give a

formal mathematical definition to the general notions embodied in the idea of an

attractor. In this paper, we will determine the stable and unstable manifolds of

the normal form of two-dimensional piecewise-linear maps in the neighborhood of a

fixed point at the border using stable manifold theorem, this is an important result

about the structure of the set of orbits approaching to a hyperbolic fixed point.

1. Introduction

Stable and unstable manifolds are most easily introduced in the context of a saddle

fixed point of a two dimensional maps. They are the natural extensions of the linear

eigenvectors of the stability analysis of the fixed point into the nonlinear regime.

Many papers have been published in this field, for example, in [6] they studied the

stable and unstable manifolds of unstable periodic orbits as well as the Hamiltonian

chaos generated by the dynamics of passive tracers moving in a two-dimensional fluid

flow and describe the complex structure formed in a chaotic layer that separates a

vortex region of the shear flow. In [16] a numerical procedure is described to compute

the successive images of a curve under an RN diffeomorphism. Given a tolerance ε,

they showed how to rigorously guarantee that each point of the calculated curve is

not more than a distance ε from the ”true” image curve. they applied the method to

compute one-dimensional stable and unstable manifolds of Hénon’s and Ikeda’s maps,
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as well as a Poincaré map for the forced-damped pendulum. In [1] two precise and fast

algorithms have been developed for the computation of stable and unstable manifolds

of hyperbolic trajectories of two-dimensional, aperiodically time-dependent vector

fields. These methods are then applied to the computation of stable and unstable

manifolds of hyperbolic trajectories of several temporally aperiodic variables variants

of Duffing’s equation.

The piecewise-linear non-reversible on both sides[8] or on one side [9] has been

studied in a number of papers in the literature, for example, in [9] an important

theorem gives the conditions of the existence of a robust chaotic attractor for the

normal form of non-reversible maps on one side.

In this paper, we will determine the stable and unstable manifolds of the normal

form of the two-dimensional piecewise-linear maps in the neighborhood of a fixed

point on the border. We will use the idea in [9] to give a new theorem of the exisitence

of a robust chaotic attractor for two-dimensional piecewise-linear maps reversible on

both sides.

The normal form of the two-dimensional piecewise-linear maps at the neighborhood

of a fixed point on the border [12, 15] is given by the form:

(1.1) fµ(x, y) =



































τL 1

−δL 0









x

y



+ µ





1

0



 , x ≤ 0





τR 1

−δR 0









x

y



 + µ





1

0



 , x > 0

Where µ is a bifurcation parameter and τL, τR, δL, δR are the traces and determi-

nants for the two matrices (1.2), (1.3).

(1.2) JL =





τL 1

−δL 0





(1.3) JR =





τR 1

−δR 0



 ,
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evaluated to fixed points. System (1.1) has two fixed points PL(
µ

1−τL+δL
, µδL

1−τL+δL
)

and PR(
µ

1−τR+δR
, µδR

1−τR+δR
) in two subregions,

(1.4) RL :=
{

(x, y) ∈ R
2 : x ≤ 0, y ∈ R

}

(1.5) RR :=
{

(x, y) ∈ R
2 : x > 0, y ∈ R

}

Therefore, PL and PR exist for µ

1−τL+δL
≤ 0, µ

1−τR+δR
> 0 respectively. The two

eigenvalues of Jacobian matrices (1.2), (1.3) in (1.4), (1.5) respectively are λ1L,2L =

1
2

(

τL ±
√

τ 2L − 4δL

)

, λ1R,2R = 1
2

(

τR ±
√

τ 2R − 4δR

)

. We will study the case where

the map (1.1) is reversible on both sides, i.e., δL and δR are nonzero. Hence, the

inverse of map (1.1) is defined by the form (1.6),

(1.6) f−1
µ (x, y) =



































0 − 1
δL

1 τL
δL









x

y



− µ





0

1



 , x ≤ 0





0 − 1
δR

1 τR
δR









x

y



− µ





0

1



 , x > 0

The stable (unstable) manifold of PL and PR are defined by:

(1.7)



























W s
L(PL) := {(x, y) ∈ RL : fn(x, y) → PL, n → ∞ }

W s
R(PR) := {(x, y) ∈ RR : fn(x, y) → PR, n → ∞}

W u
L(PL) := {(x, y) ∈ RL : f−n(x, y) → PL, n → ∞}

W u
R(PR) := {(x, y) ∈ RR : f−n(x, y) → PR, n → ∞}

2. The stable and unstable manifolds for the system (1.1)

To determine the stable and unstable manifolds [16] for system (1.1), we must first

mention the case of the stability and instability of the fixed points PL and PR. The

stability of each of them is determined by eigenvalues λ1L,2L, λ1R,2R and to δL,R. We

will consider the case where the system (1.1) is dessipative, i.e., |δL| < 1 and |δR| < 1.

We have the following cases:

Case.1: For δL,R <
τ2
L,R

4
, the eigenvalues λ1L,2L, λ1R,2R are real.

1.: if 2
√

δL,R < τL,R < (1+ δL,R) then, 0 < λ1L,2L < 1 and then, 0 < λ1R,2R < 1.

The fixed points are a regular attractor.



1176 ABDELLAH MENASRI

2.: if −(1+ δL,R) < τL,R < −2
√

δL,R then, λ1L,2L < 0 and then, λ1R,2R < 0. The

fixed points are a flip attractor.

3.: if τL,R > (1 + δL,R) then, λ1L,1R > 1 and then, 0 < λ2L,2R < 1. The fixed

points are a regular saddle.

4.: if τL,R < −(1 + δL,R) then, λ2L,2R < −1 and then, −1 < λ1L,1R < 0. The

fixed points are a flip saddle.

Case.2: For δL,R < 0, the eigenvalues are always real and spiralling orbits can-

not exist, thus there can be only two types of fixed points.

1.: if −(1 + δL,R) < τL,R < (1 + δL,R) then 0 < λ1L,2L < 1 and −1 < λ1R,2R < 0,

or −1 < λ1L,2L < 0 and 0 < λ1R,2R < 1 which means that the fixed points are

a flip attractor.

2.: if τL,R > (1 + δL,R) then, λ1L,1R > 1 and then, −1 < λ2L,2R < 0, the fixed

points are a flip saddle.

3.: if τL,R < −(1 + δL,R) then, λ2L,2R < −1 and then, 0 < λ1L,1R < 1, the fixed

points are again a flip saddle.

Case.3: For δL,R >
τ2
L

4
, the eigenvalues λ1L,2L, λ1R,2R are complex, the fixed

points are spirally attracting.

1.: if τL,R > 0, the fixed points are a clockwise spiral.

2.: if τL,R < 0, the fixed points are a spiralling motion is counter-clockwise. We

note that if, eigenvalues are real, invariant manifolds of the fixed points exist

and play an important role in deciding the system dynamics [12].

Lemma 2.1. the system (1.1) is stable, if it is stable on the two subregions RL and

RR, and unstable, if it is unstable in one of the two regions RL, RR.

We can write the system (1.1) in the form (2.1),

(2.1)





xn+1

yn+1



 =



































τLxn + yn + µ

−δLxn



 , xn ≤ 0





τRxn + yn + µ

−δRxn



 , xn > 0

Accordingly, we consider the system equations (2.2) on subregion RL:
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(2.2)







xn+1 = τLxn + yn + µ, xn ≤ 0

yn+1 = −δLxn

After, substituting the second equation into the first equation, we obtain the equa-

tion (2.3):

(2.3) xn+2 − τLxn+1 + δLxn − µ = 0, xn ≤ 0

So the system (2.2) is equivalent to the system (1.1) on the subregion RL:

(2.4)







xn+2 − τLxn+1 + δLxn − µ = 0, xn ≤ 0

yn+1 = −δLxn

Remark 1. With the same method we can show that, the system (2.5) equivalent to

the system (1.1) on the subregion RR,

(2.5)







xn+2 − τRxn+1 + δRxn − µ = 0, xn > 0

yn+1 = −δRxn

To find stable manifolds of system (1.1) on subregion RL, we must first search all

(xn, yn)n∈N, which converge and verify two equation of system (2.2). We can easily

demonstrate that the solution of system (2.2) is:

(2.6)







xn = q1r
n
1L + q2r

n
2L + µ

1−τL+δL
, xn ≤ 0

yn = −δLq1r
n−1
1L − δLq2r

n−1
2L − δLµ

1−τL+δL

, τL 6= 1 + δL

where q1, q2 are constants and r1L, r2L are roots of quadratic equation (2.7),

(2.7) r2L − τLr + δL = 0

Therefore the stability and unstability of system (2.2) on the subregion RL depends

on rL.We note that, if r1L, r2L are complex, the system solution of (2.2) will be in the

form (2.8),

(2.8)







xn = qrn(cos(nθ) + sin(nθ)) + µ

1−τL+δL
, xn ≤ 0

yn = −δLqr
n−1(cos((n− 1)θ) + sin((n− 1)θ))− δLµ

1−τL+δL

, τL 6= 1 + δL

where q = |rL| and θ = arg(rL). We have the following cases:
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Case.1: δL <
τ2
L

4
.

The equation (2.7) has two real solutions,

(2.9) r1L, 2L = λ1L,2L =
1

2

(

τL ±
√

τ 2L − 4δL

)

Hence, we have

|λ1L| =
1
2

∣

∣

∣
τL +

√

τ 2L − 4δL

∣

∣

∣
< 1, if τL − 1 < δL < min(−(τL + 1),

τ2
L

4
), τL < −2,

τL − 1 < δL <
τ2
L

4
,−2 ≤ τL < 2.

|λ2L| = 1
2

∣

∣

∣
τL −

√

τ 2L − 4δL

∣

∣

∣
< 1, if −τL − 1 < δL < min(τL − 1,

τ2
L

4
), τL > 2,

−τL − 1 < δL <
τ2
L

4
,−2 ≤ τL ≤ 2.

Remark 2. We have the same cases on the subregion RR. Therefore stable manifolds

of the system (1.1) in the two subregion RL, RR exist when, 0 < δL,R <
τ2
L,R

4
,−2 ≤

τL,R < 2. And their form is given by:

• For µ > 0

1.: W s
L(PL) = {(x, y) ∈ RL : y = 0, − µ ≤ x ≤ 0}, W s

R(PR) =

: {(x, y) ∈ RR : y = 0, 0 < x < µ}, As shown in Figure (1).

2.: W s
L(PL) =

{

(x, y) ∈ RL : y = δL
λ1L

x, − µ ≤ x ≤ 0
}

, W s
R(PR) =

:
{

(x, y) ∈ RR : y = − δR
λ1R

x, 0 < x < µ
}

, as shown in Figure (2).

Figure 1. The stable manifold in the two region RL and RR for

µ > 0, 0 < δL,R <
τ2
L,R

4
,−2 ≤ τL,R < 2.
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Figure 2. The stable manifold in the two region RL and RR for µ < 0.

0 < δL,R <
τ2
L,R

4
,−2 ≤ τL,R < 2.

• For µ < 0

W s
L(PL) = {(x, y) ∈ RL : y = 0, µ ≤ x ≤ 0}, W s

R(PR) =
{

(x, y) ∈ RR : y = δR
λ1R

x, 0 < x < µ
}

, as shown in Figure (3).

Figure 3. The stable manifold in the two region RL and RR for µ < 0,

0 < δL,R <
τ2
L,R

4
,−2 ≤ τL,R < 2.

• |λ1L| =
1
2

∣

∣

∣
τL +

√

τ 2L − 4δL

∣

∣

∣
> 1, if

1.: δL <
τ2
L

4
, τL ≥ 2.

2.: δL < min(τL − 1,
τ2
L

4
), τL ≤ 2.

3.: −(τL + 1) < δL <
τ2
L

4
, τL ≤ −2.

• |λ2L| =
1
2

∣

∣

∣
τL −

√

τ 2L − 4δL

∣

∣

∣
> 1, if

1.: τL < −2, δL <
τ2
L

4
.
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2.: δL < min(−(τL + 1),
τ2
L

4
), τL ≥ −2.

3.: τL − 1 < δL <
τ2
L

4
, τL ≥ 2.

Remark 3. We have the same cases on the subregion RR. Hence, the unstable man-

ifolds of the system (1.1) in the two subregions RL, RR exist in previous cases, and

their form is given by:

• For µ < 0

1.: W u
L(PL) = {(x, y) ∈ RL : y = 0, µ ≤ x ≤ 0} . as shown in Figure (4).

2.: W u
L(PL) = {(x, y) ∈ RL : y = 0, µ ≤ x ≤ 0}, W u

R(PR) =

: {(x, y) ∈ RR : y = 0, 0 < x < −2µ} , as shown in Figure (5).

3.: W u
L(PL) = {(x, y) ∈ RL : y = 0, µ ≤ x ≤ 0}, W u

R(PR) =

:
{

(x, y) ∈ RR : y = δR
λ2R

x, 0 < x < −2µ
}

, as shown in Figure (6).

4.: W u
L(PL) = {(x, y) ∈ RL : y = 0, 3µ ≤ x ≤ 0}, W u

R(PR) =

: {(x, y) ∈ RR : y = 0, 0 < x < −2µ} , as shown in Figure (7).

5.: W u
L(PL) = {(x, y) ∈ RL : y = 0, 3µ ≤ x ≤ 0}, W u

R(PR) =

:
{

(x, y) ∈ RR : y = δR
λ2R

x, 0 < x < −2µ
}

, as shown in Figures (8), (9).

• For µ > 0

1.: W u
R(PR) = {(x, y) ∈ RR : y = 0, 0 ≤ x ≤ µ}∪

:
{

(x, y) ∈ RR : y = − δR
λ2R

x+ δR
λ2R

, µ < x < 4µ
}

, as shown in Figure (10).

2.: W u
R(PR) = {(x, y) ∈ RR : y = 0, 0 < x < µ } , as shown in Figure (11).

3.: W u
L(PL) = {(x, y) ∈ RL : y = x, − 2µ ≤ x ≤ 0}, W u

R(PR) =

: {(x, y) ∈ RR : y = 0, 0 < x < µ} , as shown in Figure (12).

4.: W u
R(PR) = {(x, y) ∈ RR : y = 0, 0 < x < µ}∪

:
{

(x, y) ∈ RR : y = − δR
λ2R

x+ δR
λ2R

, µ < x < 4µ
}

, as shown in Figure (13).
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Figure 4. The unstable manifolds for the system for µ < 0, τL + 1 <

δL <
τ2
L

4
, τL ≤ −2 and τL − 1 < δL <

τ2
L

4
, τL ≥ 2.

Figure 5. The unstable manifolds for the system for µ < 0, τL − 1 <

δL <
τ2
L

4
, τL ≥ 2 and τR < −2, δR <

τ2
R

4
.

Figure 6. The unstable manifolds for the system for µ < 0, τL − 1 <

δL <
τ2
L

4
, τL ≥ 2 and τR < −2, δR <

τ2
R

4
.
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Figure 7. The unstable manifolds for the system for µ < 0, δL <

τ2
L

4
, τL > 2 and τR < −2, δR <

τ2
R

4
.

Figure 8. The unstable manifolds for the system for µ < 0, τL − 1 <

δL <
τ2
L

4
, τL ≥ 2 and τR < −2, δR <

τ2
R

4
.

Figure 9. The unstable minifolds for µ < 0, δL <
τ2
L

4
, τL > 2 and

δL <
τ2
L

4
, τL > 2 and τR < −2, δR <

τ2
R

4
.
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Figure 10. The unstable manifolds for the system for µ > 0, δL <

τ2
L

4
, τL > 2 and τR < −2, δR <

τ2
R

4
.

Figure 11. The unstable manifolds for the system for µ > 0, δL <

τ2
L

4
, τL > 2 and τR > 2, δR − 1 < δR <

τ2
R

4
.

Figure 12. The unstable manifolds for the system for µ > 0, δL <

τ2
L

4
, τL > 2 and τR < −2, δR <

τ2
R

4
.
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Figure 13. The unstable manifolds for the system for µ > 0,−τL−1 <

δL <
τ2
L

4
, τL ≤ −2 and τR > 2, δR − 1 < δR <

τ2
R

4
.

Case.2: τ 2L − 4δL < 0.

The equation (2.7) has two complex conjugate solutions,

(2.10) r1L, 2L = λ1L,2L =
1

2

(

τL ± i

√

4δL − τ 2L

)

.

Hence

|λ1L, 2L| =
1

2

∣

∣

∣

∣

τL ± i

√

4δL − τ 2L

∣

∣

∣

∣

< 1, if
τ 2L
4

< δL < 1,−2 < τL < 2.

Remark 4. We have the same cases in the subregion RR. Therefore, the stable man-

ifolds of system (1.1) in the two subregion RR, RL is define by the form:

• For µ > 0, W s
L(PL) = {(x, y) ∈ RL : y = x, − µ ≤ x ≤ 0}, W s

R(PR) =

: {(x, y) ∈ RR : y = 0, 0 < x < µ} . as shown in Figure (14).

• For µ < 0, W s
L(PL) = {(x, y) ∈ RL : y = 0, µ ≤ x ≤ 0}, W s

R(PR) =

: {(x, y) ∈ RR : y = x, 0 < x < −µ} . as shown in Figure (15).
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Figure 14. The unstable manifolds for the system for µ < 0, δL <

min(τL − 1,
τ2
L

4
), τL ≤ 2 and τR ≥ 2, τL − 1 < δR <

τ2
R

4
.

Figure 15. The stable manifolds for the system (1) for µ > 0,
τ2
L

4
<

δL < 1,−2 < τL < 2.

|r1L, 2L| =
1
2

∣

∣

∣
τL ± i

√

4δL − τ 2L

∣

∣

∣
> 1, if δL > max(

τ2
L

4
, 1). The unstable manifolds for

the system (1.1) is defined by:

• For µ > 0, W u
L(PL) = {(x, y) ∈ RL : y = x, − µ ≤ x ≤ 0}, W u

R(PR) =

: {(x, y) ∈ RR : y = 0, 0 < x < µ} . as shown in Figure (16).

• For µ < 0, W u
L(PL) = {(x, y) ∈ RL : y = 0, µ ≤ x ≤ 0}, W u

R(PR) =

: {(x, y) ∈ RR : y = x, 0 < x < −µ} . as shown in Figure (17).
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Figure 16. The stable manifolds for the system (1) for µ > 0,
τ2
L

4
<

δL < 1,−2 < τL < 2.

Figure 17. The unstable manifolds for the system (1) for µ < 0, δL >

max(
τ2
L

4
, 1).

2.1. The chaotic manifolds of the system (1.1). Now, we examine the previous

cases where the system (1.1) has manifolds with chaotic behaviour [12] , [14] , [15]. We

note that, if

(2.11) τL > 1 + δL, and τR < 1 + δR,

then, there is no fixed point for µ < 0, and there are two fixed points, one each in

RL and RR, for µ > 0, and if

(2.12) τL < 1 + δL, and τR > 1 + δR,

then, there is no fixed point for µ > 0, and there are two fixed points, one each in RL

and RR, for µ < 0. The two fixed points are born on the border to µ = 0. Therefore,
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we have a border-collision pair of bifurcations as µ is reduced to zero. The system

(1.1) is dissipative on both subregion RL and RR, i.e., 0 < δL < 1, and 0 < δR < 1.

Therefore, we will study the chaotic situation of the system (1.1) under the variation

of µ, and 0 < δL < 1, 0 < δR < 1. We assume that the border-collision bifurcation

from fixed points PL, PR is exhibited by map (1.1) under the variation of µ [8] , [9] .

We consider the point A = [µ, 0] situated on the x-axis.

• For µ > 0, the point A belongs to the subregion RR. The image of A by

map (1.1) is the point B = [(τR + 1)µ,−δRµ] and the image of B is the point

C = [(τLτR + τL − δR + 1)µ,−δL(τR + 1)µ] . So we can define each point of

two subregions RL and RR onto a portion of the segment BO that situated

in the subregion RL. The originO is moving to the point A, and by continuity,

the image of BO by map (1.1) is the segment AC, if

(2.13) τL <
δR − 1

1 + τR

AC does not cross the y-axis. Then, the point A is moving to point B. And,

If the following holds

(2.14) τL(τR + 1)− δL(1 +
1

δR
)− δR < 0

(2.15) τL(τR + 1)− δL(1 +
1

δR
)− δR + 1 > 0,

the point C is moving into the inside of the segment BA. Hence, the point B is

a pre-image of C, so the piecewise-linear continuous invariant segment BAC is an

invariant set that must contain all the long-term dynamics, which gives an attractor

in the subregion RL as shown in the Figures (21).

• For µ < 0, the point A belongs to the subregion RL. The image of A by the

map (1.1) is the point B = [(τL + 1)µ,−δLµ] and the image of B is the point

C = [(τRτL + τR − δL + 1)µ,−δR(τL + 1)µ] . Also, we can define each point

of the two subregions RL and RR onto a portion of the segment BO wich

situated in the subregion RR this time. The origin O is mapped to the point
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A, and by continuity, the image of BO by map (1.1) is the segment AC, If

(2.16) τR >
δL − 1

1 + τL

AC does not cross the y-axis. Then, point A is mapped to point B. And If

the following holds

(2.17) τR(τL + 1)− δR(1 +
1

δL
)− δL < 0

(2.18) τR(τL + 1)− δR(1 +
1

δL
)− δL + 1 > 0

The point C is mapped into the inside of the segment BA. Therefore, the point B

is a pre-image of C, so the piecewise-linear continuous invariant segment BAC is an

invariant set that must contain all the long-term dynamics, which gives an attractor

in the subregion RR as shown in the Figures (19). We observe a switching between

RL and RR, so a period of two points must be, one on BO and one on AC. Within

two points can be either stable or unstable according to the quantity (τLτR − δL) or

(τLτR − δR), if

(2.19) |τLτR − δL| > 1

The period of two points in the region RL (global attractor of the system) is unstable.

Therefore, more interesting scenario can be observed. We can easily show that there

is no other stable periodic points in this set. Hence, this attractor is chaotic and

robust [9]. But, if

(2.20) |τLτR − δR| > 1

We have the same situation in the region RR.

Theorem 2.1. If we assume that the border-collision bifurcation from the fixed points

PL and PR are exhibited by map (1.1) with the variation of µ by the followings:

• For µ > 0, if the conditions (2.13), (2.14) and (2.15) are satisfied then, there

exists an attractor in the subregion RL that lies the piecewise-linear continuous

invariant segment ABC, where A = [µ, 0] , B = [(τR + 1)µ,−δRµ] and C =

[(τLτR + τL − δR + 1)µ,−δL(τR + 1)µ] .
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• For µ < 0, if the the conditions (2.16), (2.17) and (2.18) are satisfied then,

there exists an attractor in the subregion RR that lies the piecewise-linear

continuous invariant segment ABC, where A = [µ, 0] , B = [(τL + 1)µ,−δLµ]

and C = [(τLτR + τR − δL + 1)µ,−δR(τL + 1)µ] .

• In the two previous cases, if the conditions (2.19), (2.20) are also satisfied

respectively, then this attractor is chaotic and robust.

2.2. The numerical simulation. The numerical simulation [1] shows that, if the

theorem (2.1) conditions are satisfied then, for the all initial conditions and with

variation of µ, if −1 < τL,R < 0, 0 < τL,R < 1, 0 < δL,R < 1, the system (1.1) has

a unique chaotic attractor, this one can not be destroyed by small changes in the

parameters. Since, a small changes in the parameters can only cause small change in

the Lyapunov exponents [12], where the chaotic attractor is stable and robust.

• For µ < 0, if −1 < τL,R < 1, 0 < δL,R < 1, this attractor appears in the

subregion RR with the stable manifold on the subregion RL as shown in the

Figures (18), (19).

Figure 18. The robust chaotic attractor of the system (1) for τL =

−1, τR = 0.8, δL = 0.1, δR = 1, µ = −2.



1190 ABDELLAH MENASRI

Figure 19. The robust chaotic attractor of the system (1) for τL =

−1, τR = 0.8, δL = 0.1, δR = 1, µ = −2.

• For µ > 0, if −1 < τL,R < 1, 0 < δL,R < 1, the same chaotic attractor appears

in the subregion RL, with the stable manifold in subregion RR as shown in

the Figures (20), (21).

Figure 20. The robust chaotic attractor of the system (1) of τL =

0.8, τR = −1, δL = 0.1, δR = 0.2, µ = 2.

Figure 21. The robust chaotic attractor of the system (1) of τL =

0.8, τR = −1, δL = 0.1, δR = 0.2, µ = 2.
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Conclusion

In this paper, we have given the possible cases of stable and unstable manifolds for a

two-dimensional piecewise-linear normal form maps, we also presented a new theorem

which allows us to know the existence of chaotic attractors for a two-dimensional

piecewise-linear normal form maps, it gives us an important idea about the evolution

and the nature of the attractors of two-dimensional piecewise-linear maps.
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