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CONGRUENCES FOR 5-REGULAR PARTITIONS WITH ODD

PARTS OVERLINED

M. S. MAHADEVA NAIKA(1) AND HARISHKUMAR T.(2)

Abstract. Let a5(n) denote the number of 5-regular partitions of n with the first

occurrence of an odd number may be overlined. In this paper, we establish many

infinite families of congruences modulo powers of 2 for a5(n). For example, for all

n ≥ 0 and β ≥ 0,

a5

(

16 · 52β+1n+
k1 · 5

2β − 1

3

)

≡ 0 (mod 16),

where k1 ∈ {142, 238}.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers

λ1 ≥ λ2 ≥ · · · ≥ λk such that λ1 + λ2 + · · · + λk = n. For positive integer ℓ > 1,

a partition is an ℓ-regular partition of n if none of the parts are divisible by ℓ. Let

bℓ(n) denote the number of ℓ-regular partitions of n with bℓ(0) = 1 and the generating

function for bℓ(n) is given by
∞
∑

n=0

bℓ(n)q
n =

fℓ
f1
,

where

fℓ := (qℓ; qℓ)
∞

=
∞
∏

k=1

(1− qkℓ)

and (a; q)
∞

= (1 − a)(1 − aq)(1 − aq2) · · · , for any complex numbers a and q with

|q| < 1.
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Arithmetic properties of ℓ-regular partition functions have been studied by a number

of mathematicians. We can see [3, 6, 14].

For |ab| < 1, Ramanujan’s general theta function f(a, b) is defined by

f(a, b) =

∞
∑

k=−∞

ak(k+1)/2bk(k−1)/2.

By using the Jacobi’s triple product identity [2, Entry 19, p. 35], the function f(a, b)

can be written as

(1.1) f(a, b) := (−a; ab)
∞
(−b; ab)

∞
(ab; ab)

∞
.

The most important special cases of f(a, b) are as follows:

(1.2) ϕ(q) := f(q, q) = 1 + 2
∞
∑

n=1

qn
2

= (−q; q2)2
∞
(q2; q2)

∞
=

f 5
2

f 2
1 f

2
4

,

(1.3) ψ(q) := f(q, q3) =

∞
∑

n=0

qn(n+1)/2 =
(q2; q2)

∞

(q; q2)
∞

=
f 2
2

f1
,

(1.4) f(−q) := f(−q,−q2) =
∞
∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)
∞

= f1

and

(1.5) χ(q) = (−q; q2)
∞
.

An overpartition of a non-negative integer n is a non-increasing sequence of natural

numbers whose sum is n where the first occurrence of parts of each size may be

overlined. For example, the overpartitions of 5 are

5, 5, 4 + 1, 4 + 1, 4 + 1, 4 + 1, 3 + 2, 3 + 2, 3 + 2, 3 + 2, 3 + 1 + 1, 3 + 1 + 1,

3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1, 2 + 2 + 1, 2 + 2 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1,

2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Corteel and Lovejoy [5] obtained the following generating function for p(n), the num-

ber of overpartitions of n with p(0) = 1.

(1.6)
∞
∑

n=0

p(n)qn =
∞
∏

n=1

1 + qn

1− qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + 24q5 + · · · .

In [5], the authors extensively studied on overpartition function p(n) as a means of

better understanding and interpreting various q-series identities. Later, Hirschhorn
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and Sellers [9] proved a number of arithmetic relations satisfied by p(n) and also ob-

tained many Ramanujan-type congruences modulo powers of 2 for p(n). For example,

for all n ≥ 0,

p(9n+ 3) ≡ 0 (mod 8)

and

p(9n + 4) ≡ 0 (mod 8).

For more details about p(n), one can see [1, 11, 12, 16, 19, 20].

Hirschhorn and Sellers [10] considered the partition function po(n), the number of

overpartitions of n into odd parts. The generating function for po(n) is given by

(1.7)
∞
∑

n=0

po(n)q
n =

∞
∏

n=1

1 + q2n+1

1− q2n−1
= 1 + 2q + 2q2 + 4q3 + 6q4 + · · · .

They proved a number of arithmetic results including several Ramanujan-type con-

gruences satisfied by po(n) and some easily-stated characterizations of po(n) modulo

small powers of 2. For example, for all n ≥ 1,

po(n) ≡







2 (mod 4) if n is square or n is twice a square,

0 (mod 4) otherwise.
(1.8)

Later, Chen [4] proved an identity of po(n) and established many explicit Ramanujan-

type congruences for po(n) modulo 32 and 64. For example, let t ≥ 0 be an integer

and p ≡ 1 (mod 8) be a prime, then for all non-negative integers n with n 6≡ −7
8

(mod p),

po(16p
2t+1n+ 16λp,t + 14) ≡ 0 (mod 32)

and

po(16p
4t+3n + 16δp,t + 14) ≡ 0 (mod 64),

where λp,t =
7(p2t+1 − 1)

8
and δp,t =

7(p4t+3 − 1)

8
.

For more details about po(n), one can see [18].

In [13], the authors defined a4,5(n), the number of (4, 5)-regular partitions of n with

the first occurrence of an odd number may be overlined. Also, they established many

infinite families of congruences modulo powers of 2 for a4,5(n).
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By the motivation of the above work, in this paper, we define a5(n), the number of

5-regular partitions of n with the first occurrence of an odd number may be overlined.

The generating function for a5(n) is given by

(1.9)

∞
∑

n=0

a5 (n) q
n =

(−q; q2)
∞
(q5; q5)

∞

(q; q)
∞
(−q5; q10)

∞

.

For example, there are 14 partitions for a5(5), namely

4 + 1, 4 + 1, 3 + 2, 3 + 2, 3 + 1 + 1, 3 + 1 + 1, 3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1,

2 + 2 + 1, 2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Also, we establish many infinite families of congruences modulo powers of 2 for a5(n).

For example, for all n ≥ 0 and β ≥ 0,

a5

(

16 · 52β+1n+
k1 · 5

2β − 1

3

)

≡ 0 (mod 16),

where k1 ∈ {142, 238}.

2. Preliminary results

In this section, we collect some identities which are useful in proving our main results.

Lemma 2.1. The following 2-dissections hold:

(2.1)
1

f 2
1

=
f 5
8

f 5
2 f

2
16

+ 2q
f 2
4 f

2
16

f 5
2 f8

,

(2.2) f 2
1 =

f2f
5
8

f 2
4 f

2
16

− 2q
f2f

2
16

f8
,

1

f 4
1

=
f 14
4

f 14
2 f

4
8

+ 4q
f 2
4f

4
8

f 10
2

.(2.3)

The identity (2.1) is the 2-dissection of φ(q) [7, 1.9.4]. The equation (2.2) obtained

from (2.1) by replacing q by −q. The identity (2.3) is the 2-dissection of φ(q)2 [7,

1.10.1]. Also, one can see [2, p.40].

Lemma 2.2. The following 2-dissections hold:

(2.4)
f1
f5

=
f2f8f

3
20

f4f 3
10f40

− q
f 2
4 f40
f8f 2

10
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and

(2.5)
f5
f1

=
f8f

2
20

f 2
2 f40

+ q
f 3
4f10f40
f 3
2 f8f20

.

The equation (2.4) was proved by Hirschhorn and Sellers [8]; see also [17]. Replacing

q by −q in (2.4) and using the fact that (−q;−q)
∞

=
f3
2

f1f4
, we obtain (2.5).

Lemma 2.3. We have

(2.6)
1

f 3
1 f5

=
f 4
4

f 7
2 f10

− 2q
f 6
4 f

2
20

f 9
2 f

3
10

+ 5q
f 3
4f20
f 8
2

+ 2q2
f 9
4 f

2
40

f 10
2 f

2
8 f

2
10f20

,

(2.7) f 3
1 f5 =

f 2
2 f4f

2
10

f20
+ 2qf 3

4f20 − 5qf2f
3
10 + 2q2

f 6
4 f10f

2
40

f2f 2
8 f

2
20

and

(2.8) f1f
3
5 = f 3

2 f10 − q
f 2
2 f

2
10f20
f4

+ 2q2f4f
3
20 − 2q3

f 4
4 f10f

2
40

f2f 2
8

.

The equations (2.6) and (2.7) obtained from (4.25) and (4.26) in [15] respectively.

The equation (2.8) obtained from (4.13) in [15].

Lemma 2.4. [7, p. 85, 8.1.1] We have the following 5-dissection formula

(2.9) f1 = f25(a(q
5)− q − q2/a(q5)),

where

a := a(q) :=
(q2, q3; q5)

∞

(q, q4; q5)
∞

.(2.10)

Lemma 2.5. For any positive integers k and m, we have

(2.11) f 2m
k ≡ fm

2k (mod 2),

(2.12) f 4m
k ≡ f 2m

2k (mod 4)

and

(2.13) f 8m
k ≡ f 4m

2k (mod 8).
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3. Congruences for a5(n)

In this section, we prove many infinite families of congruences modulo powers of 2

for a5(n).

Theorem 3.1. Let k1 ∈ {142, 238} and k2 ∈ {86, 134}, then for all n ≥ 0 and β ≥ 0,

we have

(3.1) a5 (16n+ 7) ≡ 0 (mod 16),

(3.2)

∞
∑

n=0

a5

(

16 · 52βn +
46 · 52β − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16),

(3.3)

∞
∑

n=0

a5

(

16 · 52β+1n+
38 · 52β+1 − 1

3

)

qn ≡ 8f4f
3
5 (mod 16),

(3.4) a5

(

16 · 52β+1n+
k1 · 5

2β − 1

3

)

≡ 0 (mod 16),

(3.5) a5

(

16 · 52β+2n +
k2 · 5

2β+1 − 1

3

)

≡ 0 (mod 16).

Proof. From the equation (1.9), we see that

(3.6)

∞
∑

n=0

a5 (n) q
n =

f 2
2 f

2
5 f20

f 2
1 f4f

2
10

.

Employing (2.5) in (3.6) and then collecting the coefficients of q2n+1 from both sides

of the resultant equation, we get

(3.7)
∞
∑

n=0

a5 (2n+ 1) qn = 2
f 2
2 f

2
10

f 3
1 f5

.

Using (2.3) and (2.4) in (3.7) and then collecting the even and odd terms from both

sides, we obtain

(3.8)
∞
∑

n=0

a5 (4n+ 1) qn = 2
f 13
2 f

3
10

f 11
1 f

3
4 f5f20

− 8q
f 4
2 f

3
4 f20
f 8
1

and

(3.9)

∞
∑

n=0

a5 (4n+ 3) qn = 8
f2f

5
4 f

3
10

f 7
1f5f20

− 2
f 16
2 f20
f 12
1 f

5
4

.
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Invoking (2.11) and (2.13) in (3.9), we arrive at

(3.10)

∞
∑

n=0

a5 (4n+ 3) qn ≡ 8f 3
1 f

6
2 f5 + 14

f 4
2 f20
f 4
1 f4

(mod 16).

Substituting (2.3) and (2.7) in (3.10), we get

(3.11)

∞
∑

n=0

a5 (8n+ 3) qn ≡ 8
f 8
1 f2f

2
5

f10
+ 14

f 13
2 f10
f 10
1 f

4
4

(mod 16)

and

(3.12)
∞
∑

n=0

a5 (8n + 7) qn ≡ 8f 7
1f

3
5 + 8

f2f
4
4 f10
f 6
1

(mod 16).

The equation (3.12) reduces to

(3.13)
∞
∑

n=0

a5 (8n + 7) qn ≡ 8f1f
3
2 f

3
5 + 8f 3

4 f10 (mod 16).

Substituting (2.8) in (3.13), we have

(3.14)
∞
∑

n=0

a5 (16n+ 7) qn ≡ 8f 6
1 f5 + 8f 3

2 f5 (mod 16)

and

(3.15)

∞
∑

n=0

a5 (16n+ 15) qn ≡ 8
f 5
1f

2
5 f10
f2

(mod 16).

From the equation (3.14), we arrive at (3.1).

The equation (3.15) becomes

(3.16)
∞
∑

n=0

a5 (16n+ 15) qn ≡ 8f 3
1 f20 (mod 16),

which is β = 0 case of (3.2). Suppose that the congruence (3.2) is true for β ≥ 0, we

have

(3.17)

∞
∑

n=0

a5

(

16 · 52βn +
46 · 52β − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16).

Employing (2.9) in (3.17) and then collecting the coefficients of q5n+3 from both sides,

we get

(3.18)

∞
∑

n=0

a5

(

16 · 52β+1n+
38 · 52β+1 − 1

3

)

qn ≡ 8f4f
3
5 (mod 16).
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Again, using (2.9) in (3.18) and then comparing the terms involving q5n+4 on both

sides, we have

(3.19)
∞
∑

n=0

a5

(

16 · 52β+2n+
46 · 52β+2 − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16),

which implies that the congruence (3.2) is true for β + 1. Hence, by mathematical

induction, the congruence (3.2) holds for all integer β ≥ 0.

Employing (2.9) in (3.2) and then collecting the coefficients of q5n+3 from both sides

of the resultant equation, we obtain (3.3).

Employing (2.9) in (3.2) and then comparing the coefficients of q5n+i for i = 2, 4 on

both sides of the resultant equation, we get (3.4).

Substituting (2.9) in (3.3) and then collecting the terms involving q5n+i for i = 1, 2

from both sides, we arrive at (3.5). �

Theorem 3.2. If n can not be represented as a sum of twenty times a pentagonal

number and once a triangular number, then

(3.20) a5 (16n+ 15) ≡ 0 (mod 16).

Proof. The equation (3.15) can be written as

(3.21)

∞
∑

n=0

a5 (16n+ 15) qn ≡ 8
f 2
2 f20
f1

(mod 16).

In view of (1.3) and (3.21), we have

(3.22)

∞
∑

n=0

a5 (16n+ 15) qn ≡ 8f20ψ(q) (mod 16).

Combining (1.3), (1.4) and (3.22), we have

(3.23)
∞
∑

n=0

a5 (16n+ 15) qn ≡ 8
∞
∑

k=−∞

∞
∑

n=0

q10k(3k−1)+n(n+1)
2 (mod 16).

The result (3.20) follows from (3.23). �

Theorem 3.3. For all n ≥ 0 and β ≥ 0, we have

(3.24) a5

(

16 · 52β+2n +
34 · 52β+2 − 1

3

)

≡ 3β+1 · a5 (16n+ 11) (mod 16),

(3.25) a5 (16(5n+ i) + 11) ≡ 0 (mod 16),
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(3.26) a5 (80(5n+ j) + 43) ≡ 0 (mod 16),

where i = 1, 3 and j = 0, 1.

Proof. The equation (3.11) implies

(3.27)

∞
∑

n=0

a5 (8n+ 3) qn ≡ 8f 5
2 + 14

f2f10
f 2
1

(mod 16).

Substituting (2.1) in (3.27), we have

(3.28)
∞
∑

n=0

a5 (16n+ 3) qn ≡ 8f 5
1 + 14

f 5
4 f5
f 4
1 f

2
8

(mod 16)

and

(3.29)
∞
∑

n=0

a5 (16n+ 11) qn ≡ 12
f 2
2 f5f

2
8

f 4
1 f4

(mod 16).

The equation (3.29) becomes

(3.30)

∞
∑

n=0

a5 (16n+ 11) qn ≡ 12f 3
4 f5 (mod 16).

Substituting (2.9) in (3.30) and then comparing the coefficients of q5n+2 on both sides,

we get

∞
∑

n=0

a5 (80n+ 43) qn ≡ 12q2f1f
3
20

≡ 12q2f 3
20f25(a(q

5)− q − q2/a(q5)) (mod 16),(3.31)

which implies

(3.32)

∞
∑

n=0

a5 (400n+ 283) qn ≡ 4f 3
4 f5 (mod 16).

In view of the congruences (3.30) and (3.32), we see that

(3.33) a5 (400n+ 283) ≡ 3 · a5 (16n+ 11) (mod 16).

By induction on β, we arrive at (3.24).

Employing (2.9) in (3.30) and then extracting the terms involving q5n+i for i = 1, 3

from both sides of the resultant equation, we obtain (3.25).

The equation (3.26) can be obtained by collecting the coefficients of q5n and q5n+1

from both sides of the equation (3.31). �
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Theorem 3.4. For all n ≥ 0, we have

(3.34) a5 (16(5n+ i) + 3) ≡ 0 (mod 4), where i = 1, 2, 3, 4,

a5 (80n+ 3) ≡







2 (mod 4) if n is a pentagonal number,

0 (mod 4) otherwise.
(3.35)

Proof. The equation (3.28) becomes

(3.36)

∞
∑

n=0

a5 (16n+ 3) qn ≡ 2f5 (mod 4).

Extracting the coefficients of q5n+i for i = 1, 2, 3, 4 from both sides of the above

equation, we get (3.34).

The equation (3.36) implies

(3.37)
∞
∑

n=0

a5 (80n+ 3) qn ≡ 2f1 (mod 4).

The result (3.35) obtained from the equations (1.4) and (3.37). �

Theorem 3.5. Let k3 ∈ {568, 952} and k4 ∈ {344, 536}, then for all n ≥ 0 and

β ≥ 0, we have

(3.38) a5 (64n+ 29) ≡ 0 (mod 16),

(3.39)

∞
∑

n=0

a5

(

64 · 52βn+
184 · 52β − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16),

(3.40)
∞
∑

n=0

a5

(

64 · 52β+1n +
152 · 52β+1 − 1

3

)

qn ≡ 8f4f
3
5 (mod 16),

(3.41) a5

(

64 · 52β+1n+
k3 · 5

2β − 1

3

)

≡ 0 (mod 16),

(3.42) a5

(

64 · 52β+2n +
k4 · 5

2β+1 − 1

3

)

≡ 0 (mod 16).
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Proof. Invoking (2.11) and (2.13) in (3.8), we find that

(3.43)

∞
∑

n=0

a5 (4n+ 1) qn ≡ 2
f2f4f

3
10

f 3
1 f5f20

+ 8qf 3
4 f20 (mod 16).

Substituting (2.3) and (2.4) in (3.43), we obtain

(3.44)
∞
∑

n=0

a5 (8n+ 1) qn ≡ 2
f 2
2 f4f

2
10

f 4
1 f20

+ 8qf1f
3
4 f

3
5 (mod 16)

and

(3.45)
∞
∑

n=0

a5 (8n+ 5) qn ≡ 14
f 5
2 f5f20
f 5
1 f4f10

+ 8f 8
2 + 8f 3

2 f10 (mod 16).

Using (2.3) and (2.5) in (3.45), we get

(3.46)

∞
∑

n=0

a5 (16n+ 5) qn ≡ 14
f2f4f

3
10

f 3
1 f5f20

+ 8f 4
2 + 8f 3

1 f5 + 8qf 3
4 f20 (mod 16)

and

(3.47)

∞
∑

n=0

a5 (16n+ 13) qn ≡ 8f 3
1 f

3
4 f5 + 14

f 4
2f20
f 4
1 f4

(mod 16).

Employing (2.3) and (2.7) in (3.47), we obtain

(3.48)
∞
∑

n=0

a5 (32n+ 13) qn ≡ 8f 5
2 + 14

f2f10
f 2
1

(mod 16)

and

(3.49)
∞
∑

n=0

a5 (32n+ 29) qn ≡ 8f1f
3
2 f

3
5 + 8f 3

4 f10 (mod 16).

Using (2.8) in (3.49), we get

(3.50)
∞
∑

n=0

a5 (64n+ 29) qn ≡ 8f 6
1f5 + 8f 3

2 f5 (mod 16)

and

(3.51)
∞
∑

n=0

a5 (64n+ 61) qn ≡ 8f 3
1 f20 (mod 16).

From the equation (3.50), we arrive at (3.38).

The equation (3.51) is β = 0 case of (3.39). The rest of the proofs of the congruences

(3.39)-(3.42) are similar to the proofs of the congruences (3.2)-(3.5). So, we omit the

details. �
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Theorem 3.6. If n can not be represented as a sum of twenty times a pentagonal

number and once a triangular number, then

(3.52) a5 (64n+ 61) ≡ 0 (mod 16).

Proof. The equation (3.51) can be written as

(3.53)
∞
∑

n=0

a5 (64n+ 61) qn ≡ 8
f 2
2 f20
f1

(mod 16).

In view of (1.3) and (3.53), we have

(3.54)

∞
∑

n=0

a5 (64n+ 61) qn ≡ 8f20ψ(q) (mod 16).

Combining (1.3), (1.4) and (3.54), we have

(3.55)

∞
∑

n=0

a5 (64n+ 61) qn ≡ 8

∞
∑

k=−∞

∞
∑

n=0

q10k(3k−1)+
n(n+1)

2 (mod 16).

The result (3.52) follows from (3.55). �

Theorem 3.7. For all n ≥ 0 and β ≥ 0, we have

(3.56) a5

(

64 · 52β+2n+
136 · 52β+2 − 1

3

)

≡ 3β+1 · a5 (64n+ 45) (mod 16),

(3.57) a5 (64(5n+ i) + 45) ≡ 0 (mod 16),

(3.58) a5 (320(5n+ j) + 173) ≡ 0 (mod 16),

where i = 1, 3 and j = 0, 1.

Proof. Employing (2.1) in (3.48), we obtain

(3.59)

∞
∑

n=0

a5 (64n+ 13) qn ≡ 8f 5
1 + 14

f 5
4 f5
f 4
1f

2
8

(mod 16)

and

(3.60)

∞
∑

n=0

a5 (64n+ 45) qn ≡ 12f 3
4 f5 (mod 16).
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Substituting (2.9) in (3.60) and then comparing the coefficients of q5n+2 on both sides,

we get

∞
∑

n=0

a5 (320n+ 173) qn ≡ 12q2f1f
3
20

≡ 12q2f 3
20f25(a(q

5)− q − q2/a(q5)) (mod 16),(3.61)

which implies

(3.62)
∞
∑

n=0

a5 (1600n+ 1133) qn ≡ 4f 3
4 f5 (mod 16).

In view of the congruences (3.60) and (3.62), we see that

(3.63) a5 (1600n+ 1133) ≡ 3 · a5 (64n+ 45) (mod 16).

By induction on β, we arrive at (3.56).

Employing (2.9) in (3.60) and then extracting the terms involving q5n+i for i = 1, 3

from both sides of the resultant equation, we obtain (3.57).

The equation (3.58) can be obtained by collecting the coefficients of q5n and q5n+1

from both sides of the equation (3.61). �

Theorem 3.8. For all n ≥ 0, we have

(3.64) a5 (64(5n+ i) + 13) ≡ 0 (mod 4), where i = 1, 2, 3, 4,

a5 (320n+ 13) ≡







2 (mod 4) if n is a pentagonal number,

0 (mod 4) otherwise.
(3.65)

Proof. The equation (3.59) becomes

(3.66)

∞
∑

n=0

a5 (64n+ 13) qn ≡ 2f5 (mod 4).

Extracting the coefficients of q5n+i for i = 1, 2, 3, 4 from both sides of the above

equation, we get (3.64).

The equation (3.66) implies

(3.67)
∞
∑

n=0

a5 (320n+ 13) qn ≡ 2f1 (mod 4).

The result (3.65) obtained from the equations (1.4) and (3.67). �
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Theorem 3.9. Let k5 ∈ {352, 448} and k6 ∈ {224, 416}, then for all n ≥ 0 and

α, β ≥ 0, we have

(3.68)
∞
∑

n=0

a5

(

32 · 22α · 52βn +
64 · 22α · 52β − 1

3

)

qn ≡ 3α+β(12f 3
2 f10 + 14f1f

3
5 ) (mod 16),

(3.69) a5

(

32 · 22α · 52β+1n+
k5 · 2

2α · 52β − 1

3

)

≡ 0 (mod 16),

(3.70) a5

(

32 · 22α · 52β+2n +
k6 · 2

2α · 52β+1 − 1

3

)

≡ 0 (mod 16).

Proof. Using (2.6) and (2.7) in (3.46), we have

(3.71)

∞
∑

n=0

a5 (32n+ 5) qn ≡ 14
f 5
2 f

2
5

f 6
1 f10

+ 12qf 3
1f5f

2
10 (mod 16)

and

(3.72)

∞
∑

n=0

a5 (32n+ 21) qn ≡ 12f 3
2f10 + 14f1f

3
5 (mod 16).

The equation (3.72) is α = β = 0 case of (3.68). Suppose that the congruence (3.68)

is true for α ≥ 0 with β = 0, we have

(3.73)
∞
∑

n=0

a5

(

32 · 22αn+
64 · 22α − 1

3

)

qn ≡ 3α(12f 3
2f10 + 14f1f

3
5 ) (mod 16).

Using (2.8) in (3.73) and then comparing the coefficients of q2n on both sides of the

resultant equation, we get

(3.74)
∞
∑

n=0

a5

(

32 · 22α+1n+
64 · 22α − 1

3

)

qn ≡ 3α(10f 3
1f5 + 12qf2f

3
10) (mod 16).

Substituting (2.7) in (3.74) and then collecting the coefficients of q2n+1 from both

sides of the resultant equation, we arrive at

(3.75)

∞
∑

n=0

a5

(

32 · 22α+2n+
64 · 22α+2 − 1

3

)

qn ≡ 3α(4f 3
2 f10 + 10qf1f

3
5 ) (mod 16),

which implies that the congruence (3.68) is true for α+1 with β = 0. So, by induction,

the congruence (3.68) holds for all integer α ≥ 0 with β = 0. Suppose that the
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congruence (3.68) is true for α, β ≥ 0, we have

(3.76)
∞
∑

n=0

a5

(

32 · 22α · 52βn +
64 · 22α · 52β − 1

3

)

qn ≡ 3α+β(12f 3
2 f10 + 14f1f

3
5 ) (mod 16).

Employing (2.9) in (3.76) and then extracting the terms involving q5n+1 from both

sides, we obtain

(3.77)
∞
∑

n=0

a5

(

32 · 22α · 52β+1n+
32 · 22α · 52β+1 − 1

3

)

qn ≡ 3α+β(2f 3
1 f5+12qf2f

3
10) (mod 16).

Again, using (2.9) in (3.77) and then collecting the coefficients of q5n+3 from both

sides of the resultant equation, we arrive at

(3.78)
∞
∑

n=0

a5

(

32 · 22α · 52β+2n+
64 · 22α · 52β+2 − 1

3

)

qn ≡ 3α+β(4f 3
2 f10+10f1f

3
5 ) (mod 16),

which implies that the congruence (3.68) is true for β + 1. Hence, by mathematical

induction, the congruence (3.68) holds for all integers α, β ≥ 0.

Using (2.9) in (3.68) and then collecting the coefficients of q5n+i for i = 3, 4 from

both sides of the resultant equation, we get (3.69).

Using (2.9) in (3.77) and then comparing the coefficients of q5n+i for i = 2, 4 on both

sides of the resultant equation, we obtain (3.70). �

Theorem 3.10. Let k7 ∈ {172, 268} and k8 ∈ {284, 476}, then for all n ≥ 0 and

β ≥ 0, we have

(3.79) a5 (32n+ 9) ≡ 0 (mod 16),

(3.80)
∞
∑

n=0

a5

(

32 · 52βn+
76 · 52β − 1

3

)

qn ≡ 8f4f
3
5 (mod 16),

(3.81)

∞
∑

n=0

a5

(

32 · 52β+1n+
92 · 52β+1 − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16),

(3.82) a5

(

32 · 52β+1n+
k7 · 5

2β − 1

3

)

≡ 0 (mod 16),
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(3.83) a5

(

32 · 52β+2n +
k8 · 5

2β+1 − 1

3

)

≡ 0 (mod 16).

Proof. Employing (2.3) and (2.8) in (3.44), we get

(3.84)

∞
∑

n=0

a5 (16n+ 1) qn ≡ 2
f 3
2 f

2
5

f 4
1 f10

+ 8qf 3
2 f20 (mod 16)

and

(3.85)

∞
∑

n=0

a5 (16n+ 9) qn ≡ 8f 7
2 + 8f 3

1 f
3
2 f5 (mod 16).

Substituting (2.7) in (3.85), we obtain

(3.86)
∞
∑

n=0

a5 (32n+ 9) qn ≡ 8f 7
1 + 8

f 5
1 f2f

2
5

f10
(mod 16)

and

(3.87)

∞
∑

n=0

a5 (32n+ 25) qn ≡ 8f4f
3
5 (mod 16).

From the equation (3.86), we arrive at (3.79).

The equation (3.87) is β = 0 case of (3.80). Suppose that the congruence (3.80) is

true for β ≥ 0 and employing (2.9) in (3.80), we have

(3.88)

∞
∑

n=0

a5

(

32 · 52β+1n+
92 · 52β+1 − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16).

Again, using (2.9) in (3.88) and then collecting the coefficients of q5n+3 from both

sides, we get

(3.89)

∞
∑

n=0

a5

(

32 · 52β+2n+
76 · 52β+2 − 1

3

)

qn ≡ 8f4f
3
5 (mod 16),

which implies that the congruence (3.80) is true for β + 1. So, by induction, the

congruence (3.80) holds for all integer β ≥ 0.

Employing (2.9) in (3.80) and then extracting the terms involving q5n+4 from both

sides of the resultant equation, we arrive at (3.81).

From the equation (3.80) along with (2.9), we obtain (3.82).

Using (2.9) in (3.81) and then comparing the coefficients of q5n+2 and q5n+4 on both

sides of the resultant equation, we arrive at (3.83). �
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Theorem 3.11. If n can not be represented as a sum of four times a pentagonal

number and five times a triangular number, then

(3.90) a5 (32n+ 25) ≡ 0 (mod 16).

Proof. The equation (3.87) can be written as

(3.91)

∞
∑

n=0

a5 (32n+ 25) qn ≡ 8
f4f

2
10

f5
(mod 16).

In view of (1.3) and (3.91), we have

(3.92)

∞
∑

n=0

a5 (32n+ 25) qn ≡ 8f4ψ(q
5) (mod 16).

Combining (1.3), (1.4) and (3.92), we have

(3.93)

∞
∑

n=0

a5 (32n+ 25) qn ≡ 8

∞
∑

k=−∞

∞
∑

n=0

q2k(3k−1)+ 5n(n+1)
2 (mod 16).

The result (3.90) follows from (3.93). �

Theorem 3.12. For all n ≥ 0 and β ≥ 0, we have

(3.94) a5

(

32 · 52β+2n +
52 · 52β+2 − 1

3

)

≡ 3β+1 · a5 (32n+ 17) (mod 16),

(3.95) a5 (160(5n+ i) + 113) ≡ 0 (mod 16),

where i = 1, 3.

Proof. Using (2.2) and (2.3) in (3.84), we arrive at

(3.96)
∞
∑

n=0

a5 (32n+ 1) qn ≡ 2
f 2
2 f

5
20

f 3
1 f

2
10f

2
40

(mod 16)

and

(3.97)

∞
∑

n=0

a5 (32n+ 17) qn ≡ 8f 13
1 + 8f 3

1 f10 + 12q2f1f
3
20 (mod 16).

Employing (2.9) in (3.97) and then comparing the coefficients of q5n+3 on both sides

of the resultant equation, we get

(3.98)

∞
∑

n=0

a5 (160n+ 113) qn ≡ 4f 3
4 f5 + 8f2f

3
5 + 8q2f 13

5 (mod 16).
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Again, using (2.9) in (3.98) and then collecting the coefficients of q5n+2 from both

sides of the resultant equation, we obtain

(3.99)

∞
∑

n=0

a5 (800n+ 433) qn ≡ 8f 13
1 + 8f 3

1 f10 + 4q2f1f
3
20 (mod 16).

In view of the congruences (3.97) and (3.99), we see that

(3.100) a5 (800n+ 433) ≡ 3 · a5 (32n+ 17) (mod 16).

By induction on β, we arrive at (3.94).

Substituting (2.9) in (3.98) and then extracting the coefficients of q5n+i for i = 1, 3

from both sides of the resultant equation, we obtain (3.95). �

Theorem 3.13. For all n ≥ 0, we have

a5 (32n+ 1) ≡







2 (mod 4) if n is a pentagonal number,

0 (mod 4) otherwise.
(3.101)

Proof. From the equation (3.96), we arrive at

(3.102)

∞
∑

n=0

a5 (32n+ 1) qn ≡ 2f1 (mod 4).

The result (3.101) obtained from the equations (1.4) and (3.102). �

Theorem 3.14. Let k9 ∈ {688, 1072} and k10 ∈ {1136, 1904}, then for all n ≥ 0 and

β ≥ 0, we have

(3.103)
∞
∑

n=0

a5

(

128 · 52βn+
304 · 52β − 1

3

)

qn ≡ 8f4f
3
5 (mod 16),

(3.104)

∞
∑

n=0

a5

(

128 · 52β+1n +
368 · 52β+1 − 1

3

)

qn ≡ 8f 3
1 f20 (mod 16),

(3.105) a5

(

128 · 52β+1n+
k9 · 5

2β − 1

3

)

≡ 0 (mod 16),

(3.106) a5

(

128 · 52β+2n +
k10 · 5

2β+1 − 1

3

)

≡ 0 (mod 16).
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Proof. Employing (2.3), (2.5) and (2.7) in (3.71) and then comparing the coefficients

of q2n+1 on both sides of the resultant equation, we obtain

(3.107)
∞
∑

n=0

a5 (64n+ 37) qn ≡ 8
f 3
1 f

4
4 f5

f10
+ 8f4f10 + 8qf 3

1 f
5
2 f5f20 + 8qf 3

1f5f
3
10 (mod 16).

Substituting (2.7) in (3.107) and then collecting the coefficients of q2n+1 from both

sides of the resultant equation, we arrive at

(3.108)

∞
∑

n=0

a5 (128n+ 101) qn ≡ 8f4f
3
5 (mod 16),

which is β = 0 case of (3.103). The rest of the proofs of the congruences (3.103)-

(3.106) are similar to the proofs of the congruences (3.80)-(3.83). So, we omit the

details. �

Theorem 3.15. If n can not be represented as a sum of four times a pentagonal

number and five times a triangular number, then

(3.109) a5 (128n+ 101) ≡ 0 (mod 16).

Proof. The equation (3.108) can be written as

(3.110)

∞
∑

n=0

a5 (128n+ 101) qn ≡ 8
f4f

2
10

f5
(mod 16).

In view of (1.3) and (3.110), we have

(3.111)
∞
∑

n=0

a5 (128n+ 101) qn ≡ 8f4ψ(q
5) (mod 16).

Combining (1.3), (1.4) and (3.111), we have

(3.112)
∞
∑

n=0

a5 (128n+ 101) qn ≡ 8
∞
∑

k=−∞

∞
∑

n=0

q2k(3k−1)+ 5n(n+1)
2 (mod 16).

The result (3.109) follows from (3.112). �

Acknowledgements

The authors are thankful to the editor and referee for their comments which improves

the quality of our paper. The second author would like to thank the Ministry of

Tribal Affairs, Govt. of India for providing financial assistance under NFST, ref. no.

201718-NFST-KAR-00136 dated 07.06.2018.



464 M. S. MAHADEVA NAIKA AND HARISHKUMAR T.

References

[1] C. Adiga, M. S. Mahadeva Naika, D. Ranganatha and C. Shivashankar, Congruences modulo

8 for (2, k)-regular overpartitions for odd k > 1, Arab. J. Math., 7 (2018), 61–75.

[2] B. C. Berndt, Ramanujan’s Notebooks Part III, Springer-Verlag, New York, 1991.

[3] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, Divisibility

properties of the 5-regular and 13-regular partition functions, Integers, 8(60) (2008).

[4] S. C. Chen, On the number of overpartitions into odd parts, Discrete Math., 325 (2014), 32–37.

[5] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356 (2004), 1623–1635.

[6] S. P. Cui and N. S. S. Gu, Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math., 51

(2013), 507–523.

[7] M. D. Hirschhorn, The Power of q, Springer International Publishing, Switzerland, 2017.

[8] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions,

Bull. Aust. Math. Soc., 81 (2010), 58–63.

[9] M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math.

Combin. Comput. 53 (2005), 65–73.

[10] M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of overpartitions into odd parts, Ann.

Comb. 10 (2006), 353–367.

[11] B. Kim, A short note on the overpartition function, Discrete Math. 309 (2009), 2528–2532.

[12] J. Lovejoy, Gordon’s theorem for overpartitions, J. Combin. Theory A. 103 (2003), 393-401.

[13] M. S. Mahadeva Naika, Harishkumar T and T. N. Veeranayaka, On (4, 5)-regular partitions

with odd parts overlined, Integers, 20(A83) (2020).

[14] M. S. Mahadeva Naika and B. Hemanthkumar, Arithmetic properties of 5-regular bipartitions,

Int. J. Number Theory, 13(4), (2017), 937–956.

[15] M. S. Mahadeva Naika, B. Hemanthkumar and H. S. Sumanth Bharadwaj, Color partition

identities arising from Ramanujan’s theta functions, Acta Math. Vietnam, 41(4), (2016), 633–

660.

[16] K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math., 286 (2004),

263–267.

[17] S. Ramanujan, Collected Papers, Cambridge University Press, 1927; reprinted by Chelsea, New

York, 1962; reprinted by the American Mathematical Society, RI, 2000.

[18] C. Ray and R. Barman, New congruences for overpartitions into odd parts, Integers, 18(A50)

(2018).

[19] E. Y. Y. Shen, Arithmetic properties of ℓ-regular overpartitions, Int. J. Number Theory, 12(3)

(2016), 841–852.

[20] H. S. Sumanth Bharadwaj, B. Hemanthkumar and M. S. Mahadeva Naika, On 3- and 9-regular

overpartitions modulo powers of 3, Colloquium Math., 154(1) (2018), 121–130.



CONGRUENCES FOR 5-REGULAR PARTITIONS WITH ODD PARTS OVERLINED 465

(1) Department of Mathematics, Bengaluru City University, Central College Cam-

pus, Bengaluru-560 001, Karnataka, India.

Email address : msmnaika@rediffmail.com

(2) Department of Mathematics, Bangalore University, Central College Campus,

Bengaluru-560 001, Karnataka, India.

Email address : harishhaf@gmail.com


