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FUZZY HYPER PSEUDO BCK-IDEALS OF HYPER PSEUDO

BCK-ALGEBRAS

T.KOOCHAKPOOR

Abstract. In this paper, by considering notion of fuzzy set, we define the 6 types

of fuzzy hyper pseudo BCK-ideals denoted by, F1, F2, ..., F6 and strong fuzzy hy-

per pseudo BCK-ideal on hyper pseudo BCK-algebras. Then investigate their

numerous properties. Also describe the relationship between fuzzy hyper pseudo

BCK-ideals and hyper pseudo BCK-ideals of hyper pseudo BCK-algebras. Also

will obtained the relationship between the fuzzy hyper pseudo BCK-ideals. This

relationship is shown in a lattice diagram.

1. Introduction

The study of BCK-algebra initiated by Y.Imai and Iseki [8] in 1966 as a general-

ization of the concept of set theoretic difference and calculi. Pseudo BCK-algebras

were introduce by Georgescu and Iorgulescu [5] as a generalization of BCK-algebra in

order to give a structure corresponding to pseudo MV -algebras. Since the bounded

commutative BCK-algebras to correspond MV -algebras. Hyper structure (called

also multi algebras) was introduced in 1934 by F. Marty [13] at the 8th congress of

Scandinavian Mathematicians. Since then many researchers have worked on alge-

braic hyper structures and developed them. Corsini and Leoreanu in [2] presented

some of the numerous applications of algebraic hyper structure, especially those from

last fifteen years, to the following subjects: geometry, hyper graphs, binary relations,

lattices, fuzzy sets and rough sets, automate, cryptography, cods, median algebras, re-

lation algebras, artificial intelligence and probabilities. Hyper structures have many
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applications to several sectors of both pure and applied sciences. In [1, 9], R.A.

Borzooei et al. applied the hyper structures to (pseudo) BCK- algebra which is

generalization of (pseudo ) BCK-algebra and investigated some related properties.

In his pionearing paper [14], Zadeh introduced the notion of a fuzzy set in a set X as

a function from X into the closed interval [0, 1]. After reading Jon’s article[10, 11], I

was motivated to generalize the concept of fuzzy sets on hyper pseudo BCK-algebra.

By doing this, I was able to achieve interesting results. Thit article is the result of

this effort. In this paper by considering notion of fuzzy set, I define the 6 types of

fuzzy hyper pseudo BCK-ideals denote by, F1, F2, ..., F6, strong fuzzy hyper pseudo

BCK-ideal on hyper pseudo BCK-algebras. Then investigate their numerous prop-

erties. Also describe the relationship between fuzzy hyper pseudo BCK-ideals and

hyper pseudo BCK-ideals of hyper pseudo BCK-algebras. I have also obtained the

relationship between the fuzzy hyper pseudo BCK-ideals. This relationship is also

shown in their lattice diagram.

2. Preliminaries

Definition 2.1. [5] A pseudo BCK-algebra is a structure X = (X, ∗, ⋄, 0), where

“ ∗ ” and “ ⋄ ” are binary operations on X and “0” is a constant element of X , that

satisfies the following;

(a1) (x ∗ y) ⋄ (x ∗ z) � z ∗ y , (x ⋄ y) ∗ (x ⋄ z) � z ⋄ y,

(a2) x ∗ (x ⋄ y) � y, x ⋄ (x ∗ y) � y,

(a3) x � x,

(a4) 0 � x,

(a5) x � y, y � x implies x = y,

(a6) x � y ⇔ x ∗ y = 0 ⇔ x ⋄ y = 0,

for all x, y, z ∈ X .

Definition 2.2. [1] A hyper pseudo BCK-algebra is a structure (H ; ◦, ∗, 0) where

“ ◦ ” and“ ∗ ” are hyper operations on H and “0” is a constant element that satisfies

the following axioms:

(PHK1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y, (x ∗ z) ∗ (y ∗ z) ≪ x ∗ y,

(PHK2) (x ◦ y) ∗ z = (x ∗ z) ◦ y,
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(PHK3) x ◦ y ≪ x, x ∗ y ≪ x,

(PHK4) x ≪ y and y ≪ x imply x = y,

for all x, y, z ∈ H , where x ≪ y ⇔ 0 ∈ x ◦ y ⇔ 0 ∈ x ∗ y and for every A,B ⊆

H, A ≪ B is defined by ∀a ∈ A, ∃b ∈ B such that a ≪ b.

Proposition 2.1. [1] In any hyper pseudo BCK-algebra H, the following holds:

(i) 0 ◦ 0 = 0, 0 ∗ 0 = 0, x ◦ 0 = x, x ∗ 0 = x,

(ii) 0 ≪ x, x ≪ x, A ≪ A,

(iii) 0 ◦ x = 0, 0 ∗ x = 0, 0 ◦ A = 0 , 0 ∗A = 0,

(iv) A ⊆ B implies A ≪ B,

(v) A ≪ 0 implies A = {0},

(vi) y ≪ z implies x ◦ z ≪ x ◦ y and x ∗ z ≪ x ∗ y,

(vii) x ◦ y = {0} implies (x ◦ z) ◦ (y ◦ z) = {0}, that is, x ◦ z ≪ y ◦ z; x ∗ y = {0}

implies (x ∗ z) ∗ (y ∗ z) = {0}, that is, x ∗ z ≪ y ∗ z,

(viii) A ◦ {0} = {0} implies A = {0}, and A ∗ {0} = {0} implies A = {0},

(ix) (A ◦ c) ◦ (B ◦ c) ≪ A ◦B, (A ∗ c) ∗ (B ∗ c) ≪ A ∗B

for all x, y, z ∈ H.

Remark 1. [1, 6], Let H be a hyper pseudo BCK-algebra. For any subset I of H

and any element y ∈ H, we denote,

(1) ∗(y, I)≪ = {x ∈ H|x ∗ y ≪ I}, (2) ∗(y, I)⊆ = {x ∈ H|x ∗ y ⊆ I},

(3) ◦(y, I)≪ = {x ∈ H|x ◦ y ≪ I}, (4) ◦(y, I)⊆ = {x ∈ H|x ◦ y ⊆ I},

(5) ∗(y, I)∩ = {x ∈ H|x ∗ y ∩ I 6= ∅}, (6) ◦(y, I)∩ = {x ∈ H|x ◦ y ∩ I 6= ∅}.

Definition 2.3. [1]Let H be a hyper pseudo BCK-algebra, ∅ 6= I ⊆ H and 0 ∈ I.

Then I is said to be a hyper pseudo BCK-ideal of

(i1) type (1), if for any y ∈ I, ∗(y, I)≪ ⊆ I and ◦(y, I)≪ ⊆ I;

(i2) type (2), if for any y ∈ I, ∗(y, I)⊆ ⊆ I and ◦(y, I)≪ ⊆ I;

(i3) type (3), if for any y ∈ I, ∗(y, I)≪ ⊆ I and ◦(y, I)⊆ ⊆ I;

(i4) type (4), if for any y ∈ I, ∗(y, I)⊆ ⊆ I and ◦(y, I)⊆ ⊆ I;

(i5) type (5), if for any y ∈ I, ∗(y, I)≪ ⊆ I or ◦(y, I)≪ ⊆ I;

(i6) type (6), if for any y ∈ I, ∗(y, I)⊆ ⊆ I or ◦(y, I)≪ ⊆ I;

(i7) type (7), if for any y ∈ I, ∗(y, I)≪ ⊆ I or ◦(y, I)⊆ ⊆ I;
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(i8) type (8), if for any y ∈ I, ∗(y, I)⊆ ⊆ I or ◦(y, I)⊆ ⊆ I;

(i9) type (9), if for any y ∈ I, ∗(y, I)≪ ∩ ◦(y, I)≪ ⊆ I;

(i10) type (10), if for any y ∈ I, ∗(y, I)⊆ ∩ ◦(y, I)≪ ⊆ I;

(i11) type (11), if for any y ∈ I, ∗(y, I)≪ ∩ ◦(y, I)⊆ ⊆ I;

(i12) type (12), if for any y ∈ I, ∗(y, I)⊆ ∩ ◦(y, I)⊆ ⊆ I.

Remark 2. . The relationship among all of types of a hyper pseudo BCK-ideals of

hyper pseudo BCK-algebras is given by the figure 1: (see [1].
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Figure 1. Lattice of hyper pseudo-BCK Ideals of hyper pseudo BCK-algebra

Definition 2.4. [6] Let H be a hyper pseudo BCK algebra, I ⊆ H and 0 ∈ I. Then

I is called a strong hyper pseudo BCK-ideal of H if for any y ∈ I, ∗(y, I)∩ ⊆ I and

◦(y, I)∩ ⊆ I.

Theorem 2.1. [6] Let H be a hyper pseudo BCK-algebra and I ⊆ H . Then I is a

strong hyper pseudo BCK-algebra of H if and only if the following hold;

(i) 0 ∈ I,

(ii) for any y ∈ I, ∗(y, I)∩ ⊆ I or for any y ∈ I, ◦(y, I)∩ ⊆ I.
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Proposition 2.2. [6] Let H be a hyper pseudo BCK-algebra. then for all nonempty

subset A and I of H, If I is a hyper pseudo BCK-ideal of type 1,2,3,5 or 9 such that

A ≪ I, then A ⊆ I.

Remark 3. From now on, in this paper we let H be a hyper pseudo BCK-algebra.

3. fuzzy Hyper Pseudo BCK-ideals

Definition 3.1. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of

type F1 of H if;

(i) x ≪ y ⇒ µ(x) ≥ µ(y),

(ii) µ(x) ≥ min{infu∈x∗yµ(u), µ(y)},

(iii) µ(x) ≥ min{infu∈x◦yµ(u), µ(y)}

for all x, y ∈ H .

Theorem 3.1. Let µ be a fuzzy set in H . Then µ is a fuzzy Hyper pseudo BCK-ideal

of type F1 of H if and only if µt = {x ∈ H : µ(x) ≥ t} is a hyper pseudo BCK-ideal

of type 1, for all t ∈ Imµ.

Proof. Let µ be a fuzzy Hyper pseudo BCK-ideal of type F1 of H and t ∈ Imµ.

Then there exist x ∈ H such that µ(x) = t. Since 0 ≪ x we get µ(0) ≥ µ(x).

That is, 0 ∈ µt. Moreover let x ∈ ∗(y, µt)
≪ (x ∈ ◦(y, µt)

≪) and y ∈ µt. As a result

x∗y ≪ µt (x◦y ≪ µt) and so for any u ∈ x∗y (u ∈ x◦y) there exist s ∈ µt such that

u ≪ s thus µ(u) ≥ µ(s) ≥ t. Hence inf{µ(u)|u ∈ x∗y} ≥ t (inf{µ(u)|u ∈ x◦y} ≥ t).

Therefore min{infu∈x∗yµ(u), µ(y)} ≥ t (min{infu∈x◦yµ(u), µ(y)} ≥ t). Since µ is

a fuzzy Hyper pseudo BCK-ideal of type F1, we get µ(x) ≥ t thus x ∈ µt. So

∗(y, µt)
≪ ⊆ µt (◦(y, µt)

≪ ⊆ µt) and this implies that, µt is a hyper pseudo BCK-

ideal of type 1.

Conversely, let x ≪ y and µ(y) = t. Therefore y ∈ µt. Combining x ≪ y and y ∈ µt,

we get {x} ≪ µt. Since µt is a hyper pseudo BCK-ideal of type 1 by Proposition

2.2, we get x ∈ µt. Hence µ(x) ≥ t = µ(y). At the end, let x, y ∈ H and put

t = min{infu∈x∗yµ(u), µ(y)}. Then y ∈ µt and for all u∈ x ∗ y, µ(u) ≥ t. Hence

x ∗ y ⊆ µt. Since µt is a hyper pseudo BCK-ideal of type 1 and y ∈ µt we get

x ∈ µt and so µ(x) ≥ min{infu∈x∗yµ(u), µ(y)}. By the similar way we can show that
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µ(x) ≥ min{infu∈x◦yµ(u), µ(y)}. Which shows µ is a fuzzy hyper pseudo BCK-ideal

of type F1 .

�

Definition 3.2. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of

type F2 of H if;

(i) µ(0) ≥ µ(x) ≥ min{infu∈x∗yµ(u), µ(y)},

(ii) µ(0) ≥ µ(x) ≥ min{infu∈x◦yµ(u), µ(y)}

for all x, y ∈ H .

Proposition 3.1. Let µ be a fuzzy set in H. Then µ is a fuzzy Hyper pseudo BCK-

ideal of type F2 of H if and only if µt is a hyper pseudo BCK-ideal of type 4 of H,

for all t ∈ Imµ.

Proof. Let t ∈ Imµ. Therefore there exist x ∈ H such that µ(x) = t. Since µ is a

fuzzy hyper pseudoo BCK-ideal of type F2, we get µ(0) ≥ µ(x) = t hence 0 ∈ µt.

Moreover, let x, y ∈ H and x ∗ y ⊆ µt therefore for all a ∈ x ∗ y, µ(a) ≥ t and so

inf{µ(a)|a ∈ x ∗ y} ≥ t. Thus min{infa∈x∗yµ(a), µ(y)} ≥ t. Since µ is a fuzzy hyper

pseudo BCK-ideal of type F2, we get µ(x) ≥ t and so x ∈ µt that is, ∗(y, µt)
⊆ ⊆ µt.

In the similar way it is shown that ◦(y, µt)
⊆ ⊆ µt. This implies that µt is a hyper

psedo BCK-ideal of type 4. The proof of converse similar to the proof of Theorem

3.1. �

Proposition 3.2. Every fuzzy Hyper pseudo BCK-ideal of type F1 of H is a fuzzy

Hyper pseudo BCK-ideal of type F2 of H.

Proof. The proof is straightforward. �

In the following examples at first we give an example of fuzzy hyper pseudo BCK-

ideal of type F1 and then we show that; the converse of proposition 3.2, is not correct

in general.

Example 3.1. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H are defined

as follows;
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◦ 0 a b

0 {0} {0} {0}

a {a} {0,a} {0,a}

b {b} {b} {0,b}

∗ 0 a b

0 {0} {0} {0}

a {a} {0,a} {0,a}

b {b} {b} {0,a}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. Define µ as follows;

(i) Define;

µ(x) =



















1 if x = 0

1/2 if x = a

0 if x = b.

Then µ, is a fuzzy hyper pseudo BCK-ideal of type F1 .

(ii) Define;

µ(x) =



















1 if x = 0

1/2 if x = b

0 if x = a.

Then µ, is a fuzzy hyper pseudo BCK-ideal of type F2 of H but, it is not a fuzzy

hyper pseudo BCK-ideal of type F1, since a ≪ b, while 0 = µ(a) 6≥ µ(b) = 1/2 .

Definition 3.3. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of

type F3 of H if;

(i) ∀x, y ∈ H, x ≪ y ⇒ µ(x) ≥ µ(y),

(ii) ∀x, y ∈ H, µ(x) ≥ min{infu∈x∗yµ(u), µ(y)}

or

(iii) ∀x, y ∈ H, µ(x) ≥ min{infu∈x◦yµ(u), µ(y)}.

Theorem 3.2. Let µ be a fuzzy set in H . Then µ is a fuzzy Hyper pseudo BCK-

ideal of type F3 of H if and only if µt is a hyper pseudo BCK-ideal of type 5, for all

t ∈ Imµ.

Proof. Assume that µ be a fuzzy Hyper pseudo BCK-ideal of type F3 and t ∈ Imµ

therefore there exist x ∈ H such that µ(x) = t. Since 0 ≪ x by Definition 3.3(i),

µ(0) ≥ µ(x) = t. That is, 0 ∈ µt. In the following, we will show that, if µ holds the

condition (ii) in Definition 3.3, then for every y ∈ µt, ∗(y, µt)
≪ ⊆ µt and if µ holds
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the condition (iii) in Definition 3.3, then for every y ∈ µt, ◦(y, µt)
≪ ⊆ µt. Without

loss of generality, we assume that µ holds the condition (ii) in Definition 3.3. Let

x ∈ ∗(y, µt)
≪ where, y ∈ µt. Then x ∗ y ≪ µt. Therefore for any a ∈ x ∗ y, there

exist u ∈ µt such that a ≪ u. By condition (i) in Definition 3.3, µ(a) ≥ µ(u) ≥ t.

Hence infa∈x∗yµ(a) ≥ t. Since µ(y) ≥ t, we get min{infu∈x∗yµ(u), µ(y)} ≥ t. By

condition (ii) in Definition 3.3, we have µ(x) ≥ t. So x ∈ µt hence µt is a hyper

pseudo BCK-ideal of type 5.

Conversely, let µt is a hyper pseudo BCK-ideal of typy 5 of H for all t ∈ Imµ.

Suppose that x, y ∈ H, x ≪ y and µ(y) = t. Combining x ≪ y, y ∈ µt, we get {x} ≪

µt. Since µt is a hyper pseudo BCK-ideal of type 5 by Proposition 2.2, {x} ⊆ µt.

Therefore x ∈ µt and so µ(x) ≥ µ(y). Without loss of generality we assume that

∀y ∈ µt, ∗(y, µt)
≪ ⊆ µt and we show that ∀x ∈ H, µ(x) ≥ min{infu∈x∗yµ(u), µ(y)}.

For this, let x, y ∈ H and put t = min{infa∈x∗yµ(a), µ(y)}. Then y ∈ µt and for any

u∈ x ∗ y, µ(u) ≥ t. Hence x ∗ y ⊆ µt. Since µt is a hyper pseudo BCK-ideal of type

5 and y ∈ µt we get x ∈ µt and so µ(x) ≥ min{infu∈x∗yµ(u), µ(y)}. Which shows µ

is a fuzzy hyper pseudo BCK-ideal of type F3. �

Proposition 3.3. Every fuzzy Hyper pseudo BCK-ideal of type F1 of H is a fuzzy

Hyper pseudo BCK-ideal of type F3 of H.

Proof. By Definitions 3.1 and 3.3, the proof is straightforward. �

In the following examples we show that;

(i) A fuzzy hyper pseudo BCK-ideal of type F3 is not fuzzy hyper pseudo BCK-

ideal of type F1, nor of type F2 in general,

(ii)A fuzzy hyper pseudo BCK-ideal of type F2 is not fuzzy hyper pseudo BCK-ideal

of type F3 in general.

Example 3.2. (i) Let H = {0, a, b, c, d}. Hyper operations “◦” and “∗” on H given
by the following tables:

◦ 0 a b c d

0 {0} {0} {0} {0} {0}

a {a} {0, a} {0, a} {0, a} {0, a}

b {b} {b} {0, b} {0, a, b} {0, a, b}

c {c} {c, b} {b, d} {0, a, b, d} {b, d}

d {d} {d} {d} {0, d} {0, d}

∗ 0 a b c d

0 {0} {0} {0} {0} {0}

a {a} {0, a} {0, a} {0, a} {0, a}

b {b} {b} {0, a, b} {0, b} {0, a, b}

c {c} {c} {a, c} {0, c} {a, b, c}

d {d} {d} {d} {0, d} {0, d}
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Then (H, ∗, ◦, 0) is a hyper pseudo BCK-algebra. Define fuzzy set µ as follow:

µ(x) =



























1 if x = 0 or a

1/2 if x = b

1/3 if x = d

0 if x = c.

It is easy to see that µ, is a fuzzy hyper pseudo BCK-ideal of type F3 and it is not

fuzzy hyper pseudo BCK-ideal of type F1, nor of type F2. Becuase, c ◦ b = {b, d}

and

µ(c) = 0 6≥ min{inf{µ(b), µ(d)}, µ(b)} = {inf{1/2, 1/3}, 1/2} = 1/3

(ii) fuzzy set µ in Example 3.1 (ii), is a fuzzy hyper pseudo BCK-ideal of type F2

and it is not fuzzy hyper pseudo BCK-ideal of type F3.

Definition 3.4. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of

type F4 of H if;

(i) ∀x ∈ H, µ(0) ≥ µ(x) ≥ min{infu∈x∗yµ(u), µ(y)}

or

(ii) ∀x ∈ H, µ(0) ≥ µ(x) ≥ min{infu∈x◦yµ(u), µ(y)}.

Theorem 3.3. Let µ be a fuzzy set in H . Then µ is a fuzzy Hyper pseudo BCK-

ideal of type F4 of H if and only if µt is a hyper pseudo BCK-ideal of type 8, for all

t ∈ Imµ.

Proof. The proof is similar to the proof of theorem 3.2, by some modification.

�

Proposition 3.4. Every fuzzy Hyper pseudo BCK-ideal of type F1, F2, F3 of H is a

fuzzy Hyper pseudo BCK-ideal of type F4 of H.

Proof. The proof is straightforward. �

In the following example, we show that the converse of Proposition 3.4, is not

correct in general.
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Example 3.3. Let H be a hyper pseudo BCK-algebra defind in Example 3.2, Define

the fuzzy subset µ of H by;

µ(x) =



























1 if x = 0 or a

1/3 if x = b

1/2 if x = d

0 if x = c.

It is easy to see that µ, is a fuzzy hyper pseudo BCK-ideal of type F4 and it is not

a fuzzy hyper pseudo BCK-ideal of type F1, nor of type F2. Because,

µ(c) = 0 6≥ min{inf{µ(b), µ(d)}, µ(b)} = {inf{1/2, 1/3}, 1/2} = 1/3.

Since b ≪ d, µ(d) ≥ µ(b) we get µ is not a fuzzy hyper pseudo BCK-ideal of type F3.

Definition 3.5. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of

type F5 of H if;

(i) ∀x, y ∈ H, x ≪ y ⇒ µ(x) ≥ µ(y),

(ii) ∀x, y ∈ H, µ(x) ≥ min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)}

Theorem 3.4. Let µ be a fuzzy set in H . Then µ is a fuzzy Hyper pseudo BCK-ideal

of type F5 of H if and only if µt is a hyper pseudo BCK-ideal of type 9 of H , for all

t ∈ Imµ.

Proof. Let µ be a fuzzy Hyper pseudo BCK-ideal of type F5 and t ∈ Imµ. Therefore

there exist x ∈ H such that µ(x) = t. By Definition 3.5(i), and µ(0) ≥ µ(x) = t we

get, 0 ∈ µt. Now, let x ∈ ∗(y, µt)
≪∩◦(y, µt)

≪, where y ∈ µt then x∗y ≪ µt, x◦y ≪ µt.

Therefore for any a ∈ x ∗ y, there exist u ∈ µt such that a ≪ u and for any

b ∈ x ◦ y there exist v ∈ µt such that b ≪ v. regarding condition (i) in Defini-

tion 3.5, µ(a) ≥ µ(u) ≥ t, µ(b) ≥ µ(v) ≥ t for all, a ∈ x ∗ y, b ∈ x ◦ y. Hence

infa∈x∗yµ(a) ≥ t, infµ(b)b∈x◦y ≥ t and so min{infa∈x∗yµ(a), infb∈x◦yµ(b)} ≥ t. Since

µ(y) ≥ t, we get min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)} ≥ t. By condition (ii)

in Definition 3.5, we have µ(x) ≥ t. Therefore x ∈ µt and this implies that µt is a

hyper pseudo BCK-ideal of type 9.

Conversely, let for all t ∈ Imµ, µt is a hyper pseudo BCK-ideal of typy 9 of H .
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at first, let x, y ∈ H, x ≪ y and µ(y) = t. Combining x ≪ y, y ∈ µt, we get

{x} ≪ µt. Since µt is a hyper pseudo BCK-ideal of type 9 by Proposition 2.2,

{x} ⊆ µt. Therefore x ∈ µt and so µ(x) ≥ µ(y) = t. Let x, y ∈ H and put

t = min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)}, since µ(y) ≥ t we get y ∈ µt.

Also for every a ∈ x ∗ y, and b ∈ x ◦ y, we have µ(a) ≥ t, µ(b) ≥ t. Hence

x ∗ y, x ◦ y ⊆ µt Therefore x ∗ y, x ◦ y ≪ µt Thus x ∈ ∗(y, µt) ∩ ◦(y, µt). Since

µt is a hyper pseudo BCK-ideal of type 9 and y ∈ µt we get x ∈ µt and so

min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)}. Which shows µ is a fuzzy hyper pseudo

BCK-ideal of type F5. �

Proposition 3.5. Every fuzzy Hyper pseudo BCK-ideal of type F3 of H is a fuzzy

Hyper pseudo BCK-ideal of type of type F5 of H.

Proof. Let µ be a fuzzy hyper pseudo BCK-ideal of type F3. Then it is clear that

condition (i) in Definition 3.5, holds. Let (ii), in Definition 3.5, is not correct, that

is, there exist x ∈ H such that µ(x) < min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)}.

Therefore µ(x) < min{infa∈x∗yµ(a), infb∈x◦yµ(b)} and µ(x) < µ(y). Hence µ(x) <

infa∈x∗yµ(a), µ(x) < infb∈x◦yµ(b) and so µ(x) < min{infa∈x∗yµ(a), µ(y)} and µ(x) <

min{infa∈x◦yµ(a), µ(y)}. This implies that µ is not a fuzzy hyper pseudo BCK-ideal

of type F3, which is contradiction. This contradiction shows that any fuzzy hyper

pseudo BCK-ideal of type F3 is a fuzzy hyper pseudo BCK-ideal of type F5. �

In the following example we show that a fuzzy hyper pseudo BCK-ideal of type

F5 is not fuzzy hyper pseudo BCK-ideal of type F3 in general.

Example 3.4. Let H = {0, a, b, c} and operations ” ∗ ” and ” ◦ ” on H are defined

as follows;

◦ 0 a b c

0 {0} {0} {0} {0}

a {a} {0} {a} {0}

b {b} {b} {0} {0}

c {c} {b} {c} {0}

∗ 0 a b c

0 {0} {0} {0} {0}

a {a} {0} {a} {0}

b {b} {b} {0} {0}

c {c} {c} {a} {0}
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Then (H, ∗, ◦, 0) is a hyper pseudo BCK-algebra. Define fuzzy set µ as follows;

µ(x) =



















1 if x = 0

1/2 if x = a or b

0 if x = c.

Then µ, is a fuzzy hyper pseudo BCK-ideal of type F5 and it is not of type F3.

Because,

µ(c) = 0 6≥ min{inft∈c◦aµ(t), µ(a)} = min{µ(b), µ(a)} = 1/2

and

µ(c) = 0 6≥ min{inft∈c∗bµ(t), µ(b)} = min{µ(a), µ(b)} = 1/2.

Definition 3.6. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of type

F6 of H if ∀x, y ∈ H, µ(0) ≥ µ(x) ≥ min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)}.

Theorem 3.5. Let µ be a fuzzy set in H . Then µ is a fuzzy Hyper pseudo BCK-

ideal of type F6 of H if and only if µt is a hyper pseudo BCK-ideal of type 12, for

all t ∈ Imµ.

Proof. Let µ be a fuzzy Hyper pseudo BCK-ideal of type F6 and t ∈ Imµ. Therefore,

there exist x ∈ H such that µ(x) = t. Since µ(0) ≥ µ(x) = t, we get 0 ∈ µt.

Now let x ∈ ∗(y, µt)
⊆ ∩ ◦(y, µt)

⊆ then x ∗ y ⊆ µt, x ◦ y ⊆ µt. Hence for all a ∈

x ∗ y, b ∈ x ◦ y, µ(a), µ(b) ≥ t. Therefore infa∈x∗yµ(a) ≥ t, infb∈x◦yµ(b) ≥ t and so

min{infµ(a)a∈x∗y , infb∈x◦yµ(b)} ≥ t. Since µ(y) ≥ t we get

min{min{infa∈x∗yµ(a), infb∈x◦yµ(b)}, µ(y)} ≥ t.

Therefore µ(x) ≥ t and so x ∈ µt. That is µt is a hyper pseudo BCK-ideal of type

12.

Conversely, the proof is similar to the proof of Theorem 3.4, by some modification. �

Proposition 3.6. (i) Every fuzzy Hyper pseudo BCK-ideal of type F4 of H is a

fuzzy Hyper pseudo BCK-ideal of type of type F6 of H.

(ii) Every fuzzy Hyper pseudo BCK-ideal of type F5 of H is a fuzzy Hyper pseudo

BCK-ideal of type of type F6 of H.
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Proof. (i)The proof of this proposition is similar to the proof of Proposition 3.5, by

some modification.

(ii) The proof is straightforward. �

In the following examples we show that the converse of Proposition 3.6, is not

correct in general.

Example 3.5. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H are defined

as follows:

◦ 0 a b

0 {0} {0} {0}

a {a} {0} {0}

b {b} {b} {0,b}

∗ 0 a b

0 {0} {0} {0}

a {a} {0,a} {0,a}

b {b} {b} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. Define µ as follows

µ(x) =







1 if x = 0 or b

1/2 if x = a.

Then µ, is a fuzzy hyper pseudo BCK-ideal of type F6 and it is not of type F5.

Because, a ≪ b and µ(a) = 1/2 6≥ µ(b) = 1.

(ii) Consider hyper pseudo BCK-algebra H and fuzzy hyper pseudo BCK-ideal µ

in Example 3.4, then µ is a fuzzy hyper pseudo BCK-ideal of type F6 and it is not

hyper pseudo BCK-ideal of type F4.

In the figure 2, we show the relationship among all types of fuzzy hyper pseudo

BCK-ideals.

Definition 3.7. A fuzzy set µ in H is called a fuzzy Hyper pseudo BCK-ideal of

(i) type, F3∗ of H if, ∀x ∈ H, µ(0) ≥ µ(x) ≥ min{infu∈x∗yµ(u), µ(y)},

(ii) type, F3◦ of H if, ∀x ∈ H, µ(0) ≥ µ(x) ≥ min{infu∈x◦yµ(u), µ(y)},

Theorem 3.6. let µ be a fuzzy set on H . If,

(i) µ is a fuzzy Hyper pseudo BCK-ideal of type F3∗ of H then µt is a hyper

pseudo BCK-ideal of type 6.

(ii) µ is a fuzzy Hyper pseudo BCK-ideal of type F3◦ of H then µt is a hyper

pseudo BCK-ideal of type 7. for all t ∈ Imµ
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F1

✻
F2

✻

F4

✻
F6

�
�✒
F3

✻

F5

❅
❅■

❅
❅■

Figure 2. Lattice of fuzzy hyper pseudo BCK- Ideals of hyper pseudo

BCK-algebra

Proof. The proof of this theorem is similar to the proof of Theorem 3.2, by some

modification. �

Example 3.6. (i) LetH and µ be a hyper pseudo BCK-algebra and fuzzy hyper

pseudo BCK-ideal, defind in Example 3.2. It is easy to check that µ, is a

fuzzy hyper pseudo BCK-ideal of type F3∗ . Since c ◦ b = {b, d} we get

µ(c) = 0 6≥ min{inf{µ(b), µ(d)}, µ(b)} = {inf{1/2, 1/3}, 1/2} = 1/3.

and so µ, is not fuzzy hyper pseudo BCK-ideal of type F3◦

(ii) LetH = {0, a, b, c, d}. By replacing Hyper operations “∗” and “◦” in Example

3.2. We can see that,

µ(x) =



























1 if x = 0 or a

1/2 if x = b

1/3 if x = d

0 if x = c.

Is a fuzzy hyper pseudo BCK-ideal of typeF3◦ . Since c ∗ b = {b, d} we get

µ(c) = 0 6≥ min{inf{µ(b), µ(d)}, µ(b)} = min{inf{1/2, 1/3}, 1/2} = 1/3.

This implies that µ, is not fuzzy hyper pseudo BCK-ideal of type F3∗

Definition 3.8. A fuzzy set µ in H is called a fuzzy strong hyper pseudo BCK-ideal

of H if,

(i) ∀x, y ∈ H, µ(0) ≥ µ(x) ≥ min{supu∈x∗yµ(u), µ(y)}
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or

(ii) ∀x, y ∈ H, µ(0) ≥ µ(x) ≥ min{supu∈x◦yµ(u), µ(y)}.

Proposition 3.7. Let µ be a fuzzy strong hyper pseudo BCK-ideal of H. Then for

all x, y ∈ H;

(i) x ≪ y implies that µ(y) ≤ µ(x),

(ii) infa∈x∗xµ(a) ≥ µ(x) for all x ∈ H,

(iii) infa∈x◦xµ(a) ≥ µ(x) for all x ∈ H,

(iv) µ(x) ≥ min{µ(a), µ(y)} for all a ∈ x ◦ y, a ∈ x ∗ y.

Proof. (i) Let x ≪ y then 0 ∈ x ∗ y. combining µ(0) ≥ µ(x) and 0 ∈ x ∗ y we get

µ(0) = supu∈x◦yµ(u). Thereforemin{supu∈x∗yµ(u), µ(y)} = min{µ(0), µ(y)} =

µ(y). By Definition 3.8(i), we get, µ(x) ≥ µ(y).

(ii) Since x ∗ x ≪ {x}, ∀a ∈ x ∗ x, a ≪ x. and so ∀a ∈ x ∗ x, µ(a) ≥ µ(x).

Therefore, infa∈x∗xµ(a) ≥ µ(x), which implies that (ii) is true .

(iii) The proof of (iii) is similar to the proof of (ii).

(iv) Let x, y ∈ H . Since for all a ∈ x∗y (a ∈ x◦y), µ(x) ≥ min{supu∈x∗yµ(u), µ(y)} (µ(x) ≥

min{supu∈x◦yµ(u), µ(y)}) we get (iv), is true.

�

Corollary 3.1. Every fuzzy strong hyper pseudo BCK-ideal is a fuzzy hyper pseudo

BCK-ideal of type F1.

Proof. By Preoposition 3.7 (iv), the proof is straightforward. �

Theorem 3.7. Let µ be a fuzzy strong hyper pseudo BCK-ideal. Then µt is a strong

hyper pseudo BCK-ideal for all t ∈ Imµ.

Proof. Let t ∈ Imµ. Therefore there exist x ∈ H such that µ(x) = t. Since µ(0) ≥

µ(x) we get 0 ∈ µt. Now, we show that ∗(y, µt)
∩ ⊆ µt for all y ∈ µt. For this, let

a ∈ x∗y∩µt. Then a ∈ x∗y, a ∈ µt. Since µ(a) ≥ t we conclude that, sup µ(b)b∈x∗y ≥

t. combining supb∈x∗yµ(b) ≥ t and µ(y) ≥ t, we get min {supb∈x∗yµ(b), µ(y)} ≥ t.

According to µ is a fuzzy strong hyper pseudo BCK-ideal we get µ(x) ≥ t and so

x ∈ µt. Therefore ∗(y, µt)
∩ ⊆ µt. By Theorem 2.1, µt is a strong hyper pseudo

BCK-ideal. �
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In the following examples at first we give fuzzy strong hyper pseudo BCK- ideal

on H . Then with an example we show that any fuzzy hyper pseudoBCK- ideal of

type F1 is not fuzzy strong hyper pseudoBCK- ideal in general.

Example 3.7. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H are

defined as follows:

◦ 0 a b

0 {0} {0} {0}

a {a} {0,a} {0}

b {b} {b} {0}

∗ 0 a b

0 {0} {0} {0}

a {a} {0,a} {0,a}

b {b} {b} {0,a,b}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK–algebra. Define fuzzy set µ as

follows:

µ(x) =







1 if x = 0 or a

0 if x = b.

It is easy to chek that µ, is a fuzzy strong hyper pseudo BCK-ideal.

(ii) Let H = {0, a, b, c, d, e}. Hyperoperations “∗” and “◦” given by the following
tables:

◦ 0 a b c d e

0 {0} {0} {0} {0} {0} {0}

a {a} {0, a} {0, a} {0, a} {0, a} {0, a}

b {b} {b} {0, b} {0, a, b} {0, a, b} {0, b}

c {c} {c, b} {b, d} {0, a, b, d} {b, d} {0, a, b, d}

d {d} {d} {d} {0, d} {0, d} {0, d}

e {e} {e} {e} {e, d} {e, d} {0, e}

∗ 0 a b c d e

0 {0} {0} {0} {0} {0} {0}

a {a} {0, a} {0, a} {0, a} {0, a} {0, a}

b {b} {b} {0, a, b} {0, b} {0, a, b} {0, b}

c {c} {c} {a, c} {0, c} {a, b, c} {0, c}

d {d} {d} {d} {0, d} {0, d} {0, d}

e {e} {e} {e} {e, d} {e, d} {0, e}

Then (H, ∗, ◦, 0), is a hyper pseudo BCK-algebra. Define fuzzy set µ as follow:

µ(x) =







1 if x 6= e

0 if x = e.
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Then µ, is a fuzzy hyper pseudo BCK-ideal of type 1, but it is not fuzzy

strong hyper pseudo BCK-ideal. Becuase e ∗ d = {e, d} and

0 = µ(e) 6≥ min{sup{µ(e), µ(d)}, µ(d)} = min{sup{0, 1}, 1} = 1

.

Conclusion

To conclude, having known that hyper pseudo BCK-algebra is generalization of

hyper BCK-algebra and pseudo BCK-algebra, we aim to generalize the notion of

fuzzy sets on pseudo BCK-algebras and hyper BCK-algebras in to hyper pseudo

BCK-algebras. For this purpose, we have considerd notion fuzzy sets on hyper

pseudo BCK-algebras and defined some new fuzzy hyper pseudo BCK- ideals on

hyper pseudo BCK-algebras. we defined fuzzy hyper pseudo BCK-ideals in such a

way that their α-cuts (µα) would be hyper psedo BCK-ideals. We also were able to

obtain the relationship between the fuzzy hyper pseudo BCK-ideals and show this

relationship with their lattice diagram.

We note that if “∗”=“◦” for all x, y ∈ H then any fuzzy hyper pseudo BCK-ideal of

types F1, F3, F5 is a fuzzy hyper BCK-ideal and any fuzzy hyper pseudo BCK-ideal

of types F2, F4, F6 is a fuzzy weak hyper BCK-ideal in H . Also, If x ∗ y, x ◦ y are

singelton for all x, y ∈ H , then any fuzzy hyper pseudo BCK-ideal of types F1, F2 is

a fuzzy pseudo BCK-ideal.

We hope that this results are helpful to futher studies in fuzzy set and fuzzy ideals.
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