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COMPLEX LINEAR DIFFERENTIAL EQUATIONS WITH

ANALYTIC COEFFICIENTS OF ITERATED ORDER IN THE

ANNULUS

BENHARRAT BELAÏDI (1) AND YAMINA LASSAL(2)

Abstract. In this paper, we study the growth properties of solutions of the linear

differential equations

f (k) +Bk−1 (z) f
(k−1) + · · ·+B1 (z) f

′ +B0 (z) f = 0,

f (k) +Bk−1 (z) f
(k−1) + · · ·+B1 (z) f

′ +B0 (z) f = F,

where Bk−1 (z) , ..., B0 (z) and F (z) are analytic functions of iterated order in an

annulus. We obtain some results concerning the estimates of the iterated order of

solutions of the above equations.

1. Introduction and results

Throughout this article, we shall assume that the reader is familiar with the stan-

dard notations and fundamental results of the Nevanlinna value distribution theory of

meromorphic functions in the complex plane and in the unit disc D = {z ∈ C : |z| < 1}

(see [4] , [5] , [11] , [15] , [18]).

Several authors have investigated the growth properties of solutions in the com-

plex plane, in the unit disc and in a sector of the unit disc which are simple connected

domains, by using the theory of value distribution of Nevanlinna [3, 6, 12, 16, 19] . It

is well-known that Nevanlinna theory of meromorphic functions can be extended in

a modified form to multiply-connected plane domains, in particular in the annu-

lus [7, 8, 9, 10, 13, 14] which is a doubly-connected domain. In 2005, Khrystiyanyn

and Kondratyuk [7, 8] gave an extension of the Nevanlinna value distribution theory
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for meromorphic functions in annuli. In their extension the main characteristics of

meromorphic functions are one-parameter and possess the same properties as in the

classical case of a simply connected domain. From the doubly-connected mapping

theorem [1], we can get that each doubly-connected domain is conformally equiva-

lent to the annulus {z : r < |z| < R, 0 ≤ r < R ≤ +∞}. We consider only two cases:

r = 0, R = +∞ simultaneously and 0 ≤ r < R ≤ +∞. In the latter case, the ho-

mothety z 7−→ z√
rR

reduces the given domain to the annulus 1
R0

< |z| < R0, where

R0 =
√

R
r
. Thus, every annulus is invariant with respect to the inversion z 7−→ 1

z
in

two cases.

Before stating our main results, we give some notations and basic definitions of

the theory of Nevanlinna of meromorphic functions in the complex plane and then in

the annulus A =
{

z : 1
R0

< |z| < R0

}

, where 1 < R0 ≤ +∞. Let f be a meromorphic

function in the complex plane, we define

m (r, f) =
1

2π

∫ 2π

0

log+
∣

∣f
(

reiϕ
)∣

∣ dϕ,

N (r, f) =

∫ r

0

n (t, f)− n (0, f)

t
dt+ n (0, f) log r

and

T (r, f) = m(r, f) +N(r, f) (r > 0)

is the Nevanlinna characteristic function of f , where

log+ x = max (0, log x) =







log x, x > 1,

0, 0 ≤ x ≤ 1

and n (t, f) is the number of poles of f lying in {z : |z| ≤ t} , counted according to

their multiplicity. Now, we give some basic notions of the Nevanlinna theory in the

annulus A =
{

z : 1
R0

< |z| < R0

}

, where 1 < R0 ≤ +∞. Set

N1 (r, f) =

∫ 1

1

r

n1 (t, f)

t
dt, N2 (r, f) =

∫ r

1

n2 (t, f)

t
dt,

m0 (r, f) = m (r, f) +m

(

1

r
, f

)

− 2m (1, f) ,

N0 (r, f) = N1 (r, f) + N2 (r, f) ,
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where n1 (t, f) and n2 (t, f) are the counting functions of poles of f lying in {z : t <

|z| ≤ 1} and {z : 1 < |z| ≤ t} respectively, counted according to their multiplicity.

The Nevanlinna characteristic of f in the annulus A is defined by

T0 (r, f) = m0 (r, f) +N0 (r, f) .

Definition 1.1. ([17]) Let f be a nonconstant meromorphic function in the annu-

lus A =
{

z : 1
R0

< |z| < R0

}

, where 1 < R0 ≤ +∞. The function f is called a

transcendental or an admissible function in A provided that

lim sup
r→+∞

T0 (r, f)

log r
= +∞ if 1 < r < R0 = +∞

or

lim sup
r→R−

0

T0 (r, f)

log 1
R0−r

= +∞ if 1 < r < R0 < +∞

respectively.

For all r ∈ R, we define exp1 r = exp r = er and expp+1 r = exp(expp r), p ∈ N =

{1, 2, 3, . . . }. Inductively, for all r ∈ (0,+∞) large enough, we define log1 r = log r

and logp+1 r = log(logp r), p ∈ N. We also denote exp0 r = r = log0 r, exp−1 r = log1 r

and log−1 r = exp1 r.

Definition 1.2. Let p ≥ 1 be an integer and f be a nonconstant meromorphic

function in the annulus A =
{

z : 1
R0

< |z| < R0

}

, where 1 < R0 ≤ +∞. The

iterated p−order of f is defined as

ρp,A (f) = lim sup
r→+∞

logp T0 (r, f)

log r
if 1 < r < R0 = +∞

or

ρp,A (f) = lim sup
r→R−

0

logp T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞.

Remark 1.1 For p = 1, this notation is called order and for p = 2 hyper-order, see

[17].
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Definition 1.3 The finiteness degree of the order of a meromorphic function f is

defined by

iA (f) :=



























0, if f is non admissible,

min {j ∈ N : ρj,A (f) < ∞} , if f is admissible and ρj,A (f) < ∞

for some j ∈ N,

+∞, if ρj,A (f) = +∞ for all j ∈ N.

For k ≥ 2, we consider the linear differential equations

(1.1) f (k) +Bk−1 (z) f
(k−1) + · · ·+B1 (z) f

′ +B0 (z) f = 0,

(1.2) f (k) +Bk−1 (z) f
(k−1) + · · ·+B1 (z) f

′ +B0 (z) f = F,

where Bk−1 (z) , ..., B0 (z) and F (z) are analytic in the annulus

A =

{

z :
1

R0
< |z| < R0

}

(1 < R0 ≤ +∞).

Recently in [17] , Wu and Xuan have studied the growth properties of solutions of

higher order linear complex differential equations in A and obtained the following

results.

Theorem A. ([17]) Let Bk−1 (z) , ..., B1 (z), B0 (z) be analytic functions in the an-

nulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) that satisfy

max{ρA (Bj) : j = 1, 2, ..., k − 1} < ρA (B0) .

Then every solution f 6≡ 0 of equation (1.1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥

ρA (B0) .

Theorem B. ([17]) Let Bk−1 (z) , ..., B1 (z), B0 (z) be analytic functions in the an-

nulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) that satisfy

max
0≤j≤k−1,j 6=l

{ρA (Bj)} < ρA (Bl) .

Then every solution f 6≡ 0 of equation (1.1) satisfies ρA (f) ≥ ρA (Bl) .
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Remark 1.2 Hypothesis of Theorem B do not provide that a solution is an admissible

in A, so it is a priori assumed that f is an admissible.

In this paper, by using the concept of iterated order, we obtain some results

which extend and improve Theorems A-B from usual order to iterated order for

every non-trivial analytic solution of equations (1.1) and (1.2) . We mainly obtain the

following results.

Theorem 1.1 Let p ≥ 1 be an integer and Bk−1 (z) , ..., B1 (z), B0 (z) be analytic

functions in the annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such that

max{ρp,A (Bj) : j = 1, 2, ..., k − 1} < ρp,A (B0) .

Then every solution f 6≡ 0 of equation (1.1) satisfies ρp,A (f) = +∞ and ρp+1,A (f) ≥

ρp,A (B0) .

Remark 1.3 Setting p = 1 in Theorem 1.1, we obtain Theorem A.

Theorem 1.2 Let p ≥ 2 be an integer and Bk−1 (z) , ..., B1 (z), B0 (z) be analytic

functions in the annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞). Suppose that

there exist three positive real numbers α, β and µ with 0 ≤ β < α, µ > 0, such that

we have

(1.3) T0(r, B0) ≥ expp−1 {αr
µ}

and

(1.4) T0(r, Bj) ≤ expp−1 {βr
µ} , j = 1, . . . , k − 1

if 1 < r < R0 = +∞ as |z| = r → +∞ for r ∈ Er which satisfies
∫

Er

dr
r
= +∞, or

(1.5) T0 (r, B0) ≥ expp−1

{

α

(R0 − r)µ

}

and

(1.6) T0 (r, Bj) ≤ expp−1

{

β

(R0 − r)µ

}

(j = 1, · · · , k − 1)
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if 1 < r < R0 < +∞ as |z| = r → R−
0 for r ∈ Fr which satisfies

∫

Fr

dr
R0−r

= +∞.

Then every solution f 6≡ 0 of equation (1.1) satisfies ρp,A (f) = +∞ and ρp+1,A (f) ≥

µ.

Remark 1.4 In [2] , the Theorem 1.2 was obtained for p = 1 but under the condition

0 ≤ (k − 1)β < α instead of 0 ≤ β < α.

Theorem 1.3 Let p ≥ 1 be an integer, let Bk−1 (z) , ..., B1 (z), B0 (z) and F (z) be

analytic functions in the annulus A = {z : 1
R0

< |z| < R0} (1 < R0 ≤ +∞) such

that for some integer s, 1 ≤ s ≤ k − 1, we have max{ρp,A (Bj) (j 6= s) , ρp,A (F )} <

ρp,A (Bs) . Then every an admissible solution f of equation (1.2) satisfies ρp,A (f) ≥

ρp,A (Bs) .

Remark 1.5 Setting p = 1 and F (z) ≡ 0 in Theorem 1.3, we obtain Theorem B.

Theorem 1.4 Let p ≥ 1 be an integer, let Bk−1 (z) , ..., B1 (z), B0 (z) and F (z)

be analytic functions in the annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such

that for some integer s, 0 ≤ s ≤ k − 1, we have ρp,A (Bs) = ∞ and max{ρp,A (Bj)

(j 6= s) , ρp,A (F )} < ∞. Then every an admissible solution f of equation (1.2) satis-

fies ρp,A (f) = ∞.

2. Some Auxiliary Lemmas

We need the following lemmas to prove our results.

Lemma 2.1 [8, 17] (The lemma of the logarithmic derivative). Let f be a nonconstant

meromorphic function in the annulus A =
{

z : 1
R0

< |z| < R0

}

, where 1 < r < R0 ≤

+∞ and k ≥ 1 be an integer . Then

m0

(

r,
f (k)

f

)

=































O (log r) , R0 = +∞ and ρA (f) < +∞,

O
(

log 1
R0−r

)

, R0 < +∞ and ρA (f) < +∞,

O (log r + log T0 (r, f)) , r /∈ ∆r, R0 = +∞,

O
(

log 1
R0−r

+ log T0 (r, f)
)

, r /∈ ∆′
r, R0 < +∞,
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where ∆r ⊂ (1,+∞) and ∆′
r ⊂ (1, R0) are sets with

∫

∆r

dr
r
< +∞ and

∫

∆′

r

dr
R0−r

< +∞

respectively.

In the next, we give the generalized logarithmic derivative lemma.

Lemma 2.2 Let p ≥ 1 be an integer and f be a meromorphic function in the annulus

A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such that ρp,A (f) = ρ < ∞, and let k ≥ 1

be an integer. Then for any given ε > 0,

m0

(

r,
f (k)

f

)

= O
(

expp−2

{

rρ+ε
})

, if 1 < r < R0 = +∞

holds outside a set ∆r ⊂ (1,+∞) with
∫

∆r

dr
r
< +∞, or

m0

(

r,
f (k)

f

)

= O

(

expp−2

{

1

R0 − r

}ρ+ε
)

, if 1 < r < R0 < +∞

holds outside a set ∆′
r ⊂ (1, R0) with

∫

∆′

r

dr
R0−r

< +∞.

Proof. Case R0 = +∞. First for k = 1. Since ρp,A (f) = ρ < ∞, then for any given

ε > 0 and sufficiently large r, we have

(2.1) T0 (r, f) ≤ expp−1

{

rρ+ε
}

.

By Lemma 2.1, we have

(2.2) m0

(

r,
f ′

f

)

= O (log r + log T0 (r, f))

holds for all r outside a set ∆r with
∫

∆r

dr
r
< +∞. Hence, by (2.1) and (2.2) we obtain

(2.3) m0

(

r,
f ′

f

)

= O
(

expp−2

{

rρ+ε
})

, r /∈ ∆r.

Next, we assume that we have

(2.4) m0

(

r,
f (k)

f

)

= O
(

expp−2

{

rρ+ε
})

, r /∈ ∆r

for a certain integer k ≥ 1. Since N0

(

r, f (k)
)

≤ (k + 1)N0 (r, f) , it holds that

T0

(

r, f (k)
)

= m0

(

r, f (k)
)

+N0

(

r, f (k)
)

≤ m0

(

r,
f (k)

f

)

+m0 (r, f) + (k + 1)N0 (r, f)
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(2.5) ≤ m0

(

r,
f (k)

f

)

+ (k + 1)T0 (r, f) = O
(

expp−1

{

rρ+ε
})

.

By (2.2) and (2.5) , we again obtain

m0

(

r,

(

f (k)
)′

f (k)

)

= O
(

log r + log T0

(

r, f (k)
))

= O
(

expp−2

{

rρ+ε
})

, r /∈ ∆r

and hence,

m0

(

r,
f (k+1)

f

)

≤ m0

(

r,
f (k+1)

f (k)

)

+m0

(

r,
f (k)

f

)

= O
(

expp−2

{

rρ+ε
})

, r /∈ ∆r.

Case R0 < +∞. First for k = 1. Since ρp,A (f) = ρ < ∞, then for any given ε > 0

and r → R−
0 , we have

(2.6) T0 (r, f) ≤ expp−1

{

1

R0 − r

}ρ+ε

.

Again, by Lemma 2.1, we have

(2.7) m0

(

r,
f ′

f

)

= O

(

log
1

R0 − r
+ log T0 (r, f)

)

holds for all r outside a set ∆′
r with

∫

∆′

r

dr
R0−r

< +∞. Hence, by (2.6) and (2.7) we

obtain

(2.8) m0

(

r,
f ′

f

)

= O

(

expp−2

{

1

R0 − r

}ρ+ε
)

, r /∈ ∆′
r.

Next, we assume that we have

(2.9) m0

(

r,
f (k)

f

)

= O

(

expp−2

{

1

R0 − r

}ρ+ε
)

, r /∈ ∆′
r

for a certain integer k ≥ 1. Since N0

(

r, f (k)
)

≤ (k + 1)N0 (r, f) , we deduce

(2.10) T0

(

r, f (k)
)

≤ m0

(

r,
f (k)

f

)

+ (k + 1)T0 (r, f) = O

(

expp−1

{

1

R0 − r

}ρ+ε
)

.

By (2.7) and (2.10) , we again obtain

m0

(

r,

(

f (k)
)′

f (k)

)

= O

(

log
1

R0 − r
+ log T0

(

r, f (k)
)

)

= O

(

expp−2

{

1

R0 − r

}ρ+ε
)

, r /∈ ∆′
r
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and therefore

m0

(

r,
f (k+1)

f

)

≤ m0

(

r,
f (k+1)

f (k)

)

+m0

(

r,
f (k)

f

)

= O

(

expp−2

{

1

R0 − r

}ρ+ε
)

, r /∈ ∆′
r.

�

Lemma 2.3 Let f be a meromorphic function with finite iterated p−order ρp,A(f) <

+∞. Then, for any set Er of (1,+∞) with
∫

Er

dr
r
< +∞, there exists a sequence {rn,

rn /∈ Er} such that

lim
rn→+∞

logp T0 (rn, f)

log rn
= ρp,A (f) if 1 < rn < R0 = +∞,

or for any set E
/
r of (1, R0) with

∫

E
/
r

dr
R0−r

< +∞, there exists a sequence {r
/
n, r

/
n /∈ E

/
r}

such that

lim
r
/
n→R−

0

logp T0

(

r
/
n, f
)

log 1

R0−r
/
n

= ρp,A (f) if 1 < r/n < R0 < +∞.

Proof. Case R0 = +∞. The definition of ρp,A (f) implies that there exists a sequence

{sn, n ≥ 1}, sn −→ +∞ such that

lim
sn→+∞

logp T0 (sn, f)

log sn
= ρp,A (f) .

Setting
∫

Er

dr
r
= δ < +∞. Then the interval [sn,

(

1 + eδ
)

sn] meets the complement of

Er since
(1+eδ)sn
∫

sn

dr

r
= log

(

1 + eδ
)

> δ

Therefore, there exists a point rn ∈ [sn,
(

1 + eδ
)

sn]\Er. For rn ∈ [sn,
(

1 + eδ
)

sn]\Er,

we have
logp T0 (rn, f)

log rn
≥

logp T0 (sn, f)

log (1 + eδ) sn
=

logp T0 (sn, f)

log (1 + eδ) + log sn
.

Hence

lim
rn→+∞

logp T0 (rn, f)

log rn
≥ lim

sn→+∞

logp T0 (sn, f)
(

1 +
log
(

1 + eδ
)

log sn

)

log sn

= ρp,A (f) .
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By

lim
rn→+∞

logp T0 (rn, f)

log rn
≤ lim

sn→+∞

logp T0

((

1 + eδ
)

sn, f
)

log sn

= lim
sn→+∞

(

logp T0

((

1 + eδ
)

sn, f
)

log (1 + eδ) sn
·
log
(

1 + eδ
)

+ log sn

log sn

)

= ρp,A (f) ,

we deduce that

lim
rn→+∞

logp T0 (rn, f)

log rn
= ρp,A (f) .

Case R0 < +∞. The definition of ρp,A (f) implies that there exists a sequence {s′n, n ≥

1}, s′n −→ R−
0 such that

lim
s′n→R−

0

logp T0 (s
′
n, f)

log 1
R0−s′n

= ρp,A (f) .

Setting
∫

E
/
r

dr
R0−r

= log δ′ < +∞. Since

R0−R0−s′n
δ′+1
∫

s′n

dr

R0 − r
= log (1 + δ′) > log δ′,

then there exists a point r
/
n ∈ [s′n, R0 −

R0−s′n
δ′+1

]\E
/
r . For r

/
n ∈ [s′n, R0 −

R0−s′n
δ′+1

]\E
/
r , we

have

logp T0

(

r
/
n, f
)

log 1

R0−r
/
n

≥
logp T0 (s

′
n, f)

log δ′+1
R0−s′n

=
logp T0 (s

′
n, f)

log (1 + δ′) + log 1
R0−s′n

.

Hence

lim
r
/
n→R−

0

logp T0

(

r
/
n, f
)

log 1

R0−r
/
n

≥ lim
s′n→R−

0

logp T0 (s
′
n, f)

(

1 +
log (1 + δ′)

log 1
R0−s′n

)

log 1
R0−s′n

= ρp,A (f) .

By

lim
r
/
n→R−

0

logp T0

(

r
/
n, f
)

log 1

R0−r
/
n

≤ lim
s′n→R−

0

logp T0

(

R0 −
R0−s′n
δ′+1

, f
)

log 1
R0−s′n

= lim
s′n→R−

0





logp T0

(

R0 −
R0−s′n
δ′+1

, f
)

log δ′+1
R0−s′n

·
log (δ′ + 1) + log 1

R0−s′n

log 1
R0−s′n



 = ρp,A (f) ,

we obtain

lim
r
/
n→R−

0

logp T0

(

r
/
n, f
)

log 1

R0−r
/
n

= ρp,A (f) .
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�

3. Proof of Theorem 1.1

Proof. Let f 6≡ 0 be a solution of (1.1). Set b = max{ρp,A(Bj) : j = 1, 2, ..., k − 1} <

ρp,A(B0) = a. We divide through equation (1.1) by f to get

(3.1) −B0 (z) =
f (k) (z)

f (z)
+

k−1
∑

j=1

Bj (z)
f (j) (z)

f (z)
.

By (3.1) and Lemma 2.1, it follows that

m0 (r, B0) ≤
k−1
∑

j=1

m0 (r, Bj) +
k
∑

j=1

m0

(

r,
f (j)

f

)

+ O (1)

(3.2) ≤
k−1
∑

j=1

m0 (r, Bj) +







O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(

log 1
R0−r

+ log T0 (r, f)
)

, R0 < +∞, r /∈ ∆′
r,

where ∆r and ∆′
r are sets with

∫

∆r

dr
r
< +∞ and

∫

∆′

r

dr
R0−r

< +∞ respectively.

Case R0 = +∞. Since ρp,A(B0) = a and N0(r, B0) ≡ 0, then by the definition of the

characteristic function and Lemma 2.3, there exists a sequence {rn, rn /∈ ∆r} such

that

lim
rn→+∞

logp T0(rn, B0)

log rn
= lim

rn→+∞

logpm0(rn, B0)

log rn
= a.

Then, for any given ε (0 < ε < (a− b)/2) , we have

(3.3) m0(rn, B0) ≥ expp−1

{

ra−ε
n

}

and for j = 1, 2, ..., k − 1, we have

(3.4) m0(rn, Bj) ≤ expp−1

{

rb+ε
n

}

.

By substituting (3.3) and (3.4) into (3.2) , we conclude for rn /∈ ∆r sufficiently large

(3.5) expp−1

{

ra−ε
n

}

≤ (k − 1) expp−1

{

rb+ε
n

}

+O(log rn + log T0(rn, f)).

Noting that a− ε > b+ ε, by (3.5) we obtain

(1− o (1)) expp−1

{

ra−ε
n

}

≤ O(log rn + log T0(rn, f))

which leads to ρp,A(f) = +∞ and ρp+1,A(f) ≥ a = ρp,A(B0).
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Case R0 < +∞. Since ρp,A(B0) = a and N0(r, B0) ≡ 0, then by the definition of the

characteristic function and Lemma 2.3, there exists a sequence {r
/
n, r

/
n /∈ ∆′

r} such

that

lim
r
/
n→R−

0

logp m0(r
/
n, B0)

log 1

R0−r
/
n

= a.

Then, for any given ε (0 < ε < (a− b)/2), we have

(3.6) m0(r
/
n, B0) ≥ expp−1

{

(

1

R0 − r
/
n

)a−ε
}

and for j = 1, 2, ..., k − 1, we have

(3.7) m0(r
/
n, Bj) ≤ expp−1

{

(

1

R0 − r
/
n

)b+ε
}

.

By substituting (3.6) and (3.7) into (3.2) , we conclude for r
/
n → R−

0 , r
/
n /∈ ∆′

r

expp−1

{

(

1

R0 − r
/
n

)a−ε
}

≤ (k − 1) expp−1

{

(

1

R0 − r
/
n

)b+ε
}

(3.8) +O

(

log
1

R0 − r
/
n

+ log T0(r
/
n, f)

)

.

Since a− ε > b+ ε, then by (3.8) we obtain

(1− o (1)) expp−1

{

(

1

R0 − r
/
n

)a−ε
}

≤ O

(

log
1

R0 − r
/
n

+ log T0(r
/
n, f)

)

which leads to ρp,A(f) = +∞ and ρp+1,A(f) ≥ a = ρp,A(B0). �

4. Proof of Theorem 1.2

Proof. Case R0 = +∞. Let f 6≡ 0 be a solution of (1.1). By substituting (1.3) and

(1.4) into (3.2) , we conclude for r ∈ Er\∆r sufficiently large

(4.1) expp−1 {αr
µ} ≤ (k − 1) expp−1 {βr

µ}+O(log r + log T0(r, f)).

Noting that p ≥ 2 and α > β ≥ 0, by (4.1) we obtain

(1− o (1)) expp−1 {αr
µ} ≤ O(log r + log T0(r, f))

which leads to ρp,A(f) = +∞ and ρp+1,A(f) ≥ µ.
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Case R0 < +∞. Let f 6≡ 0 be a solution of (1.1). By substituting (1.5) and (1.6)

into (3.2) , we conclude for r ∈ Fr\∆
′
r, r → R−

0

expp−1

{

α

(R0 − r)µ

}

≤ (k − 1) expp−1

{

β

(R0 − r)µ

}

(4.2) +O(log
1

R0 − r
+ log T0(r, f)).

Since p ≥ 2 and α > β ≥ 0, then by (4.2) we obtain

(1− o (1)) expp−1

{

α

(R0 − r)µ

}

≤ O(log
1

R0 − r
+ log T0(r, f))

which leads to ρp,A(f) = +∞ and ρp+1,A(f) ≥ µ. �

5. Proof of Theorem 1.3

Proof. Case R0 = +∞. Set d = max {ρp,A (Bj) (j 6= s) , ρp,A (F )} < ρp,A (Bs) = c. If

ρp,A (f) = ∞, then the result is trivial. Suppose that f is an admissible solution of

(1.2) with ρ = ρp,A (f) < ∞. It follows from (1.2) that

Bs (z) =
F (z)

f (s)
−

f (k)

f (s)
− Bk−1 (z)

f (k−1)

f (s)
− · · · − Bs+1 (z)

f (s+1)

f (s)

(5.1) −Bs−1 (z)
f (s−1)

f (s)
− · · · −B1 (z)

f ′

f (s)
− B0 (z)

f

f (s)
.

Since N0

(

r, f (j+1)
)

= 0, it holds for j = 0, ..., k − 1 that

T0

(

r, f (j+1)
)

= m0

(

r, f (j+1)
)

≤ m0

(

r,
f (j+1)

f

)

+m0 (r, f)

(5.2) = T0 (r, f) +m0

(

r,
f (j+1)

f

)

.

By using (5.2) , we can obtain from (5.1) that

T0 (r, Bs) ≤ T0 (r, F ) +M · T0 (r, f) +
∑

j 6=s

T0 (r, Bj)

(5.3) +

k−1
∑

j=0

m0

(

r,
f (j+1)

f

)

+O (1) ,

where M > 0 is a constant. Applying Lemma 2.2, we have

(5.4) m0

(

r,
f (j+1)

f

)

= O
(

expp−2

{

rρ+ε
})

(j = 0, ..., k − 1)
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holds for all r outside a set ∆r ⊂ (1,+∞) with
∫

∆r

dr
r
< +∞. By substituting (5.4)

into (5.3) , we obtain

T0 (r, Bs) ≤ T0 (r, F ) +MT0 (r, f) +
∑

j 6=s

T0 (r, Bj)

(5.5) +O
(

expp−2

{

rρ+ε
})

, r /∈ ∆r.

Since ρp,A(Bs) = c, then by Lemma 2.3, there exists a sequence {rn, rn /∈ ∆r} such

that

lim
rn→+∞

logp T0(rn, Bs)

log rn
= c.

Then, for any given ε (0 < ε < (c− d)/2) and sufficiently large rn /∈ ∆r, we have

(5.6) T0(rn, Bs) ≥ expp−1

{

rc−ε
n

}

and

(5.7) T0 (rn, F ) ≤ expp−1

{

rd+ε
n

}

, T0(rn, Bj) ≤ expp−1

{

rd+ε
n

}

(j 6= s) .

By substituting (5.6) and (5.7) into (5.5) , we conclude for rn /∈ ∆r sufficiently large

(5.8) expp−1

{

rc−ε
n

}

≤ k expp−1

{

rd+ε
n

}

+MT0 (rn, f) +O
(

expp−2

{

rρ+ε
n

})

.

Noting that c− ε > d+ ε, it follows from (5.8) that for rn /∈ ∆r sufficiently large

(5.9) (1− o (1)) expp−1

{

rc−ε
n

}

≤ MT0(rn, f) +O
(

expp−2

{

rρ+ε
n

})

.

Therefore, by (5.9) we obtain

lim sup
rn 7→+∞

logp T0 (rn, f)

log rn
≥ c− ε

and since ε > 0 is arbitrary, we get ρp,A(f) ≥ ρp,A(Bs) = c.

Case R0 < +∞. Set d = max {ρp,A (Bj) (j 6= s) , ρp,A (F )} < ρp,A (Bs) = c. If

ρp,A (f) = ∞, then the result is trivial. Suppose that f is an admissible solution

of (1.2) with ρ = ρp,A (f) < ∞. Applying Lemma 2.2, we have

(5.10) m0

(

r,
f (j+1)

f

)

= O

(

expp−2

{

1

R0 − r

}ρ+ε
)

(j = 0, ..., k − 1)
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outside a set ∆′
r ⊂ (1, R0) with

∫

∆′

r

dr
R0−r

< +∞. By (5.10) , we can obtain from (5.3)

that

T0 (r, Bs) ≤ T0 (r, F ) +MT0 (r, f) +
∑

j 6=s

T0 (r, Bj)

(5.11) +O

(

expp−2

{

1

R0 − r

}ρ+ε
)

(r /∈ ∆′
r) ,

where M > 0 is a constant. Since ρp,A(Bs) = c, then by Lemma 2.3, there exists a

sequence {r
/
n, r

/
n /∈ ∆′

r} such that

lim
r
/
n 7→R−

0

logp T0(r
/
n, Bs)

log 1

R0−r
/
n

= c.

Then, for any given ε (0 < ε < (c− d)/2) and r
/
n → R−

0 , r
/
n /∈ ∆′

r, we have

(5.12) T0(r
/
n, Bs) ≥ expp−1

{

(

1

R0 − r
/
n

)c−ε
}

and

(5.13)
T0

(

r
/
n, F

)

≤ expp−1

{

(

1

R0−r
/
n

)d+ε
}

,

T0(r
/
n, Bj) ≤ expp−1

{

(

1

R0−r
/
n

)d+ε
}

(j 6= s) .

By substituting (5.12) and (5.13) into (5.11) , we conclude for r
/
n → R−

0 , r
/
n /∈ ∆′

r

expp−1

{

(

1

R0 − r
/
n

)c−ε
}

≤ k expp−1

{

(

1

R0 − r
/
n

)d+ε
}

(5.14) +MT0

(

r/n, f
)

+O

(

expp−2

{

1

R0 − r
/
n

}ρ+ε
)

.

Noting that c− ε > d+ ε, it follows from (5.14) that for r
/
n → R−

0 , r
/
n /∈ ∆′

r

(1− o (1)) expp−1

{

(

1

R0 − r
/
n

)c−ε
}

≤ MT0(r
/
n, f)

(5.15) +O

(

expp−2

{

1

R0 − r
/
n

}ρ+ε
)

.
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Therefore, by (5.15) we obtain

lim
r
/
n 7→R−

0

logp T0

(

r
/
n, f
)

log 1

R0−r
/
n

≥ c− ε

and since ε > 0 is arbitrary, we get ρp,A(f) ≥ ρp,A(Bs) = c. This proves Theorem

1.3. �

6. Proof of Theorem 1.4

Proof. Case R0 = +∞. Contrary to our assertion, we assume that f is an admissible

solution of (1.2) with ρ = ρp,A (f) < ∞. For any given ε > 0 and sufficiently large r,

we have

(6.1) T0 (r, f) ≤ expp−1

{

rρ+ε
}

.

Set max {ρp,A (Bj) (j 6= s) , ρp,A (F )} = η < +∞. Then, for the above ε > 0 and

sufficiently large r, we have

(6.2) T0 (r, Bj) ≤ expp−1

{

rη+ε
}

(j 6= s) , T0 (r, F ) ≤ expp−1

{

rη+ε
}

.

Thus, by substituting (5.4) , (6.1) and (6.2) into (5.3) , we get for any given ε > 0

and sufficiently large r /∈ ∆r

T0 (r, Bs) ≤ k expp−1

{

rη+ε
}

+M expp−1

{

rρ+ε
}

(6.3) +O
(

expp−2

{

rρ+ε
})

.

Therefore

ρp,A (Bs) ≤ max {η + ε, ρ+ ε} < ∞.

This contradicts the fact that ρp,A (Bs) = ∞. Hence, every an admissible solution f

of (1.2) satisfies ρp,A (f) = ∞.

Case R0 < +∞. We suppose the contrary. Let f be an admissible solution of (1.2)

with ρ = ρp,A (f) < ∞. For any given ε > 0 and r → R−
0 , we have

(6.4) T0 (r, f) ≤ expp−1

{

(

1

R0 − r

)ρ+ε
}

.
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Set max {ρp,A (Bj) (j 6= s) , ρp,A (F )} = η < +∞. Then for the above ε > 0 and

r → R−
0 , we have

(6.5)

T0 (r, Bj) ≤ expp−1

{

(

1

R0 − r

)η+ε
}

, (j 6= s) , T0 (r, F ) ≤ expp−1

{

(

1

R0 − r

)η+ε
}

.

Thus, by substituting (5.10) , (6.4) and (6.5) into (5.3) , we get for any given ε > 0

and r → R−
0 , r /∈ ∆′

r

T0 (r, Bs) ≤ k expp−1

{

(

1

R0 − r

)η+ε
}

+M expp−1

{

(

1

R0 − r

)ρ+ε
}

(6.6) +O

(

expp−2

{

(

1

R0 − r

)ρ+ε
})

.

Therefore

ρp,A (Bs) ≤ max {η + ε, ρ+ ε} < ∞.

This contradicts the fact that ρp,A (Bs) = ∞. Thus, every an admissible solution f

of (1.2) satisfies ρp,A (f) = ∞. This proves Theorem 1.4. �

Acknowledgement

We would like to thank the editor and the referees for their remarks and suggestions

which lead to the improvement of the original version of this paper. This work

was supported by the Directorate-General for Scientific Research and Technological

Development (DGRSDT).

References

[1] S. Axler, Harmonic functions from a complex analysis viewpoint. Amer. Math. Monthly 93(4)

(1986), 246–258.
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