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UNIQUENESS OF ALGEBROID FUNCTIONS CONCERNING

NEVANLINNA’S FIVE-VALUE THEOREM ON ANNULI

ASHOK MEGHAPPA RATHOD

Abstract. In this paper, we prove a uniqueness theorem of derivative’s of alge-

broid functions on annuli which improve and generalize the Navenlinna’s five-value

theorem for algebroid functions on annuli.

1. Introduction

The uniqueness theory of algebroid functions is an interesting problem in the

Nevanlinna theory. The uniqueness problem of algebroid functions was first consid-

ered by Valiron, afterwards several scholars have got uniqueness theorems of algebroid

functions in the complex plane C (see [3]-[25] and [14]-[48]). In 2005, Khrystiyanyn-

Kondratyuk (see [21] and [22]) built the Nevanlinna Theory for meromorphic func-

tions on annuli. Applying the Nevanlinna Theory for meromorphic functions on

annuli, uniqueness questions of meromorphic functions sharing some values on annuli

have been recently treated as well ([23]). Recently Tan-Zhang [13] built the fun-

damental theorems of algebroid functions on annuli. Combining these fundamental

theorems and the notion of the weakly shared value, [11] first studied the uniqueness

questions of algebroid functions on annuli. Thus we consider the uniqueness problem

of algebroid functions in multiply connected domains. By Doubly connected mapping

theorem [24] each doubly connected domain is conformally equivalent to the annulus

{z : r < |z| < R}, 0 ≤ r < R ≤ +∞. We consider only two cases : r = 0, R = +∞
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simultaneously and 0 ≤ r < R ≤ +∞. In the latter case the homothety z 7→ z
rR

reduces the given domain to the annulus A

(
1
R0
, R0

)
=
{
z : 1

R0
< |z| < R0

}
, where

R0 =
√

R
r
. Thus, in two cases every annulus is invariant with respect to the inversion

z 7→ 1
z
.

2. Basic Notations and Definitions

We assume that the reader is familiar with the Nevanlinna theory of meromorphic

functions and algebroid functions (see [7],[8] and [10]).

Let Av, Av−1, ..., A0 be a group of analytic functions which have no common zeros

and define on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞),

(2.1) ψ(z, w) = Avw
v + Av−1w

v−1 + ... + A1w + A0(z) = 0.

Then irreducible equation (2.1) defines a ν-valued algebroid function on the annulus

A

(
1
R0
, R0

)
(1 < R0 ≤ +∞).

Let w be a ν-valued algebroid function on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞),

we use the following notations

m(r, w) =
1

ν

ν∑

j=1

m(r, wj) =
1

ν

ν∑

j=1

1

2π

∫ 2π

0

log+ |wj(re
iθ)|dθ,

N1(r, w) =
1

ν

∫ 1

1
r

n1(t, w)

t
dt, N2(r, w) =

1

ν

∫ r

1

n2(t, w)

t
dt,

N 1

(
r,

1

w − a

)
=

1

ν

∫ 1

1
r

n1

(
t, 1

w−a

)

t
dt, N 2

(
r,

1

w − a

)
=

1

ν

∫ r

1

n2

(
t, 1

w−a

)

t
dt,

m0(r, w) = m(r, w) +m

(
1

r
, w

)
− 2m(1, w), N0(r, w) = N1(r, w) +N2(r, w),

N 0

(
r,

1

w − a

)
= N1

(
r,

1

w − a

)
+N 2

(
r,

1

w − a

)
,

where wj((j = 1, 2, ..., ν) is one valued branch of w, n1(t, w) is the counting function

of poles of the function w in {z : t < |z| ≤ 1} and n2(t, w) is the counting function of

poles of the function w in {z : 1 < |z| ≤ t} (both counting multiplicity).n1

(
t, 1

w−a

)
is

the counting function of poles of the function 1
w−a

in {z : t < |z| ≤ 1} and n2

(
t, 1

w−a

)

is the counting function of poles of the function 1
W−a

in {z : 1 < |z| ≤ t} (both

ignoring multiplicity). n
k)
1

(
t, 1

w−a

) (
n
(k
1

(
t, 1

w−a

))
is the counting function of poles of
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the function 1
w−a

with multiplicity ≤ k (or > k) in {z : t < |z| ≤ 1}, each point

count only once; n
k)
2

(
t, 1

w−a

) (
n
(k
2

(
t, 1

w−a

))
is the counting function of poles of the

function 1
w−a

with multiplicity ≤ k (or > k) in {z : 1 < |z| ≤ t}, each point count

only once, respectively.

Definition 2.1. [12] Let w be an algebroid function on the annulus A

(
1
R0
, R0

)

(1 < R0 ≤ +∞), the function

T0(r, w) = m0(r, w) +N0(r, w), 1 ≤ r < R0

is called Nevanlinna characteristic of w.

Definition 2.2. For B ⊂ A and a ∈ C ∪∞, we denote by N
B

0 (r,
1

w−a
) the reduced

counting function of those zeros of w − a on A, which belong to the set B.

In 1930, Valiron [1] firstly began to study the uniqueness questions of algebroid

functions ( cf.[1]), and proved the following result:

Theorem 2.1. Let w = w(z) and ŵ = ŵ(z) be two ν-valued algebroid functions,

and let a1, a2, · · · , a4ν , a4ν+1 be 4ν +1 distinct values in the extended complex plane

C ∪ {∞}. If w = w(z) and ŵ = ŵ(z) share aj CM for 1 ≤ j ≤ 4ν + 1, then w = ŵ.

Later on, He[2] proved the following result that improved Theorem 2.1:

Theorem 2.2. Let w = w(z) and ŵ = ŵ(z) be ν-valued and µ-valued algebroid

functions respectively, where µ and ν are two positive integers satisfying µ ≤ ν, and

let a1, a2, · · · , a4ν , a4ν+1 be 4ν + 1 distinct values in the extended complex plane

C ∪ {∞}. If w = w(z) and ŵ = ŵ(z) share aj IM for 1 ≤ j ≤ 4ν + 1, then w = ŵ.

Recently Tan-Zhang [13] built the fundamental theorems of algebroid functions on

annuli. Combining these fundamental theorems and the notion of the weakly shared

value, [13] first studied the uniqueness questions of algebroid functions on annuli, and

proved the following results:

Theorem 2.3. Let w = w(z) and ŵ = ŵ(z) be ν-valued and µ-valued algebroid

functions on the annulus A
(

1
R0
, R0

)
=
{
z : 1

R0
< |z0| < R0

}
with 1 < R0 ≤ +∞,
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where ν and µ are positive integers satisfying µ ≤ ν, let a1, a2, · · · , ap be p distinct

finite complex values, and let k1, k2, · · · , kp be p positive integers. If

Ekj)(aj , w) = Ekj)(aj , ŵ),

p∑

j=1

kj

kj + 1
− 2ν

2k + 1

k + 1
≤ 0

and

1

k + 1

p∑

j=1

∆(aj , w, ŵ) > 2ν
2k + 1

k + 1
−

p∑

j=1

kj

kj + 1

with k = max
1≤j≤p

{kj}, then w = ŵ.

Theorem 2.4. [11] Let w = w(z) and ŵ = ŵ(z) be ν-valued and µ-valued algebroid

functions on the annulus A
(

1
R0
, R0

)
=
{
z : 1

R0
< |z0| < R0

}
with 1 < R0 ≤ +∞,

where ν and µ are positive integers satisfying µ ≤ ν, let a1, a2, · · · , ap be p distinct

finite complex values, and let k1, k2, · · · , kp be p positive integers such that k1 ≥ k2 ≥

· · · ≥ kp, where p is a positive integer satisfying p ≥ 2ν+1. If Ekj)(aj , w) = Ekj)(aj , ŵ)

for 1 ≤ j ≤ p, then w = ŵ.

3. Some Lemmas

Lemma 3.1. [21] (Jensen theorem for meromorphic function on annuli) Let f be a

meromorphic function on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), then

N0

(
r,

1

f

)
−N0(r, f) =

1

2π

∫ 2π

0

log |f(reiθ)|dθ +
1

2π

∫ 2π

0

log

∣∣∣∣f
(
1

r
eiθ
)∣∣∣∣ dθ

−
1

2π

∫ 2π

0

log |f(eiθ)|dθ,

where 1 ≤ r < R0.

Lemma 3.2. [11] (The first fundamental theorem on annuli) Let w be ν-valued al-

gebroid function which is determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤

+∞), a ∈ C

m0(r, a) +N0(r, a) = T0 (r, w) +O(1).

Lemma 3.3. [11] (The second fundamental theorem on annuli). Let W be ν-valued

algebroid function which is determined by (2.1) on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤



NEVANLINNA’S FIVE-VALUE THEOREM FOR ALGEBROID FUNCTION ON ANNULI 403

+∞), ak (k = 1, 2, .., p) are p distinct complex numbers (finite or infinite), then we

have

(3.1) (p− 2v)T0 (r, w) ≤

p∑

k=1

N0

(
r,

1

w − ak

)
−N1(r, w) + S0(r, w)

or

(3.2) (p− 2v)T0 (r, w) ≤

p∑

k=1

N 0

(
r,

1

w − ak

)
+ S0(r, w).

Lemma 3.4. [11] Let w be ν-valued algebroid function which is determined by (2.1)

on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), if the following conditions are satisfied

lim inf
r→∞

T0 (r, w)

log r
<∞, R0 = +∞,

lim inf
r→R−

0

T0 (r, w)

log 1
(R0−r)

<∞, R0 < +∞,

then w is an algebraic function.

Remark 1. [11] Let w be a ν-valued algebroid function which is determined by (2.1)

on the annulus A

(
1
R0
, R0

)
, where 1 < R0 ≤ +∞ and ŵ be a µ-valued algebroid

functions which is determined by the following equation on the annulus A

(
1
R0
, R0

)
,

where 1 < R0 ≤ +∞,

ϕ(z, ŵ) = Bµŵ
µ +Bµ−1ŵ

µ−1 + ... +B1ŵ +B0(z) = 0.

Without loss of generality, let µ ≤ ν, n∆(r, a) denotes the counting function of the

common values of w = a and ŵ = a on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞),

ignoring multiplicity. And let

N∆(r, a) =
µ+ ν

2µν

∫ 1

1
r

n∆1(t, a)

t
dt+

µ+ ν

2µν

∫ r

1

n∆2(t, a)

t
dt

N12(r, a) = N0

(
r,

1

w − a

)
+N0

(
r,

1

ŵ − a

)
− 2N∆(r, a).

Let w be an algebroid function on the annulus A
(

1
R0
, R0

)
, where 1 < R0 ≤ +∞,

and a be a complex number in the extended complex plane. Write E(a, w) = {z ∈

A : w− a = 0}, where each zero with multiplicity m is counted m times. If we ignore

the multiplicity, then the set is denoted by E(a, w). We use Ek)(a, w) to denote the

set of zeros of w − a with multiplicities not greater than k, in which each zero is
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counted only once.

In this paper, we say that two algebroid functions on the annulus A

(
1
R0
, R0

)

(1 < R0 ≤ +∞), share a function a if we have w − a = 0 if and only if ŵ − a = 0.

Now we consider the case that two algebroid function partially share small functions.

Definition 3.1. Let w be an algebroid function on the annulus A

(
1
R0
, R0

)
(1 <

R0 ≤ +∞) and a be a small function of w. We define

E(a, w) = {z|w − a = 0}

in which each zero is counted only once.

Lemma 3.5. Let w be ν-valued algebroid function which is determined by (2.1) on

the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞) and a1, a2, ..., aq be q(≥ 2ν + 1) distinct

complex numbers. If for a non-negative integer n, E(0;w) ⊆ E(0, w(n)), then

(q − 2ν + o(1))T0(r, w) ≤

q∑

j=1

N 0

(
r,

1

w(n) − aj

)
.

Proof. By Nevanlinna’s first fundamental theorem for algebroid functions on annuli,

we have

T0(r, w) = T0

(
r,

1

w

)
+O(1)

≤ N0

(
r,

1

w

)
+m0

(
r,
w(n)

w

)
+m0

(
r,

1

w(n)

)
+O(1)

≤ N0

(
r,

1

w

)
+ T0(r, w

(n))−N0

(
r,

1

w(n)

)
+ S0(r, w).(3.3)

By the Nevanlinna’s second fundamental theorem for algebroid functions on annuli,

we get

(q − 1)T0(r, w
(n)) ≤ N0(r, w

(n)) +

q−1∑

j=1

N 0

(
r,

1

w(n) − aj

)
+N 0

(
r,

1

w(n)

)
+ S0(r, w).

Without loss of generality, we may assume that aq = 0. Otherwise a suitable linear

transformation is done. Then the above inequality reduces to

(q − 1)T0(r, w
(n)) ≤ N0(r, w

(n)) +

q∑

j=1

N0

(
r,

1

w(n) − aj

)
+ S0(r, w).(3.4)
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Using (3.4) in (3.3), we obtain

(q − 1)T0(r, w) ≤ (q − 1)T0

(
r,

1

w

)
+N 0(r, w

(n)) +

q∑

j=1

N 0

(
r,

1

w(n) − aj

)

−(q − 1)N0

(
r,

1

w(n)

)
+ S0(r, w).

Thus

(q − 1)T0(r, w) ≤ (q − 1)T0

(
r,

1

w

)
+N 0(r, w) +

q∑

j=1

N 0

(
r,

1

w(n) − aj

)

−(q − 1)N0

(
r,

1

w(n)

)
+ S0(r, w).(3.5)

Since E(0, w) ⊆ E(0, w(n)), we have from (3.5)

(q − 1)T0(r, w) ≤ N0(r, w) +

q∑

j=1

N 0

(
r,

1

w(n) − aj

)
+ S0(r, w).

Hence

(q − 2ν + o(1))T0(r, w) ≤

q∑

j=1

N 0

(
r,

1

w(n) − aj

)
.

�

This completes the proof of the Lemma 3.5.

4. Main Results

By using the partly shared values and the notion of the weakly shared values

and the fundamental theorems of algebroid functions on annuli, in this paper we

have obtained some interesting and important new results concerning the uniqueness

question of the n-order derivatives of algebroid functions on the annuli based upon

some other assumptions.

Now we state and prove our main result in the following way

Theorem 4.1. Let w1 and w2 be two ν-valued and µ-valued algebroid functions deter-

mined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respectively and µ ≤ ν,
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let aj (j = 1, 2, ..., q) be q ≥ 4ν + 1 distinct complex numbers or ∞. Suppose that

k1 ≥ k2 ≥ ... ≥ kq are positive integers or ∞ and δj(≥ 0)(j = 1, 2, ..., q) are such that

1

k1
+

(
1 +

1

km

) q∑

j=2ν

1

1 + kj
+ 1 + δ <

q − 2ν

n+ 1

(
1 +

1

k1

)
.

for a non-negative integer n. Let Bj = Ekj(aj , w1)\Ekj (aj, w2) for j = 1, 2ν, ..., q and

E(0, wi) ⊆ E(0, w
(n)
i ) for i = 1, 2. If

N
Bj

0

(
r,

1

w
(n)
1 − aj

)
≤ δjT0(r, w

(n)
1 )

and

lim inf
r→∞

q∑
j=1

N
kj)
0 (r, 1

w
(n)
1 −aj

)

q∑
j=1

N
kj)
0 (r, 1

w
(n)
2 −aj

)

>
(n + 1)k1

(p− 2ν)(1 + k1)− (n+ 1)(1 + k1)
q∑

j=2ν

1
1+kj

− (n + 1){(1 + δ)k1 + 1}

,

then w
(n)
1 ≡ w

(n)
2 .

Proof. By Lemma 3.5, we have

(q − 2ν + o(1))T0(r, w1) ≤

q∑

j=1

N0

(
r,

1

w
(n)
1 − aj

)
(4.1)

and

(q − 2ν + o(1))T0(r, w2) ≤

q∑

j=1

N0

(
r,

1

w
(n)
2 − aj

)
.(4.2)
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From (4.1), we have

(q − 2ν + o(1))T0(r, w1)

≤

q∑

j=1

{
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
+N

(kj+1

0

(
r,

1

w
(n)
1 − aj

)}

≤

q∑

j=1

{
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
+

1

1 + kj
N

(kq+1
0

(
r,

1

w
(n)
1 − aj

)}

≤

q∑

j=1

{
kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
+

1

1 + kj
N0

(
r,

1

w
(n)
1 − aj

)}

≤

q∑

j=1

kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
+

q∑

j=1

1

1 + kj
T0

(
r, w

(n)
1

)

≤

q∑

j=1

kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
+ (n+ 1)

q∑

j=1

1

1 + kj
T0

(
r, w

(n)
1

)
.

Therefore

(q − 2ν − (n + 1)

q∑

j=1

1

1 + kj
+ o(1))T0(r, w1) ≤

q∑

j=1

kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
.

Similarly from (4.2), we get

(q − 2ν − (n + 1)

q∑

j=1

1

1 + kj
+ o(1))T0(r, w2) ≤

j∑

j=1

kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
2 − aj

)
.

Let Bj = Ekj(aj , w
(n)
1 )\Aj for j = 1, 2ν, ..., q.

Now

q∑

j=1

N
kj)

0

(
r,

1

w
(n)
1 − aj

)
=

q∑

j=1

N
Aj

0

(
r,

1

w
(n)
1 − aj

)
+

q∑

j=1

N
Bj

0

(
r,

1

w
(n)
1 − aj

)

≤ δT0(r, w
(n)
1 ) +N0

(
r,

1

w
(n)
1 − w

(n)
2

)

≤ (1 + δ)(n + 1)T0(r, w1) +

k−1∑

j=1

N12(r, aj) + 2

k−1∑

j=1

N∆(r, aj).(4.3)

If w
(n)
1 6≡ w

(n)
2 , then we have

∑
n∆(r, a) ≤ n0

(
r,

1

R(ϕ, ψ)

)
,
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R(ϕ, ψ) denotes the resultant of ϕ(z, w(n)) and ψ(z, w(n)), it can be written as the

following

R(ϕ, ψ) = [Aν ]
µ[Bµ]

ν
∏

1≤j≤ν
1≤k≤µ

[w
(n)
j − ŵ

(n)
j ].

It can be written in the another form

R(ϕ, ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣

Aν Aν−1 ... ... A0 0 ... 0
0 Aν Aν−1 ... A1 A0 ... 0

...
...

...
0 0 0 Aν Aν−1 ... ... A0

Bµ Bµ−1 ... ... B0 0 ... 0
0 Bµ Bµ−1 ... B1 B0 ... 0

...
...

...
0 0 0 Bµ Bµ−1 ... ... B0

∣∣∣∣∣∣∣∣∣∣∣∣

So we know that R(ϕ, ψ) is a holomorphic function and using Jensen Theorem for

meromorphic function on annuli, we have

N0

(
r,

1

R(ϕ, ψ)

)

=
1

2π

∫ 2π

0

log |R[ψ(reiθ, w
(n)
1 ), ϕ(reiθ, w

(n)
2 )]|dθ

+
1

2π

∫ 2π

0

log

∣∣∣∣R
[
ψ

(
1

r
eiθ, w

(n)
1

)
, ϕ

(
1

r
eiθ, w

(n)
2

)]∣∣∣∣ dθ

+ 2
1

2π

∫ 2π

0

log |R[ψ(eiθ, w
(n)
1 ), ϕ(eiθ, w

(n)
2 )]|dθ

=
µ

2π

∫ 2π

0

log |Aν(re
iθ)|dθ +

ν

2π

∫ 2π

0

log |Bµ(re
iθ)|dθ

+
1

2π

∫ 2π

0

log

∣∣∣∣∣∣∣∣

∏

1≤j≤ν
1≤k≤µ

[w
(n)
j (reiθ)− ŵ

(n)
j (reiθ)]

∣∣∣∣∣∣∣∣
dθ

+
µ

2π

∫ 2π

0

log

∣∣∣∣Aν

(
1

r
eiθ
)∣∣∣∣ dθ +

ν

2π

∫ 2π

0

log

∣∣∣∣Bµ

(
1

r
eiθ
)∣∣∣∣ dθ

+
1

2π

∫ 2π

0

log

∣∣∣∣∣∣∣∣

∏

1≤j≤ν
1≤k≤µ

[
w

(n)
j

(
1

r
eiθ
)
− ŵ

(n)
j

(
1

r
eiθ
)]
∣∣∣∣∣∣∣∣
dθ − 2.

µ

2π

∫ 2π

0

log |Aν(e
iθ)|dθ

− 2
ν

2π

∫ 2π

0

log |Bµ(e
iθ)|dθ − 2

1

2π

∫ 2π

0

log

∣∣∣∣∣∣∣∣

∏

1≤j≤ν
1≤k≤µ

[w
(n)
j (eiθ)− ŵ

(n)
j (eiθ)]

∣∣∣∣∣∣∣∣
dθ
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=
µ

2π

∫ 2π

0

log |Aν(re
iθ)|dθ +

µ

2π

∫ 2π

0

log

∣∣∣∣Aν

(
1

r
eiθ
)∣∣∣∣ dθ − 2

µ

2π

∫ 2π

0

log |Aν(e
iθ)|dθ

+
ν

2π

∫ 2π

0

log |Bµ(re
iθ)|dθ +

ν

2π

∫ 2π

0

log

∣∣∣∣Bµ

(
1

r
eiθ
)∣∣∣∣ dθ − 2

ν

2π

∫ 2π

0

log |Bµ(e
iθ)|dθ

+
1

2π

∫ 2π

0

log

∣∣∣∣∣∣∣∣

∏

1≤j≤ν
1≤k≤µ

[w
(n)
j (reiθ)− ŵ

(n)
j (reiθ)]

∣∣∣∣∣∣∣∣
dθ

+
1

2π

∫ 2π

0

log

∣∣∣∣∣∣∣∣

∏

1≤j≤ν
1≤k≤µ

[
w

(n)
j

(
1

r
eiθ
)
− ŵ

(n)
j

(
1

r
eiθ
)]
∣∣∣∣∣∣∣∣
dθ

− 2.
1

2π

∫ 2π

0

log

∣∣∣∣∣∣∣∣

∏

1≤j≤ν
1≤k≤µ

[w
(n)
j (eiθ)− ŵ

(n)
j (eiθ)]

∣∣∣∣∣∣∣∣
dθ

≤ µ

[
m0(r, Aν)−m0

(
r,

1

Aν

)]
+ ν

[
m0(r, Bµ)−m0

(
r,

1

Bµ

)]

+µν[m0(r, w
(n)
1 ) +m0(r, w

(n)
2 )] +O(1)

= µν[T0(r, w
(n)
1 ) + T0(r, w

(n)
2 )] +O(1).

Then we get

∑
N∆(r, aj) ≤

2µν

µ+ ν
[T0(r, w

(n)
1 ) + T0(r, w

(n)
2 )] +O(1)

≤ (n + 1)ν[T0(r, w1) + T0(r, w2)] +O(1).(4.4)

By the condition of Theorem 4.1, we know that the set of zeros of w1−aj and w2−aj

in which each point counts only once, at the same time we get N 12(r, aj) = 0.

Therefore Therefore

k−1∑

j=1

N 0

(
r,

1

w
(n)
1 − aj

)
≤

k−1∑

j=1

N 0

(
r,

1

w
(n)
1 − w

(n)
2

)

≤ (n+ 1)ν[T0(r, w1) + T0(r, ŵ2)] +O(1).(4.5)

From (4.3) and (4.5), we have

k−1∑

j=1

N0

(
r,

1

w
(n)
1 − aj

)
≤ (1 + δ)(n + 1)T0(r, w1) + (n+ 1)T0(r, w2).(4.6)
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Hence
(
q − 2ν − (n + 1)

q∑

j=1

1

1 + kj
+ o(1)

)
q∑

j=1

N
kj)

0

(
r,

1

w
(n)
1 − aj

)

≤ (1 + δ)(n+ 1)

q∑

j=1

kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
1 − aj

)
+ (n + 1)

q∑

j=1

kj

1 + kj
N

kj)

0

(
r,

1

w
(n)
2 − aj

)
.

Since 1 ≥
k1

k1 + 1
≥

k2

k2 + 1
≥ ... ≥

kq

kq + 1
≥

1

2
, we get from the above inequality

(
q − 2ν − (n + 1)

q∑

j=1

1

1 + kj
+ o(1)

)
q∑

j=1

N
kj)
0

(
r,

1

w
(n)
1 − aj

)

≤ (1 + δ)(n+ 1)
k1

1 + k1

q∑

j=1

N
kj)
0

(
r,

1

w
(n)
1 − aj

)
+ (n+ 1)

k1

1 + k1

q∑

j=1

N
kj)
0

(
r,

1

w
(n)
2 − aj

)
.

Since that implies
(
q − 2ν − (n + 1)

q∑

j=1

1

1 + kj
− (1 + δ)(n+ 1)

k1

1 + k1
+ o(1)

)
q∑

j=1

N
kj)
0

(
r,

1

w
(n)
1 − aj

)

≤ (n+ 1)
k1

1 + k1

q∑

j=1

N
kj)
0

(
r,

1

w
(n)
2 − aj

)
.

Therefore

lim inf
r→∞

q∑
j=1

N
kj
0 (r, 1

w1−aj
)

q∑
j=1

N
kj
0 (r, 1

w2−aj
)

≤
(n+ 1)k1

(q − 2ν)(1 + k1)− (n+ 1)(1 + k1)
q∑

j=1

1
1+kj

− (n+ 1){(1 + δ)k1

≤
(n+ 1)k1

(q − 2ν)(1 + k1)− (n+ 1)(1 + k1)
q∑

j=2ν

1
1+kj

− (n+ 1){(1 + δ)k1 + 1

.(4.7)

Which is a contradiction.

Thus, we have w
(n)
1 6≡ w

(n)
2 .

Therefore we complete the proof of Theorem 4.1. �

From Theorem 4.1, we can get the following consequences.
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Corollary 4.1. Let kj = ∞ for j = 1, 2ν, ..., q and

γ = lim inf
r→∞

N
kj)

0

(
r, 1

w
(n)
1 −aj

)

N
kj)

0

(
r, 1

w
(n)
2 −aj

) >
n+ 1

q − (n + 2ν + 1)
.

If N
Aj

0 (r, 1

w
(n)
1 −aj

) ≤ δjT0(r, w
(n)
1 ) where δ(≥ 0) satisfy 0 ≤ δj <

q−(n+2ν+1)
n+1

− 1
γ
.

If we assume E∞)(aj, w
(n)
1 ) ⊆ E∞)(aj , w

(n)
2 ), then Aj = φ for j = 1, 2ν, ..., q and so we

can choose δ = 0.

Therefore Theorem 4.1 is an improvement of following theorem

Theorem 4.2. Let w1(z) and w2(z) be two ν-valued and µ-valued algebroid functions

determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respectively and

µ ≤ ν, let aj (j = 1, 2, ..., q) be q ≥ 4ν + 1 distinct complex numbers or ∞. and for

a non-negative integer n, E∞)(aj, w
(n)
1 ) ⊆ E∞)(aj , w

(n)
2 ) for 1 ≤ j ≤ q,E∞)(0, w1) ⊆

E∞)(0, w
(n)
1 ),E∞)(0, w2) ⊆ E∞)(0, w

(n)
2 ) and

lim inf
r→∞

q∑
j=1

N
kj)
0 (r, 1

w
(n)
1 −aj

)

q∑
j=1

N
kj)
0 (r, 1

w
(n)
2 −aj

)

>
(n+ 1)

q − (n+ 2ν + 1)
,

then w
(n)
1 ≡ w

(n)
2 .

Corollary 4.2. Let n = 0, kj = ∞ for j = 1, 2ν, ..., q and

γ = lim inf
r→∞

N
kj)

0

(
r, 1

w1−aj

)

N
kj)

0

(
r, 1

w2−aj

) > 1

q − 2ν + 1

If N
Bj

0 (r, 1
w1−aj

) ≤ δjT0(r, w1) where δ(≥ 0) satisfy 0 ≤
q∑

j=1

δj < k− (2ν+1)− 1
γ
, then

w1(z) ≡ w2(z).

If we take q = 4ν+1 and E(aj , w1) ⊆ E(aj , w2), then Aj = φ for j = 1, 2, ..., 4ν+1.

Therefore, if we choose δj = 0 for j = 1, 2, ..., 4ν + 1 and take any constant γ, such

that 0 ≤ 2ν− 1
γ
in Corollary 2; we can get that w1(z) ≡ w2(z). Especially, if q = 4ν+1

and E(aj, w1) = E(aj , w2), then γ = 1 and δj = 0 for j = 1, 2, ..., 4ν + 1. We can

obtain w1 ≡ w2.
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Corollary 4.3. Let w1(z) and w2(z) be two ν-valued and µ-valued algebroid func-

tions determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respec-

tively and µ ≤ ν, let aj (j = 1, 2, ..., q) be q ≥ 5 distinct complex numbers or

∞. Suppose that k1, k2, ..., kq are positive integers or ∞; with k1 ≥ k2 ≥ ... ≥ kq if

Ekj)(aj , w1) ⊆ Ekj)(aj , w2) and :

q∑

j=2ν

kj

kj + 1
−

k1

γ(k1 + 1)
− 2ν > 0,

where γ is stated as in Corollary 4.2; then w1 ≡ w2.

Corollary 4.4. Let w1(z) and w2(z) be two ν-valued and µ-valued algebroid func-

tions determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respectively

and µ ≤ ν, let aj (j = 1, 2, ..., q) be q ≥ 5 distinct complex numbers in C ∪ ∞.

Suppose that k1, k2, ..., kq are positive integers or ∞; with k1 ≥ k2 ≥ ... ≥ kq if

Ekj)(aj , w1) = Ekj)(aj, w2) and :

q∑

j=2ν

kj

kj + 1
−

k1

(k1 + 1)
− 2ν > 0,

then w1 ≡ w2.

Corollary 4.4 is an extension of Theorem 2.4 and also from Corollary 4.4 we obtain

Nevanlinna’s five-value theorem as follows

Theorem 4.3. Let w1(z) and w2(z) be two ν-valued and µ-valued algebroid functions

determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respectively and

µ ≤ ν, let aj (j = 1, 2, ..., 5) be 5 distinct complex numbers in C∪∞. If Ekj)(aj, w1) =

Ekj)(aj , w2) for j = 1, 2, ..., 5, then then w1 ≡ w2.

Corollary 4.5. Let w1 and w2 be two ν-valued and µ-valued algebroid functions

determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respectively and

µ ≤ ν, let aj (j = 1, 2, ..., q) be q ≥ 4ν + 1 distinct complex numbers or ∞. Suppose

that k1, k2, ..., kq are positive integers or ∞; with k1 ≥ k2 ≥ ... ≥ kq if Ekj)(aj , w1) ⊆
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Ekj)(aj , w2) and :

q∑

j=2ν

kj

kj + 1
− 2ν +

(m− 2ν − 1
γ
)km

γ(km + 1)
− 2ν > 0,

where γ is stated as in Corollary 4.2; then w1 ≡ w2.

In Corollary 4.1 if n = 0 and q = 4ν + 1 then we get the following theorem

Theorem 4.4. Let w1(z) and w2(z) be two ν-valued and µ-valued algebroid functions

determined by (2.1) on the annulus A

(
1
R0
, R0

)
(1 < R0 ≤ +∞), respectively and

µ ≤ ν such that E∞)(aj , w1) ⊆ E∞)(aj , w2) for a1, a2, ..., a5 of C ∪∞. If

lim inf
r→∞

4ν+1∑
j=1

N
kj)
0 (r, 1

w1−aj
)

4ν+1∑
j=1

N
kj)
0 (r, 1

w2−aj
)

>
1

2ν
,

then w1(z) ≡ w2(z).
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